Один из наиболее распространенных химических элементов, входящий в подавляющее большинство химических веществ - это кислород. Оксиды, кислоты, основания, спирты, фенолы и другие кислородсодержащие соединения изучаются в курсе неорганической и органической химии. В нашей статье мы изучим свойства, а также приведем примеры их применения в промышленности, сельском хозяйстве и медицине.

Оксиды

Наиболее простыми по строению являются бинарные соединения металлов и неметаллов с кислородом. Классификация оксидов включает следующие группы: кислотные, основные, амфотерные и безразличные. Главный критерий деления всех этих веществ заключается в том, какой элемент соединяется с кислородом. Если это металл, то они относятся к основным. Например: CuO, MgO, Na 2 O - окиси меди, магния, натрия. Их основное химическое свойство - это реакция с кислотами. Так, оксид меди реагирует с хлоридной кислотой:

CuO + 2HCl -> CuCl2 + H2O + 63, 3 кДж.

Присутствие атомов неметаллических элементов в молекулах бинарных соединений свидетельствует об их принадлежности к кислотным водорода H 2 O, углекислый газ CO 2 , пятиокись фосфора P 2 O 5 . Способность таких веществ реагировать со щелочами - главная их химическая характеристика.

В результате реакции могут образовываться видов: кислые или средние. Это будет зависеть от того, сколько моль щелочи вступает в реакцию:

  • CO2 + KOH => KHCO3;
  • CO2+ 2KOH => K2CO3 + H2O.

Еще одну группу кислородсодержащих соединений, в которые входят такие химические элементы, как цинк или алюминий, относят к амфотерным оксидам. В их свойствах прослеживается тенденция к химическому взаимодействию как с кислотами, так и со щелочами. Продуктами взаимодействия кислотных оксидов с водой являются кислоты. Например, в реакции серного ангидрида и воды образуется Кислоты - это один из наиболее важных классов кислородсодержащих соединений.

Кислоты и их свойства

Соединения, состоящие из водородных атомов, связанных со сложными ионами кислотных остатков - это кислоты. Условно их можно разделить на неорганические, например, карбонатную кислоту, сульфатную, нитратную, и органические соединения. К последним принадлежат уксусная кислота, муравьиная, олеиновая кислоты. Обе группы веществ имеют схожие свойства. Так, они вступают в реакцию нейтрализации с основаниями, реагируют с солями и основными оксидами. Практически все кислородсодержащие кислоты в водных растворах диссоциируют на ионы, являясь проводниками второго рода. Определить кислый характер их среды, обусловленной избыточным присутствием водородных ионов, можно с помощью индикаторов. Например, фиолетовый лакмус при добавлении его в раствор кислоты приобретает красную окраску. Типичным представителем органических соединений является уксусная кислота, содержащая карбоксильную группу. В нее входит атом водорода, который и обуславливает кислотные Это бесцветная жидкость со специфическим резким запахом, кристаллизующаяся при температуре ниже 17 °С. CH 3 COOH, как и другие кислородсодержащие кислоты, прекрасно растворяется в воде в любых пропорциях. Ее 3 - 5 % раствор известен в быту под названием уксуса, который используют в кулинарии как приправу. Вещество нашло свое применение также в производстве ацетатного шелка, красителей, пластических масс и некоторых лекарственных средств.

Органические соединения, содержащие кислород

В химии можно выделить большую группу веществ, содержащих, кроме углерода и водорода, еще и кислородные частицы. Это карбоновые кислоты, эфиры, альдегиды, спирты и фенолы. Все их химические свойства определяются присутствием в молекулах особых комплексов - функциональных групп. Например, спирта, содержащего только предельные связи между атомами - ROH, где R - углеводородный радикал. Эти соединения принято рассматривать как производные алканов, у которых один водородный атом замещен гидроксогруппой.

Физические и химические свойства спиртов

Агрегатное состояние спиртов - это жидкости или твердые соединения. Среди спиртов нет газообразных веществ, что можно объяснить образованием ассоциатов - групп, состоящих из нескольких молекул, соединенных слабыми водородными связями. Этим фактом определяется и хорошая растворимость низших спиртов в воде. Однако в водных растворах кислородсодержащие органические вещества - спирты, не диссоциируют на ионы, не изменяют цвет индикаторов, то есть имеют нейтральную реакцию. Атом водорода функциональной группы слабо связан с другими частицами, поэтому в химических взаимодействиях способен покидать пределы молекулы. По месту же свободной валентности происходит его замещение на другие атомы, например, в реакциях с активными металлами или со щелочами - на атомы металла. В присутствии катализаторов, таких, как платиновая сетка или медь, спирты окисляются энергичными окислителями - бихроматом или перманганатом калия, до альдегидов.

Реакция этерификации

Одно из важнейших химических свойств кислородсодержащих органических веществ: спиртов и кислот - это реакция, приводящая к получению сложных эфиров. Она имеет большое практическое значение и используется в промышленности для добывания эстеров, применяемых в качестве растворителей, в пищевой промышленности (в виде фруктовых эссенций). В медицине некоторые из эфиров применяют в качестве спазмолитиков, например, этилнитрит расширяет периферические кровеносные сосуды, а изоамилнитрит является протектором спазмов коронарных артерий. Уравнение реакции этерификации имеет следующий вид:

CH3COOH+C2H5OH<--(H2SO4)-->CH3COOC2H5+H2O

В ней CH 3 COOH - это уксусная кислота, а C 2 H 5 OH - химическая формула спирта этанола.

Альдегиды

Если соединение содержит функциональную группу -COH, то оно относится к альдегидам. Их представляют как продукты дальнейшего окисления спиртов, например, такими окислителями, как оксид меди.

Присутствие карбонильного комплекса в молекулах муравьиного или уксусного альдегида обуславливают их способность полимеризоваться и присоединять атомы других химических элементов. Качественными реакциями, с помощью которых можно доказать наличие карбонильной группы и принадлежность вещества к альдегидам, являются реакция серебряного зеркала и взаимодействие с гидроокисью меди при нагревании:

Наибольшее применение получил ацетальдегид, используемый в промышленности для получения уксусной кислоты - много тоннажного продукта органического синтеза.

