Ядерное оружие обладает колоссальной мощностью. При делении урана

массой порядка килограмма освобождается такое же количество энергии, как

при взрыве тротила массой около 20 тысяч тонн. Термоядерные реакции синтеза являются еще более энергоемкими. Мощность взрыва ядерных боеприпасов принято измерять в единицах тротилового эквивалента. Тротиловый эквивалент-это масса тринитротолуола, которая обеспечила бы взрыв, по мощности эквивалентный взрыву данного ядерного боеприпаса. Обычно он измеряется в килотоннах (кТ) или в мегатоннах (МгТ).

В зависимости от мощности ядерные боеприпасы делят на калибры:

Сверхмалый (менее 1кТ)

Малый (от 1 до 10 кТ)

Средний (от 10 до 100 кТ)

Крупный (от 100 кТ до 1 МгТ)

Сверхкрупный (свыше 1 МгТ)

Термоядерными зарядами комплектуются боеприпасы сверхкрупного, крупного

и среднего калибров; ядерными-сверхмалого, малого и среднего калибров,

нейтронными-сверхмалого и малого калибров.

1.5 Виды ядерных взрывов

В зависимости от задач, решаемых ядерным оружием, от вида и расположения

объектов, по которым планируются ядерные удары, а также от характера

предстоящих боевых действий ядерные взрывы могут быть осуществлены в

воздухе, у поверхности земли (воды) и под землей (водой). В соответствии

с этим различают следующие виды ядерных взрывов:

Воздушный (высокий и низкий)

Наземный (надводный)

Подземный (подводный)

1.6 Поражающие факторы ядерного взрыва.

Ядерный взрыв способен мгновенно уничтожить или вывести из строя

незащищенных людей, открыто стоящую технику, сооружения и различные

материальные средства. Основными поражающими факторами ядерного взрыва являются:

Ударная волна

Световое излучение

Проникающая радиация

Радиоактивное заражение местности

Электромагнитный импульс

Рассмотрим их:

а) Ударная волна в большинстве случаев является основным поражающим

фактором ядерного взрыва. По своей природе она подобна ударной волне

обычного взрыва, но действует более продолжительное время и обладает

гораздо большей разрушительной силой. Ударная волна ядерного взрыва

может на значительном расстоянии от центра взрыва наносить поражения

людям, разрушать сооружения и повреждать боевую технику.

Ударная волна представляет собой область сильного сжатия воздуха,

распространяющуюся с большой скоростью во все стороны от центра взрыва.

Скорость распространения ее зависит от давления воздуха во фронте

ударной волны; вблизи центра взрыва она в несколько раз превышает

скорость звука, но с увеличением расстояния от места взрыва резко падает.

За первые 2 сек ударная волна проходит около 1000 м, за 5 сек-2000 м,

за 8 сек - около 3000 м. Это служит обоснованием норматива N5 ЗОМП

"Действия при вспышке ядерного взрыва": отлично - 2 сек, хорошо - 3 сек,

удовлетврительно-4 сек.

Поражающее действие ударной волны на людей и разрушающее действие на

боевую технику, инженерные сооружения и материальные средства прежде

всего определяются избыточным давлением и скоростью движения воздуха в

ее фронте. Избыточное давление - это разность между максимальным давлением во фронте ударной волны и нормальным атмосферным давлением перед ним. Оно измеряется в ньютонах на квадратный метр (Н/м 2). Эта единица давления называется паскалем (Па). 1 Н/м 2 =1 Па (1 кПа0,01 кгс/см 2).

При избыточном давлении 20-40 кПа незащищенные люди могут получить легкие поражения (легкие ушибы и контузии). Воздействие ударной волны с избыточным давлением 40-60 кПа приводит к поражениям средней тяжести: потеря сознания, повреждению органов слуха, сильным вывихам конечностей, кровотечению из носа и ушей. Тяжелые травмы возникают при избыточном давлении свыше 60 кПа и характеризуются сильными контузиями всего организма, переломами конечностей повреждением внутренних органов. Крайне тяжелые поражения, нередко со смертельным исходом, наблюдаются при избыточном давлении свыше 100 кПа.

