И прямо или косвенно влияет на его жизнедеятельность, рост, развитие, размножение.

Каждый организм живет в определенной среде обитания. Элементы или свойства среды называются эколо-гическими факторами. На нашей планете выделяют четы-ре среды жизни: наземно-воздушную, водную, почвенную, другой организм. Живые организмы приспособлены к су-ществованию в определенных условиях жизни и в опреде-ленной среде.

Одни организмы живут на суше, другие — в почве, третьи — в воде. Некоторые избрали местом свое-го проживания тела других организмов. Таким образом, вы-деляют четыре среды жизни: наземно-воздушную, водную, почвенную, другой организм (рис. 3). Каждая из сред жиз-ни характеризуется определенными свойствами, к которым приспособлены живущие в ней организмы.

Наземно-воздушная среда

Наземно-воздушная среда характеризуется низкой плот-ностью воздуха, обилием света, быстрым изменением темпе-ратуры, переменной влажностью. Поэтому организмы, оби-тающие в наземно-воздушной среде, имеют хорошо развитые опорные структуры — наружный или внутренний скелет у животных, специальные структуры у растений.

Многие животные имеют органы передвижения по зем-ле — конечности либо крылья для полета. Благодаря разви-тым органам зрения они хорошо видят. Сухопутные организ-мы имеют приспособления, которые защищают их от коле-баний температуры и влажности (например, специальные покровы тела, устройство гнезд, нор). У растений хорошо развиты корни , стебель , листья.

Водная среда

Для водной среды характерна более высокая плотность по сравнению с воздухом, поэтому вода обладает выталкиваю-щей силой. Многие организмы «парят» в толще воды — мел-кие животные, бактерии , протисты. Другие активно двига-ются. Для этого у них имеются органы передвижения в виде плавников или ласт (рыбы, киты, тюлени). У активных плов-цов, как правило, обтекаемая форма тела.

Многие водные организмы (прибрежные растения, водо-росли, коралловые полипы) ведут прикрепленный образ жиз-ни, другие — малоподвижный (некоторые моллюски, мор-ские звезды).

Вода накапливает и удерживает тепло, поэтому в воде не бывает таких резких колебаний температуры, как на суше. Количество света в водоемах изменяется в зависимости от глубины. Поэтому автотрофы заселяют только ту часть водо-ема, куда проникает свет. Гетеротрофные организмы освои-ли всю толщу воды.

Почвенная среда

В почвенной среде отсутствует свет, нет резкой смены температуры, высокая плотность. В почве обитают бакте-рии, протисты , грибы , некоторые животные (насекомые и их личинки, черви, кроты, землеройки). Почвенные животные имеют компактное тело. У некоторых из них есть копательные конечности, отсутствуют или недоразвиты органы зре-нии (крот).

Совокупность необходимых организму элементов среды, без которых он не может существовать, называется условия-ми существования или условиями жизни.

На этой странице материал по темам:

  • среда обитания землеройки наземно воздушная водная почва или другая

  • организм как среда обитания примеры

  • примеры организмов живущих в нашей среде

  • какие свойства характерны для водной среды обитания

  • организмы живущие в теле других организмов

Вопросы к этой статье:

  • Что такое среда обитания и условия существования?

  • Что называ-ют экологическими факторами?

  • Какие группы экологических факторов выделяют?

  • Какие свойства характерны для наземно-воздушной сре-ды?

  • Почему считают, что наземно-воздушная среда жизни более слож-ная, чем водная или почвенная?

  • В чем состоят особенности организ-мов, живущих внутри других организмов?

  • Особенность наземно-воздушной среды – организмы, обитающие здесь, окружены воздухом – газообразной средой, характеризующейся низкой влажностью, плотностью, давлением и высоким содержанием кислорода.

    Большинство животных передвигается по твердому субстрату – почве, а растения укореняются в ней.

    У обитателей наземно-воздушной среды выработались приспособления:

    1) органы, обеспечивающие усвоение атмосферного кислорода (устьица у растений, легкие и трахеи у животных);

    2) сильное развитие скелетных образований, поддерживающих тело в воздушной среде (механические ткани у растений, скелет у животных);

    3) сложные приспособления для защиты от неблагоприятных факторов (периодичность и ритмика жизненных циклов, механизмы терморегуляции и др.);

    4) установилась тесная связь с почвой (корни у растений и конечности у животных);

    5) характерна большая подвижность животных в поисках пищи;

    6) появились летающие животные (насекомые, птицы) и переносимые ветром семена, плода, пыльца.

    Экологические факторы наземно-воздушной среды регулируются макроклиматом (экоклиматом). Экоклимат (макроклимат) – климат больших территорий, характеризующийся определенными свойствами приземного слоя воздуха. Микроклимат – климат отдельных местообитаний (ствол дерева, нора животного и т.д.).

    41.Экологические факторы наземно-воздушной среды.

    1) Воздух:

    Характеризуется постоянством состава (21% кислорода, 78% азота, 0,03% СО 2 и инертные газы). Является важным экологическим фактором, т.к. без атмосферного кислорода невозможно существование большинства организмов, СО 2 используется для фотосинтеза.

    Передвижение организмов в наземно-воздушной среде осуществляется в основном по горизонтали, по вертикали перемещаются лишь некоторые насекомые, птицы и млекопитающие.

    Воздух оказывает огромное значение на жизнедеятельность живых организмов посредством ветра – перемещение воздушных масс из-за неравномерного прогревания атмосферы Солнцем. Влияние ветра :

    1) иссушает воздух, является причиной снижения интенсивности водного обмена у растений и животных;

    2) участвует в опылении растений, разносит пыльцу;

    3) снижает разнообразие летающих видов животных (сильный ветер мешает в полете);

    4) вызывает изменения в строении покровов (образуются плотные покровы, предохраняющие растения и животных от переохлаждения и потери влаги);

    5) участвует в расселении животных и растений (разносит плоды, семена, мелких животных).



    2) Атмосферные осадки:

    Важный экологический фактор, т.к. от наличия осадков зависит водный режим среды:

    1) осадки изменяют влажность воздуха и почву;

    2) обеспечивают доступную воду для водного питания растений и животных.

    а) Дождь:

    Наиболее важны сроки выпадения, частота выпадения, продолжительность.

    Пример: обилие дождей в период похолодания не дает растениям необходимой влаги.

    По характеру дожди:

    - ливневые – неблагоприятны, т.к. растения не успевают всасывать воду, также образуются потоки, смывающие верхний плодородный слой почвы, растения, мелких животных.

    - моросящие – благоприятны, т.к. обеспечивают увлажнение почвы, питание растений и животных.

    - затяжные – неблагоприятны, т.к. вызывают наводнения, паводки и затопления.

    б) Снег:

    Благоприятно влияет на организмы в зимний период, т.к.:

    а) создает благоприятный температурный режим почвы, защищает организмы от переохлаждения.

    Пример: при температуре воздуха -15 0 С температура почвы под 20см слоем снега не ниже +0,2 0 С.

    б) создает зимой среду для жизнедеятельности организмов (грызунов, куриных птиц и т.д.)

    Приспособления животных к зимним условиям:

    а) увеличивается опорная поверхность ног для хождения по снегу;

    б) миграции и впадение в спячку (анабиоз);

    в) переход на питание определенными кормами;

    г) смена покровов и др.

    Отрицательное влияние снега :

    а) обилие снега ведет к механическим повреждениям у растений, выпреванию растений и их вымоканию во время таяния снега весной.

    б) образование наста и гололедицы (затрудняет газообмен животных и растений, находящихся под снегом, создает трудности для добывания корма).

    42.Влажность почв.

    Основной фактор для водного питания первичных продуцентов – зеленых растений.

    Виды почвенной воды:

    1) Гравитационная вода – занимает широкие промежутки между частицами почвы и под действием силы тяжести уходит в более глубокие слои. Растения легко ее усваивают, когда она находится в зоне корневой системы. Запасы в почве пополняются осадками.



    2) Капиллярная вода – заполняет мельчайшие пространства между частицами почвы (капилляры). Не перемещается вниз, удерживается силой сцепления. Из-за испарения с поверхности почвы образует восходящий ток воды. Хорошо усваивается растениями.

    1) и 2) воды доступные для растений.

    3) Химически связанная вода – кристаллизационная вода (гипс, глина и т.д.). Недоступна для растений.

    4) Физически связанная вода – также недоступна для растений.

    а) пленочная (рыхлосвязанная) – ряды диполей, последовательно облекающих друг друга. Удерживаются на поверхности почвенных частиц силой от 1 до 10 атм.

    б) гигроскопическая (прочносвязанная) – окутывает почвенные частицы тонкой пленкой и удерживается силой от 10000 до 20000 атм.

    Если в почве находится только недоступная вода, растение вянет и погибает.

    Для песка КЗ = 0,9%, для глины = 16,3%.

    Общее количество воды – КЗ = степень обеспеченности растения водой.