Свойства кислородсодержащих органических соединений - карбоновых кислот

Наличие карбоксильной группы - одной или нескольких - это отличительная черта карбоновых кислот. Благодаря строению функциональной группы, в растворах кислот могут образовываться димеры. Они связаны между собой водородными связями. Соединения диссоциируют на катионы водорода и анионы кислотного остатка и являются слабыми электролитами. Исключением служит первый представитель ряда предельных одноосновных кислот - муравьиная, или метановая, являющаяся проводником второго рода средней силы. Присутствие в молекулах только простых сигма- связей говорит о предельности, если же вещества имеют в своем составе двойные пи-связи - это непредельные вещества. К первой группе относятся такие кислоты, как метановая, уксусная, масляная. Вторая представлена соединениями, входящими в состав жидких жиров - масел, например, олеиновой кислотой. Химические свойства кислородсодержащих соединений: органических и неорганических кислот во многом похожи. Так, они могут взаимодействовать с активными металлами, их оксидами, со щелочами, а также со спиртами. Например, уксусная кислота реагирует с натрием, оксидом и с образованием соли - ацетата натрия:

NaOH + CH3COOH→NaCH3COO + H2O

Особое место занимают соединения высших карбоновых кислородсодержащих кислот: стеариновой и пальмитиновой, с трехатомным предельным спиртом - глицерином. Они относятся к сложным эфирам и называются жирами. Эти же кислоты входят в состав солей натрия и калия в качестве кислотного остатка, образуя мыла.

Важные органические соединения, широко распространенные в живой природе и играющие ведущую роль в качестве наиболее энергоемкого вещества - это жиры. Они представляют собой не индивидуальное соединение, а смесь разнородных глицеридов. Это соединения предельного многоатомного спирта - глицерина, который, как и метанол и фенол, содержит гидроксильные функциональные группы. Жиры можно подвергнуть гидролизу - нагреванию с водой в присутствии катализаторов: щелочей, кислот, оксидов цинка, магния. Продуктами реакции будут глицерин и различные карбоновые кислоты, в дальнейшем используемые для производства мыла. Чтобы в этом процессе не использовать дорогостоящие природные необходимые карбоновые кислоты получают, окисляя парафин.

Фенолы

Заканчивая рассматривать классы кислородсодержащих соединений, остановимся на фенолах. Они представлены радикалом фенилом -C 6 H 5 , соединенным с одной или несколькими функциональными гидроксильными группами. Простейший представитель этого класса - карболовая кислота, или фенол. Как очень слабая кислота, он может взаимодействовать со щелочами и активными металлами - натрием, калием. Вещество с ярко выраженными бактерицидными свойствами - фенол применяется в медицине, в также при производстве красителей и фенолформальдегидных смол.

В нашей статье мы изучили основные классы кислородсодержащих соединений, а также рассмотрели их химические свойства.

В состав кислородсодержащих соединений могут входить гидроксильная, карбонильная и карбоксильная группы. Им соответствуют класс соединений – спирты, альдегиды, кетоны, карбоновые кислоты.

Спирты

Подействуем на этилен водой. В качестве катализатора применим серную кислоту. Она катализирует как присоединение, так и отнятие воды. В результате разрыва двойной связи один атом углерода присоединит атом водорода, а другой – гидроксильную группу молекулы воды. Так получаются соединения класса спиртов.

Простейшим спиртом является метиловый CH3–OH. Этиловый спирт – следующий гомолог ряда спиртов.

Если в состав молекулы спирта входит одна гидроксильная группа, такой спирт называют одноатомным. Есть и такие спирты, которые содержат две или более гидроксильных групп. Такие спирты называют многоатомными. Примером многоатомного спирта является широко известный глицерин.

Альдегиды

Под действием слабого окислителя гидроксильная группа может превращаться в карбонильную. В результате образуется новый класс соединений – альдегиды. Например, этиловый спирт окисляется таким слабым окислителем, как оксид меди(II). Реакция происходит при нагревании. Продуктом реакции является уксусный альдегид.

Это качественная реакция на спирты. Она производится так. Медную проволоку прокаливают до образования оксидной плёнки и опускают в раскалённом состоянии в спирт. Спирт окисляется, а медь восстанавливается. Медная проволока становится блестящей, при этом чувствуется запах уксусного альдегида.

Подобно спиртам, альдегиды способны окисляться слабыми окислителями. Такая реакция происходит при окислении альдегида аммиачным раствором оксида серебра. Выпадающее в осадок серебро образует тончайший зеркальный слой на стенках пробирки. Этот процесс называют реакцией серебряного зеркала. Он используется для качественного определения альдегидов.

Карбоновые кислоты

В процессе окисления альдегидов карбонильная группа присоединяет атом кислорода. Так возникает карбоксильная группа. Образуется новый класс органических соединений – карбоновые кислоты. В нашем случае из уксусного альдегида получилась уксусная кислота. Как видим, функциональные группы могут превращаться друг в друга.

Многие карбоновые кислоты являются слабыми электролитами. При диссоциации под воздействием молекул воды от карбоксильной группы молекулы органической кислоты отщепляется водород:

CH3COOH ó CH3COO- + H+

Уксусная кислота, как и другие органические кислоты, вступает в реакцию с основаниями, основными оксидами, металлами.

Альдегиды, спирты и кислоты имеют большое значение в нашей жизни. Их применяют для синтеза различных веществ. Спирты используют для получения синтетических каучуков, душистых веществ, лекарств, красителей, в качестве растворителей.

Органические кислоты широко распространены в природе и играют большую роль в биохимических реакциях. В химической промышленности органические кислоты применяют в кожевенном производстве, при ситцепечатании.