Незащищенные люди могут, кроме того, поражаться летящими с

огромной скоростью осколками стекла и обломками разрушаемых зданий,

падающими деревьями, а также разбрасываемыми частями боевой техники,

комьями земли, камнями и другими предметами, приводимыми в движение

скоростным напором ударной волны. Наибольшие косвенные поражения будут наблюдаться в населенных пунктах и в лесу; в этих случаях потери войск могут оказаться большими, чем от непосредственного действия ударной волны.

Ударная волна способна наносить поражения и в закрытых помещениях,

проникая туда через щели и отверстия.

С ростом калибра ядерного боеприпаса радиусы поражения ударной волной

растут пропорционально корню кубическому из мощности взрыва. При подземном взрыве возникает ударная волна в грунте, а при подводном - в воде.

Кроме того, при этих видах взрывов часть энергии расходуется на создание

ударной волны и в воздухе. Ударная волна, распространяясь в грунте,

вызывает повреждения подземных сооружений, канализации, водопровода;

при распространении ее в воде наблюдается повреждение подводной части

кораблей, находящихся даже на значительном расстоянии от места взрыва.

б) Световое излучение ядерного взрыва представляет собой поток

лучистой энергии, включающей ультрафиолетовое, видимое и инфракрасное

излучение. Источником светового излучения является светящаяся область,

состоящая из раскаленных продуктов взрыва и раскаленного воздуха. Яркость

светового излучения в первую секунду в несколько раз превосходит яркость

Поглощенная энергия светового излучения переходит в тепловую, что

приводит к разогреву поверхностного слоя материала. Нагрев может быть

настолько сильным, что возможно обугливание или воспламенение горючего

материала и растрескивание или оплавление негорючего, что может приводить

к огромным пожарам. При этом действие светового излучения ядерного взрыва

эквивалентно массированному применению зажигательного оружия, которое

рассматривается в четвертом учебном вопросе.

Кожный покров человека также поглощает энергию светового излучения, за

счет чего может нагреваться до высокой температуры и получать ожоги. В

первую очередь ожоги возникают на открытых участках тела, обращенных в

сторону взрыва. Если смотреть в сторону взрыва незащищенными глазами, то

возможно поражение глаз, приводящее к полной потере зрения.

Ожоги, вызываемые световым излучением, не отличаются от обычных,

вызываемых огнем или кипятком. Они тем сильнее, чем меньше расстояние до

взрыва и чем больше мощность боеприпаса. При воздушном взрыве поражающее действие светового излучения больше, чем при наземном той же мощности.

В зависимости от воспринятого светового импульса ожоги делятся на три

степени. Ожоги первой степени проявляются в поверхностном поражении кожи: покраснении, припухлости, болезненности. При ожогах второй степени на коже появляются пузыри. При ожогах третьей степени наблюдается омертвление кожи и образование язв.

При воздушном взрыве боеприпаса мощностью 20 кТ и прозрачности атмосферы порядка 25 км ожоги первой степени будут наблюдаться в радиусе 4,2

км от центра взрыва; при взрыве заряда мощностью 1 МгТ это расстояние

увеличится до 22,4 км. Ожоги второй степени проявляются на расстояниях

2,9 и 14,4 км и ожоги третьей степени ­­­­­- на расстояниях 2,4 и 12,8 км

соответственно для боеприпасов мощностью 20 кТ и 1МгТ.

в) Проникающая радиация представляет собой невидимый поток гамма-

квантов и нейтронов, испускаемых из зоны ядерного взрыва. Гамма-кванты

и нейтроны распространяются во все стороны от центра взрыва на сотни

метров. С увеличением расстояния от взрыва количество гамма-квантов и

нейтронов, проходящее через единицу поверхности, уменьшается. При

подземном и подводном ядерных взрывах действие проникающей радиации

распространяется на расстояния, значительно меньшие, чем при наземных и

воздушных взрывах, что объясняется поглощением потока нейтронов и гамма-

квантов водой.