    43.Географическая зональность наземно-воздушной среды.

    Для наземно-воздушной среды характерна вертикальная и горизонтальная зональность. Каждая зона характеризуется специфическим экоклиматом, составом животных и растений, территорией.

    Климатические зоны → климатические подзоны → климатические провинции.

    Классификация Вальтера:

    1) Экваториальная зона – находится между 10 0 северной широты и 10 0 южной широты. Имеет 2 дождливых сезона, соответствующих положению Солнца в зените. Годовое количество осадков и влажность велики, месячные колебания температуры незначительны.

    2) Тропическая зона – находится севернее и южнее экваториальной, до 30 0 северной и южной широты. Характерны летний дождливый период и зимняя засуха. Количество осадков и влажность уменьшается по мере удаления от экватора.

    3) Зона сухих субтропиков – находится до 35 0 широты. Сумма осадков и влажность незначительны, годовые и суточные колебания температур весьма существенны. Редко бывают заморозки.

    4) Переходная зона – характерны сезоны зимних дождей, жаркое лето. Заморозки бывают чаще. Средиземноморье, Калифорния, юг и юго-запад Австралии, юго-запад Южной Америки.

    5) Умеренная зона – отличается циклоническими осадками, количество которых уменьшается по мере удаления от океана. Годовое колебание температур резкое, лето жаркое, зима морозная. Разделяют на подзоны:

    а) подзона теплого умеренного климата – зимний период практически не выделяется, все времена года более или менее влажные. Южная Африка.

    б) подзона типичного умеренного климата – холодная непродолжительная зима, прохладное лето. Центральная Европа.

    в) подзона аридного умеренного климата континентального типа – характерны резкие температурные контрасты, небольшая сумма осадков, незначительная влажность воздуха. Центральная Азия.

    г) подзона бореального, или холодного умеренного климата – лето прохладное и влажное, зима длится половина года. Север Северной Америки и Северная Евразия.

    6) Арктическая (антарктическая) зона – характеризуется выпадением незначительного количества осадков в виде снега. Лето (полярный день) короткое и холодное. Эта зона переходит в полярную область, в которой существование растений невозможно.

    Для Беларуси характерен умеренно континентальный климат с дополнительным увлажнением. Отрицательные стороны климата Беларуси:

    Неустойчивая погода весной и осенью;

    Мягкая, с продолжительными оттепелями весна;

    Дождливое лето;

    Поздние весенние и ранние осенние заморозки.

    Несмотря на это в Беларуси произрастает около 10000 видов растений, обитает 430 видов позвоночных животных и около 20000 видов беспозвоночных животных.

    Вертикальная зональность – от низменностей и оснований гор до вершин гор. Подобна горизонтальной с некоторыми отклонениями.

    44.Почва как Среда жизни. Общая характеристика.


    Наземно-воздушная среда жизни самая сложная по экологическим условиям. В ходе эволюции была освоена значительно позднее, чем водная. Жизнь на суше потребовала таких приспособлений, которые стали возможными только при достаточно высоком уровне организации организмов. Для наземно-воздушной среды характерны низкая плотность воздуха, большие колебания температуры и влажности, более высокая интенсивность солнечной радиации в сравнении с другими средами, подвижность атмосферы.

    Низкая плотность и подвижность воздуха определяют его малую подъёмную силу и незначительную опорность. Организмы наземной среды должны обладать опорной системой, поддерживающей тело: растения – механическими тканями, животные – твёрдым или гидростатическим скелетом.

    Малая подъёмная сила воздуха определяет предельную массу и размеры наземных организмов. Самые крупные животные суши значительно меньше гигантов водной среды – китов. Животные размером и массой современного кита не могли бы жить на суше, так как были бы раздавлены собственной тяжестью.

    Малая плотность воздуха обусловливает низкую сопротивляемость передвижению. Поэтому многие животные приобрели способность к полёту: птицы, насекомые, некоторые млекопитающие и рептилии.

    Благодаря подвижности воздуха возможен пассивный полёт некоторых видов организмов, а также пыльцы, спор, плодов и семян растений. Расселение с помощью воздушных потоков получило название анемохории . Пассивно переносимые потоками воздуха организмы называют аэропланктоном . Для них характерны очень мелкие размеры тела, наличие выростов и сильного расчленения, использование паутины и т.п. Семена и плоды анемохорных растений также имеют очень мелкие размеры (семена орхидных, кипрея и др.) или различные крыловидные (клён, ясень) и парашютовидные (одуванчик, мать-и-мачеха) придатки.

    У многих растений перенос пыльцы осуществляется с помощью ветра, например у голосеменных, буковых, берёзовых, вязовых, злаковых и др. Способ опыления растений с помощью ветра называют анемофилией . Ветроопыляемые растения имеют множество приспособлений, обеспечивающих эффективность опыления.

    Ветры, дующие с большой силой (бури, ураганы) ломают деревья, нередко выворачивая их с корнем. Постоянно дующие в одном направлении ветры вызывают различные деформации роста деревьев, служат причиной образования флагообразных форм крон.

    В районах, где постоянно дует сильный ветер, как правило, беден видовой состав мелких летающих животных, так как они не способны сопротивляться мощным воздушным потокам. Так, на океанических островах с постоянными сильными ветрами преобладают птицы и насекомые, утратившие способность к полёту. Ветер усиливает потерю организмами влаги и тепла, под его влиянием быстрее наступают иссушение и охлаждение организмов.

    Малая плотность воздуха обусловливает сравнительно низкое давление на суше (760 мм рт. ст.). С увеличением высоты над уровнем моря давление уменьшается, что может ограничивать распространение видов в горах. Снижение давления влечёт за собой уменьшение обеспеченности кислородом и обезвоживание животных за счёт увеличения частоты дыхания. Поэтому для большинства позвоночных и высших растений верхняя граница жизни около 6000 м.

    Газовый состав воздуха в приземном слое атмосферы довольно однороден. Он содержит азот – 78,1%, кислород – 21%, аргон – 0,9%, углекислый газ – 0,03%. Кроме этих газов в атмосфере есть в незначительном количестве неон, криптон, ксенон, водород, гелий, а также разнообразные ароматические выделения растений и различные примеси: диоксид серы, оксиды углерода, азота, физические примеси. Высокое содержание кислорода в атмосфере способствовало повышению обмена веществ у наземных организмов и появлению теплокровных (гомойотермных) животных. Дефицит кислорода может возникать в скоплениях разлагающихся растительных остатков, запасах зерна, недостаток кислорода могут испытывать корневые системы растений на заболоченных или слишком уплотнённых почвах.

    Содержание углекислого газа может изменяться в отдельных участках приземного слоя воздуха в довольно значительных пределах. При отсутствии ветра в больших городах концентрация его может возрастать в десятки раз. Закономерны суточные и сезонные изменения содержания углекислоты в приземном слое воздуха, обусловленные изменениями интенсивности фотосинтеза и дыхания организмов. В высоких концентрациях углекислый газ токсичен, а его низкое содержание понижает интенсивность фотосинтеза.

    Азот воздуха для большинства организмов наземной среды представляет инертный газ, но многие прокариотные организмы (клубеньковые бактерии, азотобактер, клостридии, цианобактерии и др.) обладают способностью связывать его и вовлекать в биологический круговорот.

    Многие примеси, поступающие в воздух в основном в результате деятельности человека, могут существенно влиять на организмы. Например, оксид серы ядовит для растений даже в очень низких концентрациях, вызывает разрушение хлорофилла, повреждает структуру хлоропластов, угнетает процессы фотосинтеза и дыхания. Повреждаемость растений токсичными газами неодинакова и зависит от их анатомо-морфологических, физиологических, биологических и других особенностей. Например, особо чувствительны к промышленным газам лишайники, ель, сосна, дуб, лиственница. Наиболее устойчивы тополь канадский, тополь бальзамический, клён ясенелистный, туя, бузина красная и некоторые другие.

    Световой режим. Солнечная радиация, достигающая поверхности Земли, является основным источником энергии для поддержания теплового баланса планеты, водного обмена организмов, создания органического вещества растениями, что в конечном счёте делает возможным формирование среды, способной удовлетворять жизненные потребности организмов. В состав солнечной радиации, достигающей поверхности Земли, входят ультрафиолетовые лучи с длиной волны 290–380 нм, видимые лучи – 380–750 нм и инфракрасные лучи с длиной волны 750–4000 нм. Ультрафиолетовые лучи имеют высокую химическую активность и в больших дозах вредны для организмов. В умеренных дозах в диапазоне 300–380 нм они стимулируют деление и рост клеток, способствуют синтезу витаминов, антибиотиков, пигментов (например, у человека – загар, у рыб и земноводных – тёмная икра), повышают устойчивость растений к заболеваниям. Инфракрасные лучи оказывают тепловое действие. Фотосинтезирующие бактерии (зелёные, пурпурные) способны поглощать инфракрасные лучи в диапазоне 800–1100 нм и существовать только за их счёт. Примерно 50% солнечной радиации приходятся на видимый свет, который в жизни автотрофных и гетеротрофных организмов имеет разное экологическое значение. Зелёным растениям свет нужен для процесса фотосинтеза, образования хлорофилла, формирования структуры хлоропластов. Он влияет на газообмен и транспирацию, на строение органов и тканей, на рост и развитие растений.