Спирты являются и ядовитыми веществами. Особенно ядовит метанол. При попадании в организм он вызывает слепоту и даже гибель человека. Этиловый спирт отрицательно действует на жизненно важные центры в коре головного мозга, кровеносные сосуды, на психику, разрушая личность человека.

Цель: формировать умения проводить наблюдения и делать выводы, записывать уравнения соответствующих реакций в молекулярном и ионном видах.

Обеспеченность занятия

1. Сборник методических указаний для студентов по выполнению практических занятий и лабораторных работ по учебной дисциплине «Химия».

2. Раствор гидроксида натрия, карбонат натрия, карбонат кальция, оксид меди (II), уксусная кислота, лакмус синий, цинк; штатив с пробир­ками, водяная баня, прибор для нагревания, спички, держатель для пробирок.

Теоретический материал

Карбоновые кислоты - органические соединения, в молекулах которых содержатся одна или несколько карбоксильных групп, соединённых с углеводородным радикалом или атомом водорода.

Получение: В лаборатории карбоновые кислоты можно получить из их солей, действуя на них серной кислотой при нагревании, например:

2СН 3 – СООNa + H 2 SO 4 ® 2СН 3 – СООН + Na 2 SO 4
В промышленности получают окислением углеводородов, спиртов и альдегидов.

Химические свойства:
1. Из-за смещения электронной плотности от гидроксильной группы O–H к сильно

поляризованной карбонильной группе C=O молекулы карбоновых кислот способны к

электролитической диссоциации: R–COOH → R–COO - + H +

2.Карбоновые кислоты обладают свойствами, характерными для минеральных кислот. Они реагируют с активными металлами, основными оксидами, основаниями, солями слабых кислот. 2СH 3 COOH + Mg → (CH 3 COO) 2 Mg + H 2 ­

2СH 3 COOH + СaO → (CH 3 COO) 2 Ca + H 2 O

H–COOH + NaOH → H–COONa + H 2 O

2СH 3 CH 2 COOH + Na 2 CO 3 → 2CH 3 CH 2 COONa + H 2 O + CO 2 ­

СH 3 CH 2 COOH + NaHCO 3 → CH 3 CH 2 COONa + H 2 O + CO 2 ­

Карбоновые кислоты слабее многих сильных минеральных кислот

СH 3 COONa + H 2 SO 4 (конц.) →CH 3 COOH + NaHSO 4

3. Образование функциональных производных:

a) при взаимодействии со спиртами (в присутствии концентрированной H 2 SO 4) образуются сложные эфиры.

Образование сложных эфиров при взаимодействии кислоты и спирта в присутствии минеральных кислот называется реакцией этерификации. CH 3 – –OH + HO–CH 3 D CH 3 – –OCH 3 + H 2 O

уксусная кислота метиловый метиловый эфир

спирт уксусной кислоты

Общая формула сложных эфиров R– –OR’ где R и R" – углеводородные радикалы: в сложных эфирах муравьиной кислоты – формиатах –R=H.

Обратной реакцией является гидролиз (омыление) сложного эфира:

CH 3 – –OCH 3 + HO–H DCH 3 – –OH + CH 3 OH.

Глицери́н (1,2,3-тригидроксипропан; 1,2,3-пропантриол) (гликос - сладкий) химическое соединение с формулой HOCH2CH(OH)-CH2OH или C3H5(OH)3. Простейший представитель трёхатомных спиртов. Представляет собой вязкую прозрачную жидкость.

Глицерин - бесцветная, вязкая, гигроскопичная жидкость, неограниченно растворимая в воде. Сладкий на вкус(гликос - сладкий). Хорошо растворяет многие вещества.

Глицерин этерефицируется карбоновыми и минеральными кислотами.

Эфиры глицерина и высших карбоновых кислот - жиры.

Жиры - это смеси сложных эфиров, образованных трехатомным спиртом глицерином и высшими жирными кислотами. Общая формула жиров, где R - радикалы высших жирных кислот:

Чаще всего в состав жиров входят предельные кислоты: пальмитиновая С15Н31СООН и стеариновая С17Н35СООН, и непредельные кислоты: олеиновая С17Н33СООН и линолевая С17Н31СООН.

Общее название соединений карбоновых кислот с глицерином - триглицериды.

б) при воздействии водоотнимающих реагентов в результате межмолекулярной

дегидратации образуются ангидриды

CH 3 – –OH + HO– –CH 3 →CH 3 – –O– –CH 3 + H 2 O

Галогенирование. При действии галогенов (в присутствии красного фосфора) образуются α-галогензамещённые кислоты:

Применение:в пищевой и химической промышленности (производство ацетилцеллюлозы, из которой получают ацетатное волокно, органическое стекло, киноплёнку; для синтеза красителей, медикаментов и сложных эфиров).

Вопросы для закрепления теоретического материала

1 Какие органические соединения относятся к карбоновым кислотам?

2 Почему среди карбоновых кислот нет газообразных веществ?

3 Чем обусловлены кислотные свойства карбоновых кислот?

4 Почему изменяется цвет индикаторов в растворе уксусной кислоты?

5 Какие химические свойства для глюкозы и глицерина являются общими, и чем эти вещества отличаются друг от друга? Напишите уравнения соответствующих реакций.

Задание

1. Повторить теоретический материал по теме практического занятия.

2. Ответить на вопросы для закрепления теоретического материала.

3. Исследовать свойства кислородсодержащих органических соединений.

4. Оформить отчет.

Инструкция по выполнению

1. Ознакомьтесь с правилами по технике безопасности при работе в химической лаборатории и распишитесь в журнале по ТБ.

2. Выполните опыты.

3. Результаты внесите в таблицу.

Опыт № 1 Испытание раствора уксусной кислоты лакмусом

Разбавьте полученную уксусную кислоту небольшим количеством воды и прибавьте несколько капель синего лакмуса или опустите в пробирку индикаторную бумажку.