Зоны поражения проникающей радиацией при взрывах ядерных боеприпасов

средней и большой мощности несколько меньше зон поражения ударной волной и световым излучением. Для боеприпасов с небольшим тротиловым эквивалентом (1000 тонн и менее) наоборот, зоны поражающего действия проникающей радиацией превосходят зоны поражения ударной волной и световым излучением.

Поражающее действие проникающей радиации определяется способностью

гамма-квантов и нейтронов ионизировать атомы среды, в которой они распространяются. Проходя через живую ткань, гамма-кванты и нейтроны ионизируют атомы и молекулы, входящие в состав клеток, которые приводят к

нарушению жизненных функций отдельных органов и систем. Под влиянием

ионизации в организме возникают биологические процессы отмирания и разложения клеток. В результате этого у пораженных людей развивается специфическое заболевание, называемое лучевой болезнью.

г) Основными источниками радиоактивного заражения являются продукты деления ядерного заряда и радиоактивные изотопы, образующиеся в результате воздействия нейтронов на материалы, из которых изготовлен ядерный боеприпас, и на некоторые элементы, входящие в состав грунта в районе взрыва.

При наземном ядерном взрыве светящаяся область касается земли. Внутрь ее затягиваются массы испаряющегося грунта, которые поднимаются вверх. Охлаждаясь, пары продуктов деления грунта конденсируются на твердых частицах. Образуется радиоактивное облако. Оно поднимается на многокилометровую высоту, а затем со скоростью 25-100 км/ч движется по ветру. Радиоактивные частицы, выпадая из облака на землю, образуют зону радиоактивного заражения (след), длина которой может достигать нескольких сот километров.

Радиоактивное заражение людей, боевой техники, местности и различных

объектов при ядерном взрыве обусловливается осколками деления вещества

заряда и непрореагировавшей частью заряда, выпадающими из облака взрыва,

а также наведенной радиоактивностью.

С течением времени активность осколков деления быстро уменьшается,

особенно в первые часы после взрыва. Так, например, общая активность

осколков деления при взрыве ядерного боеприпаса мощностью 20 кТ через

один день будет в несколько тысяч раз меньше, чем через одну минуту после

При взрыве ядерного боеприпаса часть вещества заряда не подвергается

делению, а выпадает в обычном своем виде; распад ее сопровождается образованием альфа-частиц. Наведенная радиоактивность обусловлена радиоактивными изотопами, образующимися в грунте в результате облучения его нейтронами, испускаемыми в момент взрыва ядрами атомов химических элементов, входящих в состав грунта. Образовавшиеся изотопы, как правило,

бета-активны, распад многих из них сопровождается гамма-излучением.

Периоды полураспада большинства из образующихся радиоактивных изотопов, сравнительно невелики-от одной минуты до часа. В связи с этим наведенная активность может представлять опасность лишь в первые часы после взрыва и только в районе, близком к его эпицентру.

Основная часть долгоживущих изотопов сосредоточена в радиоактивном

облаке, которое образуется после взрыва. Высота поднятия облака для

боеприпаса мощностью 10 кТ равна 6 км, для боеприпаса мощностью 10 МгТ

она составляет 25 км. По мере продвижения облака из него выпадают сначала

наиболее крупные частицы, а затем все более и более мелкие, образуя по

пути движения зону радиоактивного заражения, так называемый след облака.

Размеры следа зависят главным образом от мощности ядерного боеприпаса,

а также от скорости ветра и могут достигать в длину несколько сотен и в

ширину нескольких десятков километров.