    Для животных видимый свет необходим для ориентирования в окружающей среде. У некоторых животных зрительное восприятие распространяется на ультрафиолетовую и ближнюю инфракрасную части спектра.

    Световой режим любого местообитания определяется интенсивностью прямого и рассеянного света, его количеством, спектральным составом, а также отражательной способностью поверхности, на которую падает свет. Указанные элементы светового режима очень изменчивы и зависят от географической широты местности, высоты стояния солнца над горизонтом, длины дня, состояния атмосферы, характера земной поверхности, рельефа, времени суток и сезона года. В связи с этим у наземных организмов в течение длительного процесса эволюции возникли различные адаптации к световому режиму местообитаний.

    Адаптации растений. По отношению к условиям освещения выделяют три основные экологические группы растений: светолюбивые (гелиофиты); тенелюбивые (сциофиты); теневыносливые.

    Гелиофиты – растения открытых хорошо освещаемых местообитаний. Они не переносят затенения. Примером их могут быть степные и луговые растения верхнего яруса сообщества, виды пустынь, альпийских лугов и т.д.

    Сциофиты – не переносят сильного освещения прямыми солнечными лучами. Это растения нижних ярусов тенистых лесов, пещер, расщелин скал и др.

    Теневыносливые растения имеют широкую экологическую валентность по отношению к свету. Они лучше растут при высокой интенсивности освещения, но хорошо переносят и затенение, легче других растений адаптируются к изменяющимся условиям освещённости.

    Каждой рассмотренный группе растений свойственны определённые анатомо-морфологические, физиологические и сезонные адаптации к условиям светового режима.

    Одно из наиболее наглядных различий внешнего облика светолюбивых и тенелюбивых растений – неодинаковые размеры листьев. У гелиофитов они обычно мелкие или с рассечённой листовой пластинкой. Особенно хорошо это видно при сравнении родственных видов, растущих в разных условиях освещённости (фиалка полевая и лесные фиалки, колокольчик раскидистый, растущий на лугах, и колокольчик лесной и др.). Тенденция к увеличению размеров листьев по отношению ко всему объёму растений наглядно выражена у травянистых растений елового леса: кислицы обыкновенной, майника двулистного, вороньего глаза и др.

    У светолюбивых растений, чтобы уменьшить поступление солнечной радиации, листья располагаются вертикально или под острым углом к горизонтальной плоскости. У тенелюбивых растений листья располагаются преимущественно горизонтально, что позволяет им получать максимальное количество падающего света. Поверхность листа у многих гелиофитов блестящая, способствующая отражению лучей, покрытая восковым налётом, толстой кутикулой или густым опушением.

    Листья тенелюбивых и светолюбивых растений отличаются также анатомическим строением. У световых листьев больше механических тканей, листовая пластинка толще, чем у теневых. Клетки мезофилла мелкие, располагаются плотно, хлоропласты в них мелкие и светлые, занимают постенное положение. Мезофилл листа дифференцирован на столбчатую и губчатую ткани.

    У сциофитов листья более тонкие, кутикула отсутствует или слабо развита. Мезофилл не дифференцирован на столбчатую и губчатую ткань. Элементов механических тканей и хлоропластов в теневых листьях меньше, но они более крупные, чем у гелиофитов. Побеги у светолюбивых растений часто с укороченными междоузлиями, сильно ветвящиеся, нередко розеточные.

    Физиологические адаптации растений к свету проявляются в изменении ростовых процессов, интенсивности фотосинтеза, дыхания, транспирации, состава и количества пигментов. Известно, что у светолюбивых растений при недостатке света наблюдается вытягивание стеблей. В листьях тенелюбивых растений хлорофилла содержится больше, чем в светолюбивых, поэтому они имеют более насыщенную тёмно-зелёную окраску. Интенсивность фотосинтеза у гелиофитов максимальна при высокой освещённости (в пределах 500–1000 лк и более), а у сциофитов – при малом количестве света (50–200 лк).

    Одной из форм физиологической адаптации растений к недостатку света является переход некоторых видов на гетеротрофное питание. Примером таких растений являются виды тенистых еловых лесов – гудайера ползучая, гнездовка настоящая, подъельник обыкновенный. Они живут за счёт мёртвых органических остатков, т.е. являются сапрофитами.

    Сезонные адаптации растений к условиям освещённости проявляются в местообитаниях, где световой режим периодически изменяется. В этом случае растения в разные сезоны могут проявлять себя то как светолюбивые, то как теневыносливые. Например, весной в лиственных лесах листья побегов сныти обыкновенной имеют световую структуру и отличаются высокой интенсивностью фотосинтеза. Листья летних побегов сныти, развивающиеся после облиствения деревьев и кустарников, имеют типичную теневую структуру. Отношение к световому режиму у растений может изменяться в процессе онтогенеза и в результате комплексного влияния экологических факторов. Проростки и молодые растения многих луговых и лесных видов более теневыносливы, чем взрослые особи. Требования к световому режиму иногда меняются у растений, когда они оказываются в иных климатических и эдафических условиях. Например, лесные таёжные виды – черника, майник двулистный – в лесотундре и тундре хорошо растут на открытых местообитаниях.

    Одним из факторов, регулирующих сезонное развитие организмов, является длина дня. Способность растений и животных реагировать на длину дня получила название фотопериодической реакции (ФПР), а круг явлений, регулируемых длиной дня, называется фотопериодизмом . По типу фотопериодической реакции выделяют следующие основные группы растений:

    1. Растения короткого дня , которым для перехода к цветению требуется меньше 12 часов света в сутки. Это, как правило, выходцы из южных областей (хризантемы, георгины, астры, табак и др.).

    2. Растения длинного дня – для цветения им нужна длина дня 12 и более часов (лён, овёс, картофель, редис).

    3. Нейтральные к длине дня растения. Для них длина дня безразлична, цветение наступает при любой его длине (одуванчик, томаты, горчица и др.).

    Длина дня влияет не только на прохождение растением генеративных фаз, но и на их продуктивность, устойчивость к инфекционным заболеваниям. Она также играет важную роль в географическом распространении растений и регулировании их сезонного развития. Виды, распространённые в северных широтах, преимущественно длиннодневные, а в тропиках и субтропиках в основном короткодневные или нейтральные. Однако эта закономерность не абсолютна. Так, в горах тропической и субтропической зон встречаются длиннодневные виды. Многие сорта пшеницы, льна, ячменя и других культурных растений, происходящие из южных районов, имеют ФПР длинного дня. Исследования показали, что при понижении температуры растения длинного дня могут нормально развиваться в условиях короткого дня.

    Свет в жизни животных. Свет животным необходим для ориентации в пространстве, влияет также на процессы обмена веществ, на поведение, на жизненный цикл. Полнота зрительного восприятия окружающей среды зависит от уровня эволюционного развития. У многих беспозвоночных имеются лишь светочувствительные клетки, окружённые пигментом, а у одноклеточных – светочувствительный участок цитоплазмы. Наиболее совершенны глаза позвоночных, головоногих моллюсков и насекомых. Они позволяют воспринимать форму и размеры предметов, цвет, определять расстояние. Объёмное зрение характерно для человека, приматов, некоторых птиц (орлов, соколов, сов). Развитие зрения и его особенности зависят также от экологических условий и образа жизни конкретных видов. У обитателей пещер глаза могут быть полностью или частично редуцированы, как, например, у слепых жуков жужелиц, протеев и др.

    Различные виды животных способны выдерживать освещение определённого спектрального состава, длительности и силы. Различают светолюбивые и тенелюбивые, эврифотные и стенофотные виды. Ночные и сумеречные млекопитающие (полёвки, мыши и др.) выносят прямое освещение солнцем всего в течение 5–30 мин, а дневные – несколько часов. Однако на ярком солнечном свету даже пустынные виды ящериц не могут долго выдерживать облучения, так как за 5–10 мин температура их тела поднимается до +50–56ºС и животные погибают. Освещение яиц многих насекомых ускоряет их развитие, но до определённых пределов (неодинаковых для различных видов), после чего развитие прекращается. Приспособлением к защите от излишней солнечной радиации являются пигментированные покровы некоторых органов: у рептилий – брюшная полость, органы размножения и др. Животные избегают чрезмерного облучения, уходя в убежища, скрываясь в тени и т.д.