Опыт №2 Взаимодействие уксусной кислоты с карбонатом кальция

В пробирку насыпьте немного мела (карбоната кальция) и прилейте раствор уксусной

Опыт № 3 Свойства глюкозы и сахарозы

а) В пробирку внесите 5 капель раствора глюкозы, каплю раствора соли меди (II) и при взбалтывании несколько капель раствора гидроксида натрия до образования светло - синего раствора. Такой опыт проделывали с глицерином.

б) Полученные растворы нагрейте. Что наблюдаете?

Опыт № 4 Качественная реакция на крахмал

К 5-6 каплям крахмального клейстера в пробирке прибавьте каплю спиртового раствора йода.

Образец отчёта

Лабораторная работа № 9 Химические свойства кислородсодержащих органических соединений.

Цель:формировать умения проводить наблюдения и делать выводы, записывать уравнения соответствующих реакций в молекулярном и ионном видах.

Вывод делать в соответствии с целью работы

Литература 0-2 с. 94-98

Лабораторная работа № 10

Спирты – производные углеводородов, содержащие функциональную группу ОН (гидроксил). Спирты, в которых имеется одна группа ОН, называются одноатомными, а спирты с несколькими группами ОН - многоатомными.

Названия некоторых распространенных спиртов приведены в табл. 9.

По строению различают спирты первичные, вторичные и третичные, в зависимости от того, при каком атоме углерода (первичном, вторичном или третичном) находится группа ОН:

Одноатомные спирты – бесцветные жидкости (до Cl 2 Н 25 ОН), растворимые в воде. Простейший спирт - метанол СН 3 ОН чрезвычайно ядовит. С увеличением молярной массы температура кипения спиртов повышается.




Молекулы жидких одноатомных спиртов ROH ассоциированы за счет водородных связей:



(эти связи аналогичны водородным связям в чистой воде).

При растворении в воде молекулы ROH образуют водородные связи с молекулами воды:



Водные растворы спиртов ROH имеют нейтральную среду; другими словами, спирты практически не диссоциируют в водном растворе ни по кислотному, ни по основному типу.

Химические свойства одноатомных спиртов обусловлены присутствием в них функциональной группы ОН.

Водород группы ОН в спиртах может замещаться на металл:



Этанолаты и производные других спиртов (алкоголяты) легко гидролизуются:



Группу ОН в спиртах можно заместить на Cl или Br:



При действии на спирты водоотнимающих средств, например концентрированной H 2 SO 4 , происходит межмолекулярная дегидратация:



Продукт реакции - диэтиловый эфир (С 2 Н 5) 2 O – относится к классу простых эфиров .

В более жестких условиях дегидратация становится внутримолекулярной и образуется соответствующий алкен:




Многоатомные спирты рассмотрим на примере простейших представителей двух– и трехатомных спиртов:



При комнатной температуре они – бесцветные вязкие жидкости с температурами кипения 198 и 290 °C соответственно, неограниченно смешиваются с водой. Этиленгликоль ядовит.

Химические свойства многоатомных спиртов подобны свойствам спиртов ROH. Так, в этиленгликоле одну или две группы ОН можно заместить на галоген:




Кислотные свойства многоатомных спиртов проявляются в том, что (в отличие от одноатомных спиртов) водород группы ОН замещается на металл под действием не только металлов, но и гидроксидов металлов:




(стрелками в формуле гликолята меди показано образование ковалентных связей медь – кислород по донорно-акцепторному механизму).

Аналогично реагирует с гидроксидом меди (II) глицерин:



Гликолят и глицерат меди (II), имеющие ярко-синюю окраску, позволяют качественно обнаруживать многоатомные спирты.

Получение одноатомных спиртов в промышленности – гидратация алкенов в присутствии катализаторов (H 2 SO 4 , Al 2 O 3), причем присоединение воды к несимметричным алкенам происходит по правилу Марковникова:



(способ получения вторичного спирта), или присоединение к алкенам СО и Н 2 в присутствии кобальтового катализатора (процесс называется гидрофоржилирование):



(способ получения первичного спирта ).

В лаборатории (а иногда и в промышленности ) спирты получают взаимодействием галогенпроизводных углеводородов с водой или водным раствором щелочи при нагревании:




Этанол С 2 Н 5 ОН образуется также при спиртовом брожении сахаристых веществ, например глюкозы:



Этиленгликоль получают в двухстадийном процессе:

а) окисление этилена:



б) гидратация этиленоксида:



Глицерин ранее получали омылением жиров (см. 20.3), современный трехстадийный способ – постепенное окисление пропена (приведена только схема процесса):



Спирты используют как сырье в органическом синтезе, в качестве растворителей (для лаков, красок и т. п.), а также в бумажной, полиграфической, парфюмерной, фармакологической и пищевой промышленности.

Простые эфиры – класс органических соединений, содержащих мостиковый атом кислорода – О– между двумя углеводородными радикалами: R – О-R". Самый известный и широко применяемый простой эфир – диэтиловый эфир С 2 Н 5 -О – С 2 Н 5 . Бесцветная, легкоподвижная жидкость с характерным («эфирным») запахом, в лабораторной практике его называют просто эфиром. Почти не смешивается с водой, t кип = 34,51 °C. Пар эфира воспламеняется на воздухе. Получают диэтиловый эфир при межмолекулярной дегидратации этанола (см. выше), основное применение – растворитель.

Фенолы – это спирты, в которых группа ОН непосредственно связана с бензольным кольцом. Простейший представитель - фенол С 6 Н 5 -ОН. Белые (розовеющие на свету) кристаллы с сильным запахом, t пл = 41 °C. Вызывает ожоги кожи, ядовит.

Для фенола характерна значительно большая кислотность, чем для ациклических спиртов. Вследствие этого фенол в водном растворе легко реагирует с гидроксидом натрия:



Отсюда тривиальное название фенола - карболовая кислота.