Поражения в результате внутреннего облучения появляются в результате

попадания радиоактивных веществ внутрь организма через органы дыхания и

желудочно-кишечный тракт. В этом случае радиоактивные излучения вступают

в непосредственный контакт с внутренними органами и могут вызвать

сильную лучевую болезнь; характер заболевания будет зависеть от количества радиоактивных веществ, попавших в организм.

На вооружение, боевую технику и инженерные сооружения радиоактивные

вещества не оказывают вредного воздействия.

д) Электромагнитный импульс - это кратковременное электромагнитное поле, возникающее при взрыве ядерного боеприпаса в результате взаимодействия гамма-лучей и нейтронов, испускаемых пои ядерном взрыве, с атомами окружающей среды. Следствием его воздействия перегорание или пробои отдельных элементов радиоэлектронной и электротехнической аппаратуры.

Поражение людей возможно только в тех случаях, когда они в момент взрыва соприкасаются с протяженными проводными линиями.

Наиболее надежным средством защиты от всех поражающих факторов ядерного взрыва являются защитные сооружения. В поле следует укрываться за прочными местными предметами, обратными скатами высот, в складках местности.

При действиях в зонах заражения для защиты органов дыхания, глаз и открытых участков тела от радиоактивных веществ используются средства защиты органов дыхания (противогазы, респираторы, противопыльные тканевые маски и ватно-марлевые повязки), а также средства защиты кожи.

Особенности поражающего действия нейтронных боеприпасов.

Нейтронные боеприпасы являются разновидностью ядерных боеприпасов. Их основу составляют термоядерные заряды, в которых используются ядерные реакции деления и синтеза. Взрыв такого боеприпаса оказывает поражающее воздействие прежде всего на людей за счет мощного потока проникающей радиации, в котором значительная часть (до 40%) приходится на так называемые быстрые нейтроны.

При взрыве нейтронного боеприпаса площадь зоны поражения проникающей радиацией превосходит площадь зоны поражения ударной волной в несколько раз. В этой зоне техника и сооружения могут оставаться невредимыми, а люди получают смертельные поражения.

Для защиты от нейтронных боеприпасов используются те же средства и способы, что и для защиты от обычных ядерных боеприпасов. Кроме того, при сооружении убежищ и укрытий рекомендуется уплотнять и увлажнять грунт, укладываемый над ними, увеличивать толщину перекрытий, устраивать дополнительную защиту входов и выходов. Защитные свойства техники повышаются применением комбинированной защиты, состоящей из водородосодержащих веществ (например, полиэтилена) и материалов с высокой плотностью (свинец).

Взглянем на некую типовую боеголовку (в реальности между боеголовками могут существовать конструктивные различия). Это конус из легких прочных сплавов — обычно из титана. Внутри есть переборки, шпангоуты, силовой каркас - почти как в самолете. Силовой каркас покрыт прочной металлической обшивкой. На обшивку нанесен толстый слой теплозащитного покрытия. Это похоже на древнюю корзину эпохи неолита, щедро обмазанную глиной и обожженную в первых экспериментах человека с теплом и керамикой. Схожесть легко объяснима: и корзине, и боеголовке предстоит сопротивляться наружному жару.

Боеголовка и ее начинка

Внутри конуса, закрепленные на своих «сиденьях», находятся два основных «пассажира», ради которых все и затеяно: термоядерный заряд и блок управления зарядом, или блок автоматики. Они поразительно компактны. Блок автоматики - размером с пятилитровую банку маринованных огурцов, а заряд - с обычное огородное ведро. Тяжелый и увесистый, союз банки и ведра взорвется килотонн на триста пятьдесят - четыреста. Два пассажира соединены между собой связью, как сиамские близнецы, и через эту связь постоянно чем-то обмениваются. Диалог их ведется все время, даже когда ракета стоит на боевом дежурстве, даже когда этих близнецов только везут с предприятия-производителя.