    Cуточные и сезонные смены светового режима определяют не только изменения активности, но и периоды размножения, миграции, линьки. Появление ночных и исчезновение дневных насекомых утром или вечером происходят при определённой для каждого вида яркости освещения. Например, мраморный хрущ появляется через 5–6 мин после захода солнца. Время пробуждения певчих птиц меняется в разные сезоны. В зависимости от освещённости меняются места охоты птиц. Так, дятлы, синицы, мухоловки днём охотятся в глубине леса, а утром и вечером – на открытых местах. Животные ориентируются с помощью зрения во время перелётов и миграций. Птицы с поразительной точностью выбирают направление полёта, ориентируясь по солнцу и звёздам. Такая их врождённая способность создаётся естественным отбором как система инстинктов. Способность к такой ориентации свойственна также и другим животным, например, пчёлам. Пчёлы, нашедшие нектар, передают другим информацию о том, куда лететь за взятком, используя в качестве ориентира солнце.

    Световой режим ограничивает географическое распространение некоторых животных. Так, длинный день в течение летних месяцев в Арктике и умеренной зоне привлекает туда птиц и некоторых млекопитающих, так как позволяет им добыть нужное количество корма (синицы, поползни, свиристели и др.), а осенью они откочёвывают на юг. Обратное влияние оказывает световой режим на распространение ночных животных. На севере они редки, а на юге даже преобладают над дневными видами.

    Температурный режим. От температурных условий зависит интенсивность всех химических реакций, составляющих обмен веществ. Поэтому границы существования жизни – это температуры, при которых возможно нормальное функционирование белков, в среднем от 0 до +50ºС. Однако эти пороги неодинаковы для разных видов организмов. Благодаря наличию специализированных ферментных систем некоторые организмы приспособились жить при температуре, выходящей за указанные пределы. Виды, приспособленные к жизни в холодных условиях, относят к экологической группе криофилов . У них в процессе эволюции возникли биохимические адаптации, которые позволяют поддерживать клеточный метаболизм при низких температурах, а также противостоять замерзанию или повышать устойчивость к нему. Противостоять замерзанию помогает накопление в клетках специальных веществ – антифризов, которые препятствуют образованию кристаллов льда в организме. Такие адаптации выявлены у некоторых арктических рыб семейства нототениевых, тресковых, которые плавают в водах Северного ледовитого океана, с температурой тела –1,86ºС.

    Предельно низкая температура, при которой ещё возможна активность клеток, зафиксирована у микроорганизмов – до –10–12ºС. Устойчивость к замерзанию у некоторых видов связана с накапливанием в их теле органических веществ, таких, как глицерин, манит, сорбит, которые препятствуют кристаллизации внутриклеточных растворов, что позволяет переживать критические морозные периоды в неактивном состоянии (оцепенения, криптобиоза). Так, некоторые насекомые в таком состоянии выдерживают зимой до –47–50ºС. К криофилам относятся многие бактерии, лишайники, грибы, мхи, членистоногие и др.

    Виды, оптимум жизнедеятельности которых приурочен к области высоких температур, относят к экологической группе термофилов .

    Наиболее устойчивы к высоким температурам бактерии, многие из которых могут расти и размножаться при +60–75ºС. Некоторые бактерии, обитающие в горячих источниках, растут при температурах +85–90ºС, а у одного из видов архебактерий обнаружена способность к росту и делению при температурах, превышающих +110ºС. Спорообразующие бактерии могут выдерживать в неактивном состоянии +200ºС в течение десятков минут. Термофильные виды есть также среди грибов, простейших, растений и животных, но уровень их устойчивости к высоким температурам ниже, чем у бактерий. Высшие растения степей и пустынь могут переносить кратковременные нагревания до +50–60ºС, но фотосинтез у них тормозится уже температурами, превышающими +40ºС. При температуре тела +42–43ºС у большинства животных тепловая гибель наступает.

    Температурный режим в наземной среде изменяется в широких пределах и зависит от множества факторов: широты местности, высоты над уровнем моря, близости водоёмов, времени года и суток, состояния атмосферы, растительного покрова и т.д. В ходе эволюции организмов выработались разнообразные приспособления, позволяющие регулировать обмен веществ при изменении температуры окружающей среды. Это достигается двумя путями: 1) биохимическими и физиологическими перестройками; 2) поддержанием температуры тела на более стабильном уровне, чем температура окружающей среды. Жизнедеятельность большинства видов зависит от тепла, поступающего извне, а температура тела – от хода внешних температур. Такие организмы называют пойкилотермными . К ним относятся все микроорганизмы, растения, грибы, беспозвоночные животные и большинство хордовых. Только птицы и млекопитающие способны поддерживать постоянную температуру тела независимо от температуры окружающей среды. Их называют гомойотермными .

    Адаптации растений к температурному режиму. Устойчивость растений к изменениям температуры среды различна и зависит от конкретного местообитания, где протекает их жизнь. Высшие растения умеренно тёплого и умеренно холодного поясов эвритермны . Они переносят в активном состоянии колебания температуры от – 5 до +55ºС. В то же время есть виды, имеющие очень узкую экологическую валентность по отношению к температуре, т.е. являются стенотермными . Например, растения тропических лесов не переносят даже температуры +5–+8ºС. Некоторые водоросли на снегу и льду живут только при 0ºС. То есть потребности в тепле у различных видов растений неодинаковы и варьируют в довольно широких пределах.

    Виды, обитающие в местах с постоянно высокими температурами, в процессе эволюции приобрели анатомо-морфологические и физиологические адаптации, направленные на предотвращение перегрева.

    К основным анатомо-морфологическим адаптациям относятся: густое опушение листьев, блестящая поверхность листьев, способствующая отражению солнечных лучей; уменьшение площади листьев, их вертикальное положение, свёртывание в трубочку и др. Некоторые виды способны выделять соли, из которых на поверхности растений образуются кристаллы, отражающие падающие на них лучи солнца. В условиях достаточного увлажнения эффективным средством от перегрева является устьичная транспирация. Среди термофильных видов в зависимости от степени их устойчивости к высоким температурам можно выделить

    1) нежаростойкие растения – повреждаются уже при +30–40ºС;

    2) жаровыносливые – переносят получасовое нагревание до +50–60ºС (растения пустынь, степей, сухих субтропиков и др.).

    Растения в саваннах и сухих жестколистных лесах регулярно испытывают влияние пожаров, когда температура может повышаться до сотен градусов. Устойчивые к пожарам растения называют пирофитами . Они имеют на стволах толстую корку, пропитанную огнеупорными веществами. Плоды и семена их имеют толстые, часто одревесневшие покровы.

    Жизнь многих растений проходит в условиях низких температур. По степени адаптации растений к условиям крайнего дефицита тепла можно выделить следующие группы:

    1) нехолодостойкие растения – сильно повреждаются или гибнут при температурах, не достигающих точки замерзания воды. К ним относятся растения тропических областей;

    2) неморозостойкие растения – переносят низкие температуры, но гибнут, как только в тканях начинает образовываться лёд (некоторые вечнозелёные субтропические растения).

    3) морозоустойчивые растения произрастают в областях с холодными зимами.

    Повышают устойчивость к низким температурам такие морфологические адаптации растений, как низкорослость и особые формы роста – стелющиеся, подушкообразные, которые позволяют использовать микроклимат приземного слоя воздуха летом и быть защищёнными снежным покровом зимой.

    Более существенное значение для растений имеют физиологические механизмы адаптации, повышающие их устойчивость к холоду: листопад, отмирание надземных побегов, накопление в клетках антифризов, уменьшение содержания воды в клетках и др. У морозоустойчивых растений в процессе подготовки к зиме в органах накапливаются сахара, протеины, масла, уменьшается содержание воды в цитоплазме и повышается её вязкость. Все эти изменения снижают точку замерзания тканей.

    Многие растения способны сохранять жизнеспособность в промёрзшем состоянии, например фиалка альпийская, хрен арктический, мокрица, маргаритка, ранневесенние эфемероиды в лесной зоне и др.

    Мхи и лишайники способны переносить длительное промерзание в состоянии анабиоза. Большое значение в адаптации растений к низким температурам имеет возможность сохранения нормальной жизнедеятельности путём снижения температурных оптимумов физиологических процессов и нижних температурных границ, при которых эти процессы возможны.

    В умеренных и высоких широтах в связи с сезонным изменением климатических условий у растений в годичном цикле развития чередуются активные и покоящиеся фазы. Однолетние растения после завершения вегетации переживают зиму в виде семян, а многолетние переходят в состояние покоя. Различают глубокий и вынужденный покой. Растения, находящиеся в состоянии глубокого покоя, не реагируют на благоприятные тепловые условия. После окончания глубокого покоя растения готовы к возобновлению развития, но в природе зимой оно невозможно из-за низких температур. Поэтому эту фазу называют вынужденным покоем.

    Адаптации животных к температурному режиму. По сравнению с растениями животные обладают более разнообразными возможностями регулировать температуру своего тела благодаря способности перемещаться в пространстве и производить гораздо больше собственного внутреннего тепла.