Отметим, что группа ОН в феноле никогда не замещается ни на какие другие группы или атомы, но делает более подвижными атомы водорода бензольного кольца. Так, фенол легко реагирует с бромом в воде и азотной кислотой, образуя соответственно 2,4,6-трибромфенол (I) и 2,4,6-тринитрофенол (II, традиционное название - пикриновая кислота):



Фенол в промышленности получают нагреванием хлорбензола с раствором гидроксида натрия под давлением при 250 °C:



Фенол применяют в качестве сырья для производства пластмасс и смол, полупродуктов для лакокрасочной и фармацевтической промышленности, как дезинфицирующее средство.

10.2. Альдегиды и кетоны

Альдегиды и кетоны – это производные углеводородов, содержащие функциональную карбонильную группу СО . В альдегидах карбонильная группа связана с атомом водорода и одним радикалом, а в кетонах с двумя радикалами.

Общие формулы:




Названия распространенных веществ этих классов приведены в табл. 10.

Метаналь – бесцветный газ с резким удушающим запахом, хорошо растворим в воде (традиционное название 40 %-ного раствора- формалин), ядовит. Последующие члены гомологического ряда альдегидов – жидкости и твердые вещества.

Простейший кетон – пропанон-2, более известный под названием ацетон, при комнатной температуре – бесцветная жидкость с фруктовым запахом, t кип = 56,24 °C. Хорошо смешивается с водой.

Химические свойства альдегидов и кетонов обусловлены присутствием в них карбонильной группы СО; они легко вступают в реакции присоединения, окисления и конденсации.




В результате присоединения водорода к альдегидам образуются первичные спирты:



При восстановлении водородом кетонов образуются вторичные спирты:



Реакция присоединения гидросульфита натрия используется для выделения и очистки альдегидов, так как продукт реакции малорастворим в воде:



(действием разбавленных кислот такие продукты превращаются в альдегиды).

Окисление альдегидов проходит легко под действием кислорода воздуха (продукты – соответствующие карбоновые кислоты). Кетоны сравнительно устойчивы к окислению.

Альдегиды способны участвовать в реакциях конденсации . Так, конденсация формальдегида с фенолом протекает в две стадии. Вначале образуется промежуточный продукт, являющийся фенолом и спиртом одновременно:



Затем промежуточный продукт реагирует с другой молекулой фенола, и в результате получается продукт поликонденсации - фенолформальдегидная смола:




Качественная реакция на альдегидную группу – реакция «серебряного зеркала», т. е. окисление группы С(Н)O с помощью оксида серебра (I) в присутствии гидрата аммиака:




Аналогично протекает реакция с Cu(ОН) 2 , при нагревании появляется красный осадок оксида меди (I) Cu 2 O.

Получение : общий способ для альдегидов и кетонов – дегидрирование (окисление) спиртов. При дегидрировании первичных спиртов получают альдегиды , а при дегидрировании вторичных спиртов – кетоны . Обычно дегидрирование протекает при нагревании (300 °C) над мелкораздробленной медью:



При окислении первичных спиртов сильными окислителями (перманганат калия, дихромат калия в кислотной среде) процесс трудно остановить на стадии получения альдегидов; альдегиды легко окисляются до соответствующих кислот:



Более подходящим окислителем является оксид меди (II):



Ацетальдегид в промышленности получают по реакции Кучерова (см. 19.3).

Наибольшее применение из альдегидов имеют метаналь и этаналь. Метаналь используют для производства пластмасс (фенопластов), взрывчатых веществ, лаков, красок, лекарств. Этаналь – важнейший полупродукт при синтезе уксусной кислоты и бутадиена (производство синтетического каучука). Простейший кетон – ацетон используют в качестве растворителя различных лаков, ацетатов целлюлозы, в производстве кинофотопленки и взрывчатых веществ.

10.3. Карбоновые кислоты. Сложные эфиры. Жиры

Карбоновые кислоты – это производные углеводородов, содержащие функциональную группу СООН (карбоксил).

Формулы и названия некоторых распространенных карбоновых кислот приведены в табл. 11.

Традиционные названия кислот НСООН (муравьиная), СН 3 СООН (уксусная), С 6 Н 5 СООН (бензойная) и (СООН) 2 (щавелевая) рекомендуется использовать вместо их систематических названий.

Формулы и названия кислотных остатков приведены в табл. 12.

Для составления названий солей этих карбоновых кислот (а также их сложных эфиров, см. ниже) обычно используются традиционные названия, например:








Низшие карбоновые кислоты – бесцветные жидкости с резким запахом. При увеличении молярной массы температура кипения возрастает.

Карбоновые кислоты обнаружены в природе:




Простейшие карбоновые кислоты растворимы в воде, обратимо диссоциируют в водном растворе с образованием катионов водорода:



и проявляют общие свойства кислот:




Важное практическое значение имеет взаимодействие карбоновых кислот со спиртами (подробнее см. ниже):



Отметим, что кислота НСООН вступает в реакцию «серебряного зеркала» как альдегиды:



и разлагается под действием водоотнимающих реактивов:



Получение:

Окисление альдегидов:



Окисление углеводородов:

Кроме того, муравьиную кислоту получают по схеме:



а уксусную кислоту – по реакции:



Применяют муравьиную кислоту как протраву при крашении шерсти, консервант фруктовых соков, отбеливатель, дезинфекционный препарат. Уксусную кислоту используют как сырье в промышленном синтезе красителей, медикаментов, ацетатного волокна, негорючей кинопленки, органического стекла. Натриевые и калиевые соли высших карбоновых кислот – основные компоненты мыла.

Сложные эфиры – продукты обменного взаимодействия карбоновых кислот со спиртами. Это взаимодействие называется реакцией этерификации:




Механизм реакции этерификации был установлен при использовании спирта, меченного изотопом 18 O; этот кислород после реакции оказался в составе эфира (а не воды):



Следовательно, в отличие от реакции нейтрализации неорганической кислоты щелочью (Н + + ОН - = Н 2 O), в реакции этерификации карбоновая кислота всегда отдает группу ОН , спирт – атом Н (образуется вода). Реакция этерификации обратима; она лучше протекает в кислотной среде, обратная реакция (гидролиз, омыление) – в щелочной среде.