Есть и третий пассажир - блок измерения движения боеголовки или вообще управления ее полетом. В последнем случае в боеголовку встроены рабочие органы управления, позволяющие изменять траекторию. Например, исполнительные пневмосистемы или пороховые системы. А еще бортовая электросеть с источниками питания, линии связи со ступенью, в виде защищенных проводов и разъемов, защита от электромагнитного импульса и система термостатирования - поддержания нужной температуры заряда.

На фото - ступень разведения ракеты МХ (Peacekeeper) и десять боевых блоков. Эта ракета давно снята с вооружения, но боевые блоки и сейчас используются те же самые (и даже еще более старые). Баллистические ракеты с разделяющейся ГЧ у американцев установлены только на подводных лодках.

После покидания автобуса боеголовки продолжают набирать высоту и одновременно мчаться в сторону целей. Они поднимаются до высших точек своих траекторий, а потом, не замедляя горизонтального полета, начинают все быстрее скатываться вниз. На высоте ровно ста километров над уровнем моря каждая боеголовка пересекает формально назначенную человеком границу космического пространства. Впереди атмосфера!

Электрический ветер

Внизу перед боеголовкой раскинулся огромный, контрастно блестящий с грозных больших высот, затянутый голубой кислородной дымкой, подернутый аэрозольными взвесями, необозримый и безбрежный пятый океан. Медленно и еле заметно поворачиваясь от остаточных воздействий разделения, боеголовка по пологой траектории продолжает спуск. Но вот навстречу ей тихонько потянул очень необычный ветерок. Чуть тронул ее - и стал заметен, обтянул корпус тонкой, уходящей назад волной бледного бело-голубого свечения. Волна эта умопомрачительно высокотемпературная, но она пока не жжет боеголовку, так как слишком уж бесплотна. Ветерок, обдувающий боеголовку, - электропроводящий. Скорость конуса настолько высока, что он в буквальном смысле дробит своим ударом молекулы воздуха на электрически заряженные осколки, происходит ударная ионизация воздуха. Этот плазменный ветерок называется гиперзвуковым потоком больших чисел Маха, и его скорость в двадцать раз превосходит скорость звука.

Из-за большой разреженности ветерок в первые секунды почти незаметен. Нарастая и уплотняясь с углублением в атмосферу, он сперва больше греет, чем давит на боеголовку. Но постепенно начинает с силой обжимать ее конус. Поток разворачивает боеголовку носиком вперед. Разворачивает не сразу - конус слегка раскачивается туда-сюда, постепенно замедляя свои колебания, и наконец стабилизируется.

Жара на гиперзвуке

Уплотняясь по мере снижения, поток все сильнее давит на боеголовку, замедляя ее полет. С замедлением плавно снижается температура. От огромных значений начала входа, бело-голубого свечения десятка тысяч кельвинов, до желто-белого сияния пяти-шести тысяч градусов. Это температура поверхностных слоев Солнца. Сияние становится ослепительным, потому что плотность воздуха быстро растет, а с ней и тепловой поток в стенки боеголовки. Теплозащитное покрытие обугливается и начинает гореть.

Оно горит вовсе не от трения об воздух, как часто неверно говорят. Из-за огромной гиперзвуковой скорости движения (сейчас в пятнадцать раз быстрее звука) от вершины корпуса расходится в воздухе другой конус - ударно-волновой, как бы заключая в себе боеголовку. Набегающий воздух, попадая внутрь ударно-волнового конуса, мгновенно уплотняется во много раз и плотно прижимается к поверхности боеголовки. От скачкообразного, мгновенного и многократного сжатия его температура сразу подскакивает до нескольких тысяч градусов. Причина этого - сумасшедшая быстрота происходящего, запредельная динамичность процесса. Газодинамическое сжатие потока, а не трение - вот что сейчас прогревает боеголовке бока.