    Основные пути адаптации животных:

    1) химическая терморегуляция – это рефлекторное увеличение теплопродукции в ответ на понижение температуры среды, базируется на высоком уровне метаболизма;

    2) физическая терморегуляция – осуществляется за счёт способности удерживать тепло благодаря особым чертам строения (наличие волосяного и перьевого покрова, распределение жировых запасов и др.) и изменения уровня теплоотдачи;

    3) поведенческая терморегуляция – это поиск благоприятных местообитаний, перемена позы, сооружение убежищ, гнёзд и др.

    Для пойкилотермных животных основным способом регулирования температуры тела является поведенческий. В сильную жару животные прячутся в тень, норы. По мере приближения зимы ищут убежища, строят гнёзда, снижают свою активность. Некоторые виды способны поддерживать оптимальную температуру тела за счёт работы мышц. Например, шмели разогревают тело специальными мышечными сокращениями, что даёт им возможность кормиться в прохладную погоду. Некоторые пойкилотермные животные избегают перегрева, усиливая потерю тепла через испарение. Например, лягушки, ящерицы в жаркую погоду начинают тяжело дышать или держат рот открытым, усиливая испарение воды через слизистые оболочки.

    Гомойотермные животные отличаются очень эффективной регуляцией поступления и отдачи тепла, что позволяет им поддерживать постоянную оптимальную температуру тела. Механизмы терморегуляции у них очень разнообразны. Им свойственна химическая терморегуляция , отличающаяся высокой интенсивностью обмена веществ и выработкой большого количества тепла. В отличие от пойкилотермных животных, у теплокровных при действии холода окислительные процессы не ослабевают, а усиливаются. У многих животных образуется дополнительное тепло за счёт мышечной и жировой ткани. У млекопитающих есть специализированная бурая жировая ткань, в которой вся освобождающаяся энергия идёт на обогревание организма. Она наиболее развита у животных холодного климата. Поддержание температуры тела за счёт возрастания выработки тепла требует большого расхода энергии, поэтому животные при усилении химической регуляции нуждаются в большом количестве пищи либо тратят много жировых запасов. Поэтому усиление химической регуляции имеет пределы, обусловленные возможностью добывания корма. При недостатке корма зимой такой путь терморегуляции экологически невыгоден.

    Физическая терморегуляция экологически более выгодна, так как адаптация к холоду осуществляется за счёт сохранения тепла в теле животного. Факторами её являются кожные покровы, густой мех млекопитающих, перьевой и пуховой покров птиц, жировые отложения, испарение воды путём потоотделения или через слизистые оболочки полости рта и верхних дыхательных путей, размеры и форма тела животного. Для уменьшения теплоотдачи выгоднее крупные размеры тела (чем крупнее тело, тем меньше его поверхность на единицу массы, а, следовательно, и теплоотдача, и наоборот). По этой причине особи близкородственных видов теплокровных животных, обитающие в холодных условиях, имеют более крупные размеры, чем те, которые распространены в тёплом климате. Эта закономерность получила название правила Бергмана . Регулирование температуры осуществляется также через выступающие части тела – ушные раковины, конечности, хвосты, органы обоняния. В холодных районах, они, как правило, меньше по размерам, чем в более тёплых (правило Аллена ). Для гомойотермных организмов важное значение имеют также поведенческие способы терморегуляции , которые очень разнообразны – от изменения позы и поисков укрытий до сооружения сложных убежищ, гнёзд, осуществления ближних и дальних миграций. Некоторые теплокровные животные в целях терморегуляции используют групповое поведение . Например, пингвины в сильный мороз сбиваются в плотную кучу. Внутри такого скопления температура поддерживается около +37ºС даже в самые сильные морозы. Верблюды в пустыне в сильную жару также сбиваются в кучу, но этим достигается предотвращение сильного нагревания поверхности тела.

    Сочетание различных способов химической, физической и поведенческой терморегуляции позволяет теплокровным животным поддерживать постоянную температуру тела в широком диапазоне колебаний температурного режима окружающей среды.

    Водный режим. Нормальная жизнедеятельность организма возможна только при достаточном обеспечении его водой. Режимы влажности в наземно-воздушной среде очень разнообразны – от полного насыщения воздуха водяными парами во влажных тропиках до почти полного отсутствия влаги в воздухе и в почве пустынь. Например, в Синайской пустыне годовое количество осадков составляет 10–15 мм, а в Ливийской пустыне (в Асуане) их не бывает вовсе. Водоснабжение наземных организмов зависит от режима выпадения осадков, наличия запасов почвенной влаги, водоёмов, уровня грунтовых вод, рельефа местности, особенностей циркуляции атмосферы и т. д. Это привело к развитию у наземных организмов множества адаптаций к различным режимам влажности местообитаний.

    Адаптации растений к водному режиму. Низшие наземные растения поглощают воду из субстрата погружёнными в него частями таллома или ризоидами, а влагу из атмосферы – всей поверхностью тела.

    Среди высших растений мхи поглощают воду из почвы ризоидами или нижней частью стебля (сфагновые мхи), а большинство других – корнями. Поступление воды в растение зависит от величины сосущей силы клеток корня, степени разветвлённости корневой системы и глубины проникновения корней в почву. Корневые системы очень пластичны и реагируют на изменение условий, в первую очередь увлажнения.

    При недостатке влаги в поверхностных горизонтах почвы у многих растений корневые системы проникают глубоко в почву, но слабо ветвятся, как, например, у саксаула, верблюжьей колючки, сосны обыкновенной, василька шероховатого и др. У многих злаков, наоборот, корневые системы сильно ветвятся и разрастаются в поверхностных слоях почвы (у ржи, пшеницы, ковылей и др.). Поступившая в растение вода проводится по ксилеме по всем органам, где расходуется на жизненные процессы. В среднем 0,5% идёт на фотосинтез, а остальное – на восполнение потерь от испарения и поддержание тургора. Водный баланс растения остаётся уравновешенным в том случае, если поглощение воды, её проведение и расходование гармонично согласованы друг с другом. В зависимости от способности регулировать водный баланс своего тела наземные растения делят на пойкилогидридные и гомойогидридные .

    Пойкилогидридные растения не способны активно регулировать свой водный баланс. У них нет приспособлений, способствующих удержанию воды в тканях. Содержание воды в клетках определяется влажностью воздуха и зависит от её колебания. К пойкилогидридным растениям относятся наземные водоросли, лишайники, некоторые мхи и папоротники тропических лесов. В засушливый период эти растения высыхают почти до воздушно-сухого состояния, но после дождя вновь «оживают» и зеленеют.

    Гомойогидридные растения способны поддерживать на относительно постоянном уровне содержание воды в клетках. К ним относится большинство высших наземных растений. У них в клетках есть крупная центральная вакуоль, благодаря чему всегда имеется запас воды. Кроме того, транспирация регулируется устьичным аппаратом, а побеги покрыты эпидермой с малопроницаемой для воды кутикулой.

    Однако способности растений регулировать свой водный обмен неодинаковы. В зависимости от их приспособленности к условиям влажности местообитаний выделяют три основные экологические группы: гигрофиты, ксерофиты и мезофиты.

    Гигрофиты – это растения влажных местообитаний: болот, сырых лугов и лесов, берегов водоёмов. Они не выносят водного дефицита, на уменьшение влажности почвы и воздуха реагируют быстрым завяданием или угнетением роста. Листовые пластинки у них широкие, не имеющие толстой кутикулы. Клетки мезофилла располагаются рыхло, между ними имеются крупные межклетники. Устьица у гигрофитов обычно широко раскрыты и располагаются нередко с обеих сторон листовой пластинки. В связи с этим интенсивность транспирации у них очень высокая. У некоторых растений сильно увлажнённых местообитаний избыток воды удаляется через гидатоды (водяные устьица), расположенные по краю листа. Избыточное увлажнение почвы приводит к уменьшению содержания в ней кислорода, что затрудняет дыхание и всасывающую функцию корней. Поэтому корни гигрофитов располагаются в поверхностных горизонтах почвы, они слабо ветвятся, и на них мало корневых волосков. В органах многих травянистых гигрофитов хорошо развита система межклетников, по которым поступает атмосферный воздух. У растений, обитающих на сильно переувлажнённых почвах, периодически заливаемых водой, образуются особые дыхательные корни, как, например, у болотного кипариса, или опорные, как у мангровых древесных растений.

    Ксерофиты способны в активном состоянии переносить значительную продолжительную сухость воздуха и почвы. Они широко распространены в степях, пустынях, сухих субтропиках и т.д. В зоне умеренного климата поселяются на сухих песчаных и супесчаных почвах, на повышенных участках рельефа. Способность ксерофитов переносить недостаток влаги обусловлена их анатомо-морфологическими и физиологическими особенностями. По этим признакам их делят на две группы: суккуленты и склерофиты .