Формулы и названия распространенных сложных эфиров приведены в табл. 13.




Среди сложных эфиров есть бесцветные низкокипящие горючие жидкости с фруктовым запахом, например:



Используются сложные эфиры как растворители для лаков, красок и нитратов целлюлозы, носители фруктовых ароматов в пищевой промышленности.

Сложные эфиры трехатомного спирта – глицерина и высших карбоновых кислот (в общем виде RCOOH), например с формулами и названиями:




носят названия жиров. Примером жира будет смешанный сложный эфир глицерина и этих кислот:




Чем выше содержание остатков олеиновой кислоты (или других ненасыщенных кислот), тем ниже температура плавления жира. Жидкие при комнатной температуре жиры называются маслами. Путем гидрогенизации, т. е. присоединения водорода по двойной связи, масла превращают в твердые жиры (например, растительное масло – в маргарин). Реакция этерификации (образования жира) обратима:




Прямая реакция лучше идет в кислотной среде, обратная реакция – гидролиз, или омыление, жира – в щелочной среде; при пищеварении жир омыляется (расщепляется) с помощью ферментов.

10.4. Углеводы

Углеводы (сахара ) – важнейшие природные соединения, состоящие из углерода, водорода и кислорода. Углеводы подразделяются на моносахариды, дисахариды и полисахариды. Моносахариды не подвергаются гидролизу, а остальные углеводы при кипячении в присутствии кислот расщепляются до моносахаридов.

Моносахариды (и все другие углеводы) относятся к полифункциональным соединениям. В молекуле моносахарида имеются функциональные группы разных типов: группы ОН (спиртовая функция) и группы СО (альдегидная или кетонная функция). Поэтому различают альдозы (альдегидоспирты, спиртоальдегиды) и кетозы (кетоноспирты, спиртокетоны).

Важнейший представитель альдоз - глюкоза:



а представитель кетоз - фруктоза:



Глюкоза (виноградный сахар) и фруктоза (фруктовый сахар) являются структурными изомерами, их молекулярная формула С 6 Н 12 O 6 .

Глюкозу можно отличить от фруктозы так же, как любой альдегид от кетона, – по реакции «серебряного зеркала» в аммиачном растворе Ag 2 O:




Этерификация глюкозы и фруктозы (например, уксусной кислотой) приводит к образованию сложных эфиров по всем пяти группам ОН (заменяются на ОСОСН 3).

Однако не все реакции, характерные для альдегидов, протекают с глюкозой; например, не идет реакция присоединения с участием гидросульфита натрия. Причина в том, что молекула глюкозы может существовать в трех изомерных формах, из которых две формы (? и?) – циклические . В растворе все три формы находятся в состоянии равновесия, причем открытая (альдегидная) форма, приведенная выше, содержится в наименьшем количестве:



Циклические формы глюкозы не содержат альдегидной группы. Они отличаются друг от друга только пространственным расположением атома Н и группы ОН у атома углерода C 1 (рядом с кислородом в цикле):




Дисахариды образуются из двух молекул моносахаридов путем межмолекулярной дегидратации. Так, сахароза (обычный сахар) C 12 Н 22 О 11 является продуктом соединения остатков глюкозы и фруктозы за счет отщепления воды:




При гидролизе в кислотной среде сахароза вновь переходит в моносахариды:



Получившаяся смесь - инвертный сахар – содержится в мёде. При 200 °C сахароза, теряя воду, превращается в бурую массу (карамель).

Полисахариды – крахмал и целлюлоза (клетчатка) – продукты поликонденсации (межмолекулярной дегидратации) соответственно?– и?-форм глюкозы, их общая формула (С 6 Н 10 О 5) n . Степень полимеризации крахмала составляет 1000–6000, а целлюлозы 10 000-14 000. Целлюлоза – наиболее распространенное в природе органическое вещество (в древесине массовая доля целлюлозы доходит до 75 %). Крахмал (легче) и целлюлоза (труднее) подвергаются гидролизу (условия: H 2 SO 4 или НCl, > 100 °C); конечный продукт – глюкоза.

Большое практическое значение имеют сложные эфиры целлюлозы с уксусной кислотой:




Их используют в производстве искусственного ацетатного волокна и кинофотопленок.

Примеры заданий частей А, В

1-2. Для соединения с формулой

правильное название – это

1) 2-метилпропанол-2

2) 2,2-диметилэтанол

3) пропилэтиловый эфир

4) этилпропиловый эфир


3-4. Для соединения с формулой

правильное название – это

1) 1,1-диметилпропановая кислота

2) 3-метилбутановая кислота

3) 2-метилпропаналь

4) диметилэтаналь


5. Правильное название вещества CH 3 COOCH 2 CH 3 – это

1) метилацетат

2) этилацетат

3) метилформиат

4) этилформиат


6. Водородные связи образуются между молекулами соединений

3) уксусная кислота

4) ацетальдегид


7. Для состава С 4 Н 8 O 2 названия структурных изомеров из класса сложных эфиров – это

1) пропилформиат

2) диэтиловый эфир

3) этилацетат

4) метилпропионат


8-11. Формула соединения с названием

8. сахароза

9. крахмал

10. фруктоза

11. клетчатка

отвечает составу

1) С 6 Н 12 O 6

2) (С 6 Н 10 О 5) n

3) Cl 2 Н 22 О n


12. Для предельных одноатомных спиртов характерные реакции – это

1) гидролиз

2) гидратация

3) этерификация

4) дегидратация


13. Молекула конечного продукта реакции между фенолом и бромом в воде содержит общее число атомов всех элементов, равное


14-17. В уравнении реакции

14. окисления этанола оксидом меди (II)