Хуже всего приходится носовой части. Там образуется наибольшее уплотнение встречного потока. Зона этого уплотнения слегка отходит вперед, как бы отсоединяясь от корпуса. И держится впереди, принимая форму толстой линзы или подушки. Такое образование называется «отсоединенная головная ударная волна». Она в несколько раз толще остальной поверхности ударно-волнового конуса вокруг боеголовки. Лобовое сжатие набегающего потока здесь самое сильное. Поэтому в отсоединенной головной ударной волне самая высокая температура и самая большая плотность тепла. Это маленькое солнце обжигает носовую часть боеголовки лучистым путем - высвечивая, излучая из себя тепло прямо в нос корпуса и вызывая сильное обгорание носовой части. Поэтому там самый толстый слой теплозащиты. Именно головная ударная волна освещает темной ночью местность на многие километры вокруг летящей в атмосфере боеголовки.

Бокам становится совсем несладко. Их сейчас тоже жарит нестерпимым сиянием из головной ударной волны. И обжигает раскаленный сжатый воздух, превратившийся в плазму от дробления его молекул. Впрочем, при столь высокой температуре воздух ионизируется и просто от нагрева - его молекулы распадаются на части от жары. Получается смесь ударно-ионизационной и температурной плазмы. Своим воздействием трения эта плазма шлифует горящую поверхность теплозащиты, словно песком или наждачной бумагой. Происходит газодинамическая эрозия, расходующая теплозащитное покрытие.

В это время боеголовка прошла верхнюю границу стратосферы - стратопаузу - и входит в стратосферу на высоте 55 км. Движется она сейчас с гиперзвуковой скоростью в десять-двенадцать раз быстрее звука.

Нечеловеческие перегрузки

Сильное обгорание изменяет геометрию носа. Поток, словно резцом скульптора, выжигает в носовом покрытии заостренный центральный выступ. Появляются и другие особенности поверхности из-за неравномерностей выгорания. Изменения формы приводят к изменениям обтекания. Это меняет распределение давлений сжатого воздуха на поверхности боеголовки и поля температур. Возникают вариации силового воздействия воздуха по сравнению с расчетным обтеканием, что порождает отклонение точки падения - формируется промах. Пусть и небольшой - допустим, двести метров, но по ракетной шахте врага небесный снаряд попадет с отклонением. Или не попадет вообще.

Кроме того, картина ударно-волновых поверхностей, головной волны, давлений и температур непрерывно меняется. Плавно снижается скорость, зато быстро растет плотность воздуха: конус проваливается все ниже в стратосферу. Из-за неравномерностей давлений и температур на поверхности боеголовки, из-за быстроты их изменений могут возникать тепловые удары. От теплозащитного покрытия они умеют откалывать кусочки и куски, что вносит новые изменения в картину обтекания. И увеличивает отклонение точки падения.

Одновременно боеголовка может входить в самопроизвольные частые раскачивания с изменением направления этих раскачиваний с «вверх-вниз» на «вправо-влево» и обратно. Эти автоколебания создают местные ускорения в разных частях боеголовки. Ускорения меняются по направлению и величине, усложняя картину воздействия, испытываемого боеголовкой. Она получает больше нагрузок, несимметричности ударных волн вокруг себя, неравномерности температурных полей и прочих маленьких прелестей, вмиг вырастающих в большие проблемы.

Но и этим набегающий поток себя не исчерпывает. Из-за столь мощного давления встречного сжатого воздуха боеголовка испытывает огромное тормозящее действие. Возникает большое отрицательное ускорение. Боеголовка со всеми внутренностями находится в быстро растущей перегрузке, а экранироваться от перегрузки невозможно.

Космонавты не испытывают таких перегрузок при снижении. Пилотируемый аппарат менее обтекаем и заполнен внутри не столь плотно, как боеголовка. Космонавты и не спешат спуститься побыстрее. Боеголовка же - это оружие. Она должна достичь цели как можно скорее, пока не сбили. Да и перехват ее тем труднее, чем быстрее она летит. Конус - фигура наилучшего сверхзвукового обтекания. Сохранив высокую скорость до нижних слоев атмосферы, боеголовка встречает там очень большое торможение. Вот зачем нужны прочные переборки и силовой каркас. И удобные «сиденья» для двух седоков - иначе сорвет с мест перегрузкой.