    Суккуленты – многолетние растения с сочными мясистыми листьями или стеблями, в которых сильно развита водозапасающая ткань. Различают листовые суккуленты – алоэ, агавы, очитки, молодило и стеблевые, у которых листья редуцированы, а наземные части представлены мясистыми стеблями (кактусы, некоторые молочаи). Отличительной особенностью суккулентов является способность запасать большое количество воды и крайне экономно её расходовать. Интенсивность транспирации у них очень низкая, так как устьиц очень мало, они часто погружены в ткань листа или стебля и днём обычно закрыты, что помогает им ограничивать расход воды. Закрывание устьиц днём приводит к затруднению процессов фотосинтеза и газообмена, поэтому у суккулентов выработался особый путь фотосинтеза, при котором частично используется углекислый газ, выделяющийся в процессе дыхания. В связи с этим интенсивность фотосинтеза у них невелика, с чем связаны медленный рост и довольно низкая конкурентоспособность. Для суккулентов характерно низкое осмотическое давление клеточного сока, за исключением тех, которые растут на засолённых почвах. Корневые системы у них поверхностные, сильно разветвлённые и быстро растущие.

    Склерофиты – это растения жёсткие, сухие на вид благодаря большому количеству механической ткани и слабой обводнённости листьев и стеблей. Листья у многих видов мелкие, узкие или редуцированы до чешуек, колючек; часто имеют густое опушение (кошачья лапка, лапчатка серебристая, многие полыни и др.) или восковой налёт (василёк русский и др.). Корневые системы у них хорошо развиты и нередко по общей массе во много раз превышают надземные части растений. Успешно выдерживать недостаток влаги склерофитам помогают и разнообразные физиологические адаптации: высокое осмотическое давление клеточного сока, устойчивость к обезвоживанию тканей, высокая водоудерживающая способность тканей и клеток, обусловленная высокой вязкостью цитоплазмы. Многие склерофиты используют для вегетации наиболее благоприятные периоды года, а при наступлении засухи резко снижают процессы жизнедеятельности. Все перечисленные свойства ксерофитов способствуют повышению их засухоустойчивости.

    Мезофиты произрастают в средних условиях увлажнения. Они более требовательны к влаге, чем ксерофиты, и менее, чем гигрофиты. Ткани листа мезофитов дифференцированы на столбчатую и губчатую паренхиму. Покровные ткани могут иметь некоторые ксероморфные черты (редкое опушение, утолщённый слой кутикулы). Но они менее ярко выражены, чем у ксерофитов. Корневые системы могут глубоко проникать в почву или располагаться в поверхностных горизонтах. по своим экологическим потребностям мезофиты – очень разнообразная группа. Так, среди луговых и лесных мезофитов есть виды с повышенным влаголюбием, для которых свойственны высокое содержание воды в тканях и довольно слабая водоудерживающая способность. Таковы лисохвост луговой, мятлик болотный, луговик дернистый, голокучник Линнея и многие другие.

    В местообитаниях с периодическим или постоянным (небольшим) недостатком влаги мезофиты имеют признаки ксероморфной организации и повышенную физиологическую устойчивость к засухе. Примером таких растений являются дуб черешчатый, клевер горный, подорожник средний, люцерна серповидная и др.

    Адаптации животных. По отношению к водному режиму среди животных можно выделить гигрофилы (влаголюбивые), ксерофилы (сухолюбивые) и мезофилы (предпочитающие средние условия увлажнения). Примером гигрофилов являются мокрицы, комары, ногохвостки, стрекозы и др. Все они не выносят значительного водного дефицита и плохо переносят даже кратковременную засуху. Ксерофильны вараны, верблюды, пустынная саранча, жуки-чернотелки и др. Они заселяют самые засушливые местообитания.

    Животные получают воду через питьё, пищу и за счёт окисления органических веществ. В питьевой воде нуждаются многие млекопитающие и птицы (слоны, львы, гиены, ласточки, стрижи и др.). Без питьевой воды могут обходиться такие пустынные виды, как тушканчики, африканские песчанки, американская кенгуровая крыса. Исключительно за счёт метаболической воды живут гусеницы платяной моли, амбарный и рисовый долгоносики и многие другие.

    Для животных характерны способы регулирования водного баланса: морфологический, физиологический, поведенческий .

    К морфологическим способам поддержания водного баланса относятся образования, способствующие удержанию воды в теле: раковины наземных улиток, ороговевшие покровы пресмыкающихся, слабая водопроницаемость покровов у насекомых и др. Показано, что проницаемость покровов насекомых не зависит от структуры хитина, а определяется тончайшим восковым слоем, покрывающим его поверхность. Разрушение этого слоя резко повышает испарение через покровы.

    К физиологическим приспособлениям регуляции водного обмена относятся способность к образованию метаболической влаги, экономия воды при выделении мочи и фекалий, выносливость к обезвоживанию организма, изменение потоотделения и отдачи воды через слизистые. Экономия воды в пищеварительном тракте достигается всасыванием воды кишечником и образованием практически обезвоженных фекалий. У птиц и рептилий конечным продуктом азотистого обмена является мочевая кислота, для выведения которой практически не расходуется вода. Активная регуляция потоотделения и испарения влаги с поверхности дыхательных путей широко используется гомойотермными животными. Например, у верблюда в наиболее экстремальных случаях дефицита влаги прекращается потоотделение и резко сокращается испарение с дыхательных путей, что ведёт к удержанию воды в организме. Испарение, связанное с необходимостью терморегуляции, может служить причиной обезвоживания организма, поэтому многие мелкие теплокровные животные в сухом и жарком климате избегают воздействия жары и экономят влагу, укрываясь под землёй.

    У пойкилотермных животных повышение температуры тела вслед за нагреванием воздуха позволяет избегать излишних потерь воды, однако они не могут полностью избежать потерь на испарение. Поэтому и для холоднокровных животных основной путь сохранения водного баланса при жизни в аридных условиях – это избегание излишних тепловых нагрузок. Поэтому в комплексе приспособлений к водному режиму наземной среды большое значение имеют поведенческие способы регуляции водного баланса. К ним относятся специальные формы поведения: рытьё нор, поиски водоёмов, выбор мест обитания и др. Это особенно важно для травоядных и зерноядных животных. Для многих из них наличие водоёмов – обязательное условие заселения засушливых районов. Например, распределение в пустыне таких видов, как капский буйвол, водяной козёл, некоторых антилоп, полностью зависит от наличия водопоев. Многие рептилии и мелкие млекопитающие обитают в норах, где относительно низкая температура и высокая влажность способствуют водному обмену. Птицы нередко используют дупла, тенистые кроны деревьев и т.п.

    Отличительной особенностью наземно-воздушной среды является наличие в ней воздуха (смеси различных газов).

    Воздух обладает низкой плотностью, поэтому не может выполнять функцию опоры для организмов (за исключением летающих). Именно низкая плотность воздуха определяет его незначительное сопротивление при передвижении организмов по поверхности почвы. В то же время она затрудняет их перемещение в вертикальном направлении. Низкая плотность воздуха обусловливает также низкое давление на суше (760 мм рт. ст. = 1 атм). Воздух меньше, чем вода, препятствует проникновению солнечного света. Он имеет более высокую прозрачность, чем вода.

    Газовый состав воздуха постоянен (об этом вы знаете из курса географии). Кислород и углекислый газ, как правило, не являются лимитирующими факторами. В качестве примесей в воздухе присутствуют водяные пары и различные загрязнители.

    За последнее столетие в результате хозяйственной деятельности человека в атмосфере резко повысилось содержание различных загрязнителей. Среди них наиболее опасными являются: оксиды азота и серы, аммиак, формальдегид, тяжелые металлы, углеводороды и др. Ныне живущие организмы практически не приспособлены к ним. По этой причине загрязнение атмосферы является серьезной глобальной экологической проблемой. Для ее решения требуется осуществление природоохранных мероприятий на уровне всех государств Земли.

    Воздушные массы перемещаются в горизонтальном и вертикальном направлениях. Это приводит к появлению такого экологического фактора, как ветер. Ветер может вызывать перемещение песков в пустынях (песчаные бури). Он способен выдувать почвенные частицы на любом рельефе, снижая плодородие земель (ветровая эрозия). Ветер оказывает механическое воздействие на растения. Он способен вызывать ветровалы (выворачивание деревьев с корнями), буреломы (переломы стволов деревьев), деформацию кроны деревьев. Перемещение воздушных масс существенно влияет на распределение осадков и температурный режим в наземно-воздушной среде.

    Водный режим наземно-воздушной среды

    Из курса географии вы знаете, что наземно-воздушная среда может быть как предельно насыщена влагой (тропики), так и очень бедна ею (пустыни). Осадки распределяются неравномерно как по сезонам, так и по географическим зонам. Влажность в среде колеблется в широком диапазоне. Она является основным лимитирующим фактором для живых организмов.