15. бромирования фенола

16. межмолекулярной дегидратации этанола

17. нитрования фенола

сумма коэффициентов равна


18. В реакции этерификации группа ОН отщепляется от молекулы

2) альдегида

4) кислоты


19. С помощью хлорофилла в зеленом растении образуются

1) кислород

3) глюкоза


20-21. Химические свойства глюкозы, характерные для

20. спиртов

21. альдегидов

проявляются в реакции

1) спиртового брожения

2) «серебряного зеркала»

3) этерификации

4) нейтрализации


22-24. При нагревании с водой в присутствии H 2 SO 4 углевода

22. крахмал

23. целлюлоза

24. сахароза

после окончания гидролиза получают

2) фруктозу

3) глюконовую кислоту

4) глюкозу


25. Способы получения этанола – это

1) гидратация этена

2) брожение глюкозы

3) восстановление этаналя

4) окисление этаналя


26. Способы получения этиленгликоля – это

1) окисление этена

2) гидратация этена

3) действие щелочи на 1,2-С 2 Н 4 Cl 2

4) гидратация этина


27. Способы получения муравьиной кислоты – это

1) окисление метана

2) окисление фенола

3) окисление метанола

4) реакция СН 3 ОН с СО


28. Для синтеза уксусной кислоты используют соединения

1) С 2 Н 5 ОН


29. Метанол применяется в производстве

1) пластмасс

2) каучуков

3) бензинов

4) жиров и масел


30. Для распознавания фенола (в смеси с бутанолом-1) используют

1) индикатор и раствор щелочи

2) бромную воду

3) гидроксид меди (II)

4) аммиачный раствор оксида серебра (I)


31. Для распознавания в своих растворах глицерина, уксусной кислоты, ацетальдегида и глюкозы подходит один и тот же реактив

3) H 2 SO 4 (конц.)

4) Ag 2 O (в р-ре NH 3)


32. Органическое вещество – продукт гидратации ацетилена, которое вступает в реакцию «серебряного зеркала», а при восстановлении образует этанол, – это

1) ацетальдегид

2) уксусная кислота


33. Продукты А, Б, и В в схеме реакций СO 2 + Н 2 O > фотосинтез А > брожение – СO 2 Б > HCOOH B

– это соответственно

2) глюкоза

3) пропановая кислота

4) этилформиат


34. Фенол будет участвовать в процессах:

1) дегидратации

2) бромирования

3) изомеризации

4) нейтрализации

5) нитрования

6) «серебряного зеркала»


35. Возможно протекание реакций:

1) твердый жир + водород >…

2) муравьиная кислота + формальдегид >…

3) метанол + оксид меди (II) >…

4) сахароза + вода (в конц. H 2 SO 4) >…

5) метаналь + Ag 2 O (в р-ре NH 3) >…

6) этиленгликоль + NaOH (р-р) >…


36. Для промышленного синтеза фенолформальдегидной смолы следует взять набор реагентов

1) С 6 Н 6 , НС(Н)O

2) С 6 Н 6 , СН 3 С(Н)O

3) С 6 Н 5 ОН, НС(Н)O

4) С 6 Н 5 ОН, СН 3 С(Н)O

Цели. Познакомить с большой группой органических веществ, генетически связанных между собой (строением, изомерией, номенклатурой, физическими свойствами, классификацией); сформировать общее представление о спиртах, альдегидах, карбоновых кислотах; продолжить развитие общеучебных навыков; воспитывать потребности в знаниях о тех веществах, с которыми мы соприкасаемся в быту – они находятся в пищевых продуктах, лекарствах.

Демонстрационный материал. Коллекция карбоновых кислот, спиртов, фенола, формалина.

Демонстрационный эксперимент. Изучение растворимости в воде спиртов (этанола, н -пропанола и н -бутанола), кислот (муравьиной, уксусной, пропионовой, масляной, стеариновой и пальмитиновой), альдегидов (40%-й раствор муравьиного альдегида – формалин).

Наглядное обеспечение. Таблицы «Образование водородной связи», «Спирты и альдегиды»; модели молекул; рисунки с формулами наиболее часто встречаемых кислот.

Раздаточный материал. Информационная карта к занятию.

Межпредметные и внутрипредметные связи. Неорганическая химия: минеральные кислоты, водородные связи между молекулами; органическая химия: углеводороды (общие формулы, строение, номенклатура, изомерия); математика: функция; физика: физические свойства веществ, константы.

ХОД УРОКА

П р и м е р ы: муравьиная кислота, щавелевая кислота, лимонная, яблочная, молочная кислоты, «винный спирт» (этанол), формалин (40%-й раствор муравьиного альдегида в воде), глицерин, ацетон, эфир для наркоза (диэтиловый эфир), фенол.

Задание 1. Распределите следующие вещества на три группы – спирты, альдегиды, карбоновые кислоты:

Задание 2. По каким признакам классифицируют кислородсодержащие соединения? Назовите функциональные группы спиртов, альдегидов и карбоновых кислот.

Функциональные группы веществ разных классов

Спирты

Альдегиды

Карбоновые кислоты

ОН

гидроксильная

Задание 3. Как называют углеводородный фрагмент в формулах органических кислородсодержащих соединений? Например, в задании 1 (см. выше) – это фрагменты: СН 3 , С 4 Н 9 , С 5 Н 11 , С 2 Н 5 , С 7 Н 15 , С 3 Н 7 .

Обозначая углеводородный радикал буквой R, получаем общие формулы:

спиртов – ………………………. ;

альдегидов – ……………….. ;

органических кислот – …………………. .

Классификацию спиртов, альдегидов и кислот можно проводить по числу функциональных групп в молекулах. Различают одно-, двух- и трехатомные спирты:

Альдегиды с двумя альдегидными группами СНО в молекуле называют следующим образом:

Карбоновые кислоты в зависимости от числа карбоксильных групп в молекуле бывают одно-, двух- и трехосновные:

Кислородсодержащие соединения различаются по строению углеводородного радикала. Они бывают предельные (насыщенные), непредельные (ненасыщенные), циклические, ароматические.