    Температурный режим наземно-воздушной среды

    Температура в наземно-воздушной среде имеет суточную и сезонную периодичность. Организмы адаптировались к ней с момента выхода жизни на сушу. Поэтому температура реже, чем влажность, проявляет себя как лимитирующий фактор.

    Адаптации растений и животных к жизни в наземно-воздушной среде

    С выходом растений на сушу у них появились ткани. Строение тканей растений вы изучали в курсе биологии 7-го класса. В связи с тем что воздух не может служить надежной опорой, у растений возникли механические ткани (древесные и лубяные волокна). Широкий диапазон изменения климатических факторов стал причиной формирования плотных покровных тканей — перидермы, корки. Благодаря подвижности воздуха (ветру) у растений сформировались приспособления к опылению, распространению спор, плодов и семян.

    Жизнь животных во взвешенном состоянии в воздухе невозможна из-за его низкой плотности. Многие из видов (насекомые, птицы) приспособились к активному полету и могут длительно пребывать в воздухе. Но их размножение происходит на поверхности почвы.

    Перемещение воздушных масс в горизонтальном и вертикальном направлениях используется некоторыми мелкими организмами для пассивного расселения. Таким способом расселяются протисты, пауки, насекомые. Низкая плотность воздуха стала причиной совершенствования у животных в процессе эволюции наружного (членистоногие) и внутреннего (позвоночные) скелетов. По этой же причине имеет место ограничение предельной массы и размеров тела наземных животных. Самое крупное животное суши — слон (масса до 5 т) гораздо меньше морского гиганта — синего кита (до 150 т). Благодаря появлению разных типов конечностей млекопитающие смогли заселить разнообразные по характеру рельефа участки суши.

    Общая характеристика почвы как среды жизни

    Почва — верхний слой земной коры, обладающий плодородием. Она образовалась в результате взаимодействия климатических и биологических факторов с подстилающей породой (песок, глина и т. д.). Почва контактирует с воздушной средой и выполняет функцию опоры для наземных организмов. Она является также источником минерального питания для растений. В то же время почва — среда жизни для многих видов организмов. Для почвы характерны следующие свойства: плотность, влажность, температурный режим, аэрация (обеспечение воздухом), реакция среды (рН), засоленность.

    Плотность почвы увеличивается с глубиной. Влажность, температура и аэрация почвы тесно взаимосвязаны и взаимозависимы. Температурные колебания в почве сглажены по сравнению с приземным воздухом и на глубине 1-1,5 м уже не прослеживаются. Хорошо увлажненные почвы медленно прогреваются и медленно остывают. Повышение влажности и температуры почвы ухудшает ее аэрацию, и наоборот. Гидротермический режим почвы и ее аэрация зависят от структуры почвы. Глинистые почвы по сравнению с песчаными сильнее удерживают влагу. Но они хуже аэрируются и хуже прогреваются. По реакции среды почвы разделяются на три вида: кислые (рН < 7,0), нейтральные (рН ≈ 7,0) и щелочные (рН > 7,0).

    Адаптации растений и животных к жизни в почве

    Почва в жизни растений выполняет функции закрепления, водоснабжения, источника минерального питания. Концентрация питательных веществ в почве привела к развитию у растений корневой системы и проводящих тканей.

    Животные, обитающие в почве, имеют ряд адаптаций. Для них характерны разные способы передвижения в почве. Это может быть рытье ходов и нор, как у медведки и крота. Дождевые черви могут раздвигать почвенные частицы и прокладывать ходы. Личинки насекомых способны ползать среди почвенных частиц. В связи с этим в процессе эволюции выработались соответствующие адаптации. У землероющих организмов появились копательные конечности. У кольчатых червей имеется гидростатический скелет, а у насекомых и многоножек — коготки.

    Почвенные животные имеют короткое компактное тело с ненамокающими покровами (млекопитающие) или покрытое слизью. Жизнь в почве как среде обитания привела к атрофии или недоразвитию органов зрения. У крота крошечные, недоразвитые глаза часто скрыты под складкой кожи. Для облегчения перемещения в узких почвенных ходах шерсть у кротов приобрела способность укладываться в двух направлениях.

    В наземно-воздушной среде организмы окружены воздухом. Он имеет низкую влажность, плотность и давление, высокую прозрачность и содержание кислорода. Влажность является основным лимитирующим фактором. Почва как среда жизни характеризуется высокой плотностью, определенным гидротермическим режимом, аэрацией. У растений и животных к жизни в наземно-воздушной и почвенной средах выработались разнообразные адаптации.

    ЛЕКЦИЯ 4

    СРЕДЫ ЖИЗНИ И АДАПТАЦИИ К НИМ ОРГАНИЗМОВ.

    Водная среда.

    Это самая древняя среда, в которой жизнь возникла и долго эволюционировала еще до того мо­мента, как первые организмы появились на суше. По составу водной среды жизни различаются два ее основных варианта: пресноводная и морская среды.

    Водой покрыто более 70% поверхности планеты. Тем не менее, за счет сравнительной выравненности условий этой среды («вода всегда мокрая») разнообразие организмов в водной среде намного меньше, чем на суше. Лишь каждый десятый вид царства растений связан с водной средой, разнообразие водных животных несколько выше. Общее соотношение числа видов «суша/вода» - около 1:5.

    Плотность воды выше плотности воздуха в 800 раз. И давление на населяющие ее организмы также много выше, чем в наземных условиях: на каждый 10 м глубины оно возрастает на 1 атм. Одно из основных направлений приспособления организ­мов к жизни в водной среде - повышение плавучести за счет увеличения поверхности тела и формирования тканей и орга­нов, содержащих воздух. Организмы могут парить в воде (как представители планктона - водоросли, простейшие, бактерии) или активно перемещаться, как рыбы, формирующие нектон. Значительная часть организмов прикреплена к поверхности дна или перемещается по ней. Как уже отмечалось, важным фактором водной среды является течение.

    Таблица 1 - Сравнительная характеристика сред обитания и адаптации к ним живых организмов

    Основу продукции большинства водных экосистем составляют автотрофы, использующие солнечный свет, пробивающийся через толщу воды. Возможность «пробивания» этой толщи определяется прозрачностью воды. В прозрачной воде океана в зависимости от угла падения солнечного света автотрофная жизнь возможна до глубины 200 м в тропиках и 50 м в высоких широтах (например, в морях Северного Ледовитого океана). В сильно взмученных пресноводных водоемах слой, заселенный автотрофами (его называют фотическим), может составлять всего несколько десятков сантиметров.

    Наиболее активно поглощается водой красная часть спектра света, поэтому, как отмечалось, глубоководья морей заселены красными водорослями, способными за счет дополнительных пигментов усваивать зеленый свет. Прозрачность воды определяется несложным прибором - диском Секки, который представляет собой окрашенный в белый цвет круг диаметром 20 см. О степени прозрачности воды судят по глубине, на которой диск становится неразличимым.

    Важнейшей характеристикой воды является ее химичес­кий состав - содержание солей (в том числе биогенов), газов, ионов водорода (рН). По концентрации биогенов, особенно фосфора и азота, водоемы разделяются на олиготрофные, мезотрофные и эвтрофные. При повышении содержания биогенов, скажем, при загрязнении водоема стоками, происходит процесс эвтрофикации водных экосистем.

    Содержание кислорода в воде примерно в 20 раз ниже, чем в атмосфере, и составляет 6-8 мл/л. Оно снижается при повышении температуры, а также в стоячих водоемах в зимнее время, когда вода изолирована от атмосферы слоем льда. Снижение концентрации кислорода может стать причиной гибели многих обитателей водных экосистем, исключая особо устойчивые к дефициту кислорода виды, подобные карасю или линю, которые могут жить даже при снижении содержания кис­лорода до 0,5 мл/л. Содержание углекислого газа в воде, напротив, выше, чем в атмосфере. В морской воде его может содержаться до 40-50 мл/л, что примерно в 150 раз выше, чем в атмосфере. Потребление углекислого газа фитопланктоном при интенсивном фотосинтезе не превышает 0,5 мл/л в сутки.

    Концентрация ионов водорода в воде (рН) может меняться в пределах 3,7-7,8. Нейтральными считаются воды с рН от 6,45 до 7,3. Как уже отмечалось, с понижением рН биоразнообразие организмов, населяющих водную среду, быстро убы­вает. Речной рак, многие виды моллюсков гибнут при рН ниже 6, окунь и щука могут выдержать рН до 5, угорь и голец выживают при понижении рН до 5-4,4. В более кислых водах сохраняются лишь некоторые виды зоопланктона и фитопланктона. Кислотные дожди, связанные с выбросами в атмосферу больших количеств оксидов серы и азота промышленными предприятиями, стали причиной подкисления вод озер Европы и США и резкого обеднения их биологического раз­нообразия. Лимитирующим фактором часто бывает кислород. Содержание его обычно не превышает 1 % от объема. При повышении температуры, обогащении органическим веществом и слабом перемешивании содержание кислорода в воде уменьшается. Малая доступность кислорода для организмов связана также с его слабой диффузией (в воде она в тысячи раз меньше, чем в воздухе). Второй лимитирующий фактор - свет. Освещенность быстро уменьшается с глубиной. В идеально чистых водах свет может проникать до глубины 50-60 м, в сильно загрязненных - только на несколько сантиметров.

    Эта среда наиболее однородна среди других. Она мало изменяется в пространстве, здесь нет четких границ между отдельными экосистемами. Амплитуды значений факторов также невелики. Разница между максимальными и минимальными значениями температуры здесь обычно не превышает 50°С (в то время как в наземно-воздушной среде-до 100°С). Среде присуща высокая плотность. Для океанических вод она равна 1,3 г/см 3 , для пресных -близка к единице. Давление изменяется только в зависимости от глубины: каждый 10-метровый слой воды увеличивает давление на 1 атмосферу.

    В воде мало теплокровных, или гомойотермных (греч. хомой-одинаковый, термо - тепло), организмов. Это результат двух причин: малое колебание температур и недостаток кислорода. Основной адаптационный механизм гомойотермии - противостояние неблагоприятным температурам. В воде такие температуры маловероятны, а в глубинных слоях температура практически постоянна (+4°С). Поддержание постоянной температуры тела обязательно связано с интенсивными процессами обмена веществ, что возможно только при хорошей обеспеченности кислородом. В воде таких условий нет. Теплокровные животные водной среды (киты, тюлени, морские котики и др.) - это бывшие обитатели суши. Их существование невозможно без периодической связи с воздушной средой.

    Типичные обитатели водной среды имеют переменную температуру тела и относятся к группе пойкиотермных (греч. пойкиос - разнообразный). Недостаток кислорода они в какой-то мере компенсируют увеличением соприкосновения органов дыхания с водой. Многие обитатели вод (гидробионты) потребляют кислород через все покровы тела. Часто дыхание сочетается с фильтрационным типом питания, при котором через организм пропускается большое количество воды. Некоторые организмы в периоды острого недостатка кислорода способны резко замедлять жизнедеятельность, вплоть до состояния анабиоза (почти полное прекращение обмена веществ).

    К высокой плотности воды организмы адаптируются в основном двумя путями. Одни используют ее как опору и находятся в состоянии свободного парения. Плотность (удельный вес) таких организмов обычно мало отличается от плотности воды. Этому способствует полное или почти полное отсутствие скелета, наличие выростов, капелек жира в теле или воздушных полостей. Такие организмы объединяются в группу планктона (греч. планктос -блуждающий). Различают растительный (фито-) и животный (зоо-) планктон. Размеры планктонных организмов обычно невелики. Но на их долю приходится основная масса водных обитателей.

    Активно передвигающиеся организмы (пловцы) адаптируются к преодолению высокой плотности воды. Для них характерна продолговатая форма тела, хорошо развитая мускулатура, наличие структyp уменьшающих трение (слизь, чешуя). В целом же высокая плотность воды имеет следствием уменьшение доли скелета в общей массе тела гидробионтов по сравнению с наземными организмами. В условиях недостатка света или его отсутствия организмы для ориентации используют звук. Он в воде распространяется намного быстрее, чем в воздухе. Для обнаружения различных препятствий используется отраженный звук по типу эхолокации. Для ориентации используются также запаховые явления (в воде запахи ощущаются намного лучше, чем в воздухе). В глубинах вод многие организмы обладают свойством самосвечения (биолюминесценции).

    Растения, обитающие в толще воды, используют в процессе фотосинтеза наиболее глубоко проникающие в воду голубые, синие и сине-фиолетовые лучи. Соответственно и цвет растений меняется с глубиной от зеленого к бурому и красному.

    Адекватно адаптационным механизмам выделяются следующие группы гидробионтов: отмеченный выше планктон - свободнопарящие, нектон (греч. нектос - плавающий) - активно передвигающиеся, бентос (греч. бентос - глубина) - обитатели дна, пелагос (греч. пелагос - открытое море) - обитатели водной толщи, нейстон - обитатели верхней пленки воды (часть тела может быть в воде, часть - в воздухе).

    Воздействие человека на водную среду проявляется в уменьшении прозрачности, изменении химического состава (загрязнении) и температуры (тепловое загрязнение). Следствием этих и других воздействий является обеднение кислородом, снижение продуктивности, смены видового состава и другие отклонения от нормы.

    Наземно-воздушная среда.

    Воздух отличается значи­тельно более низкой плотностью по сравнению с водой. По этой причине освоение воздушной среды, которое произошло много позже, чем зарождение жизни и ее развитие в вод­ной среде, сопровождалось усилением развития механических тканей, позволившим организмам противостоять действию закона всемирного тяготения и ветра (скелет у позвоночных животных, хитиновые панцири у насекомых, склеренхима у растений). В условиях только воздушной среды ни один организм постоянно жить не может, и потому даже лучшие «летуны» (птицы и насекомые) должны периодически опускаться на землю. Перемещение организмов по воздуху возможно за счет специальных приспособлений - крыльев у птиц, насекомых, некоторых видов млекопитающих и даже рыб, парашутики и крылышки у семян, воздушные мешки у пыльцы хвойных пород и т.д.

    Воздух - плохой проводник тепла, и потому именно в воздушной среде на суше возникли эндотермные (теплокровные) животные, которым легче сохранить тепло, чем эктотермным обитателям водной среды. Для теплокровных водных животных, включая гигантов-китов, водная среда вторична, предки этих животных когда-то жили на суше.

    Для жизни в воздушной среде потребовались более сложные механизмы размножения, которые исключали бы риск высыхания половых клеток (многоклеточные антеридии и архегонии, а затем семязачатки и завязи у растений, внутреннее оплодотворение у животных, яйца с плотной оболочкой у птиц, пресмыкающихся, земноводных и др.).

    В целом возможностей для формирования разнообразных сочетаний факторов в условиях наземно-воздушной среды много больше, чем водной. Именно в этой среде особенно ярко проявляются различия климата разных районов (и на разных высотах над уровнем моря в пределах одного района). Поэтому разнообразие наземных организмов много выше, чем водных.

    Эта среда относится к наиболее сложной как по свойствам, так и по разнообразию в пространстве. Для нее характерна низкая плотность воздуха, большие колебания температуры (годовые амплитуды до 100°С), высокая подвижность атмосферы. Лимитирующими факторами чаще всего являются недостаток или избыток тепла и влаги. В отдельных случаях, например под пологом леса, недостаток света.

    Большие колебания температуры во времени и ее значительная изменчивость в пространстве, а также хорошая обеспеченность кислородом явились побудительными мотивами для появления организмов с постоянной температурой тела (гомойотермных). Гомойотермия позволила обитателям суши существенно расширить место обитания (ареалы видов), но это неизбежно связано с повышенными энергетическими тратами.

    Для организмов наземно-воздушной среды типичны три механизма адаптации к температурному фактору: физический, химический, поведенческий. Физический осуществляется регулированием теплоотдачи. Факторами ее являются кожные покровы, жировые отложения, испарение воды (потовыделение у животных, транспирация у растений). Этот путь характерен для пойкиотермных и гомойотермных организмов. Химические адаптации базируются на поддержании определенной температуры тела. Это требует интенсивного обмена веществ. Такие адаптации свойственны гомойотермным и лишь частично пойкиотермным организмам. Поведенческий путь осуществляется посредством выбора организмами предпочтительных положений (открытые солнцу или затененные места, разного вида укрытия и т. п.). Он свойственен обеим группам организмов, но пойкиотермным в большей степени. Растения приспосабливаются к температурному фактору в основном через физические механизмы (покровы, испарение воды) и лишь частично - поведенческие (повороты пластинок листьев относительно солнечных лучей, использование тепла земли и утепляющей роли снежного покрова).

    Адаптации к температуре осуществляются также через размеры и форму тела организмов. Для выделения теплоотдачи выгоднее крупные размеры (чем крупнее тело, тем меньше его поверхность на единицу массы, а следовательно, и теплоотдача, и наоборот). По этой причине одни и те же виды, обитающие в более холодных условиях (на севере), как правило, крупнее тех, которые обитают в более теплом климате. Эта закономерность называется правилом Бергмана. Регулирование температуры осуществляется также через выступающие части тела (ушные раковины, конечности, органы обоняния). В холодных районах они, как правило, меньше по размерам, чем в более теплых (правило Аллена).

    О зависимости теплоотдачи от размеров тела можно судить по количеству кислорода, расходуемого при дыхании на единицу массы различными организмами. Оно тем больше, чем меньше размеры животных. Так, на 1 кг массы потребление кислорода (см 3 /час) составило: лошадь - 220, кролик - 480, крыса -1800, мышь - 4100.


    ©2015-2019 сайт
    Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
    Дата создания страницы: 2017-06-30