Примеры спиртов:

Примеры альдегидов:

Примеры карбоновых кислот:

Мы будем изучать только предельные одноосновые карбоновые кислоты, одноатомные спирты и альдегиды.

Задание 4. Дайте определение насыщенных спиртов, альдегидов, карбоновых кислот.

Спирты бывают первичные, вторичные и третичные. В первичных спиртах при атоме С, связанном с гидроксильной группой ОН, один углеродный сосед; во вторичных спиртах при атоме С наряду с группой ОН два углеродных заместителя (соседа), а в третичных спиртах – три углеродных заместителя. Например:


Номенклатура
кислородсодержащих соединений

По международной номенклатуре ИЮПАК названия спиртов производят из названий соответствующих алканов с добавлением суффикса «ол».

Задание 5. Напишите молекулярные формулы и названия четырех первичных спиртов с числом атомов углерода в молекуле 4 и более.

Особенность названий альдегидов – суффикс «аль».

Задание 6. Впишите в таблицу формулы и названия по ИЮПАК следующих четырех альдегидов.

Задание 7. Впишите в таблицу формулы и названия по ИЮПАК четырех следующих кислот.

Задание 8. Почему метаналь и метановую кислоту нельзя считать гомологами? Чем они отличаются от гомологов?


Физические свойства.
Водородная связь

1) А г р е г а т н о е с о с т о я н и е линейных соединений разных классов.

Задание 9. Почему среди алканов так много газов? Почему существует газообразный альдегид при нормальных условиях (0 °С, 1 атм)? С чем это может быть связано?

2) Т е м п е р а т у р ы к и п е н и я (°С) первых пяти гомологов веществ четырех классов.

Задание 10. Сравните температуры кипения соответствующих (по числу атомов С) алканов, спиртов, альдегидов и карбоновых кислот. Какие особенности этой характеристики у веществ разных гомологических рядов?

3) В о д о р о д н а я с в я з ь в ряду рассматриваемых соединений – это межмолекулярная связь между кислородом одной молекулы и гидроксильным водородом другой молекулы.

Справочная информация – электроотрицательность атомов: С – 2,5; Н – 2,1; О – 3,5.

Распределение электронной плотности в молекулах спиртов и карбоновых кислот неравномерное:

Водородную связь в спиртах и кислотах изображают так:

В ы в о д. В гомологических рядах спиртов и карбоновых кислот отсутствуют газообразные вещества и температуры кипения веществ высокие. Это связано с наличием водородных связей между молекулами. За счет водородных связей молекулы оказываются ассоциированными (как бы сшитыми), поэтому, чтобы молекулы стали свободными и приобрели летучесть, необходимо затратить дополнительную энергию на разрыв этих связей.

4) Р а с т в о р и м о с т ь в в о д е демонстрируется экспериментально на примере растворимости в воде спиртов – этилового, пропилового, бутилового и кислот – муравьиной, уксусной, пропионовой, масляной и стеариновой. Демонстрируется также раствор муравьиного альдегида в воде.

Задание 11. Что можно сказать о растворимости спиртов, альдегидов и карбоновых кислот в воде? Чем объясняется растворимость этих веществ?

При ответе используйте схему образования водородных связей между молекулами кислоты и воды:

Необходимо отметить, что с увеличением молекулярной массы растворимость в воде спиртов и кислот уменьшается. Чем больше углеводородный радикал в молекуле спирта или кислоты, тем труднее группе ОН держать молекулу в растворе за счет образования слабых водородных связей.


Строение спиртов, альдегидов,
карбоновых кислот

Задание 12. Аналогичную таблицу составьте дома для вторых членов гомологических рядов спиртов, альдегидов и карбоновых кислот.


Изомерии спиртов, альдегидов
и карбоновых кислот

1) И з о м е р и я с п и р т о в на примере пентанола С 5 Н 11 ОН (приведены углеродные цепи изомеров):

Задание 13. По углеродным цепям назовите разветвленные изомеры спиртов состава С 5 Н 11 ОН:

Задание 14. Являются ли данные вещества изомерами:

Задание 15. Какие виды изомерии характерны для спиртов?

2) И з о м е р и я а л ь д е г и д о в на примере н -пентаналя, или валерианового альдегида н -С 4 Н 9 СНО:

Задание 16. Какие виды изомерии характерны для альдегидов?

3) И з о м е р и я к а р б о н о в ы х к и с л о т на примере н -пентановой, или валериановой, кислоты н -С 4 Н 9 СООН:

Задание 17. Какие виды изомерии характерны для карбоновых кислот?

Задание 18. Напишите структурные формулы следующих веществ:

а) 2,4-диметил-3-этилгексаналь;

б) 2,2,4-триметил-3-изопропилпентаналь;

в) 2,3,4-триметил-3-этилпентандиол-1,2;

г) 2,3,4-триметил-3-изопропилгексантриол-1,2,4;

д) 3,4,5,5-тетраметил-3,4-диэтилгептановая кислота;

е) 2,4-диметилгексен-3-овая кислота.


Домашнее задание

Выучить тривиальные названия пяти первых альдегидов и карбоновых кислот.

Заполнить таблицу «Строение спиртов, альдегидов, карбоновых кислот» для вторых членов данных гомологических рядов (см. задание 12).

Написать все возможные изомеры для бутанола С 4 Н 10 О, бутаналя С 4 Н 8 О и бутановой кислоты С 4 Н 8 О 2 , назвать их по ИЮПАК.

Р е ш и т ь з а д а ч у. Один из многоатомных спиртов используют для приготовления антифризов – жидкостей, замерзающих при низкой температуре. Антифризы используют в зимних условиях для охлаждения автомобильных двигателей. Найдите молекулярную формулу этого спирта, если массовая доля углерода в нем составляет 38,7%, водорода – 9,7%, кислорода – 51,6%. Относительная плотность его паров по водороду равна 31. Напишите структурную формулу спирта и назовите его.