Диалог сиамских близнецов

Кстати, а что там с этими седоками? Пришло время вспомнить главных пассажиров, ибо они сидят сейчас отнюдь не пассивно, а проходят свой собственный сложный путь, и диалог их становится наиболее содержательным в эти самые мгновения.

Заряд при перевозке разобран на части. При установке в боеголовку его собирают, а устанавливая боеголовку в ракету, оснащают до полной боеготовой комплектации (вставляют импульсный нейтронный инициатор, снаряжают детонаторами и т. д.). Заряд готов к полету до цели на борту боеголовки, но пока еще не готов взорваться. Логика тут понятная: постоянная готовность заряда к взрыву не нужна и теоретически опасна.

В состояние готовности к взрыву (вблизи цели) его предстоит перевести сложными последовательными алгоритмами, базирующимися на двух принципах: надежность движения к взрыву и контроль над процессом. Система подрыва строго своевременно переводит заряд во все более высокие степени готовности. И когда в полностью готовый заряд придет из блока управления боевая команда на подрыв, взрыв произойдет немедленно, мгновенно. Боеголовка, летящая со скоростью снайперской пули, пройдет лишь пару сотых долей миллиметра, не успев сместиться в пространстве даже на толщину человеческого волоса, когда в ее заряде начнется, разовьется, полностью пройдет и уже завершится термоядерная реакция, выделив всю штатную мощность.

Финальная вспышка

Сильно изменившись и снаружи, и внутри, боеголовка прошла в тропосферу - последний десяток километров высоты. Она сильно затормозилась. Гиперзвуковой полет выродился до сверхзвука в три-четыре единицы Маха. Светит боеголовка уже тускло, угасает и подходит к точке цели.

Взрыв на поверхности Земли планируется редко - только для углубленных в землю объектов вроде ракетных шахт. Большинство целей лежит на поверхности. И для их наибольшего поражения подрыв производят на некоторой высоте, зависящей от мощности заряда. Для тактических двадцати килотонн это 400−600 м. Для стратегической мегатонны оптимальная высота взрыва - 1200 м. Почему? От взрыва по местности проходят две волны. Ближе к эпицентру взрывная волна обрушится раньше. Упадет и отразится, отскочив в стороны, где и сольется с только что дошедшей сюда сверху, из точки взрыва, свежей волной. Две волны - падающая из центра взрыва и отраженная от поверхности - складываются, образуя в приземном слое наиболее мощную ударную волну, главный фактор поражения.

При испытательных же пусках боеголовка обычно беспрепятственно достигает земли. На ее борту находится полцентнера взрывчатки, подрываемой при падении. Зачем? Во-первых, боеголовка - секретный объект и должна надежно уничтожаться после использования. Во-вторых, это необходимо для измерительных систем полигона - для оперативного обнаружения точки падения и измерения отклонений.

Многометровая дымящаяся воронка завершает картину. Но перед этим, за пару километров до удара, с испытательной боеголовки отстреливается наружу бронекассета запоминающего устройства с записью всего, что регистрировалось на борту во время полета. Эта бронефлешка подстрахует от потери бортовой информации. Ее найдут позже, когда прилетит вертолет со спецгруппой поиска. И зафиксируют результаты фантастического полета.

Первая межконтинентальная баллистическая ракета с ядерной БЧ

Первой в мире МБР с ядерной боеголовкой стала советская Р-7. Она несла один трехмегатонный боевой блок и могла поражать объекты на дальности до 11 000 км (модификация 7-А). Детище С.П. Королёва хоть и было принято на вооружение, но в качестве военной ракеты оказалось малоэффективным из-за невозможности находиться длительное время на боевом дежурстве без дополнительной заправки окислителем (жидким кислородом). Зато Р-7 (и ее многочисленные модификации) сыграла выдающуюся роль в деле освоения космоса.

Первая головная часть МБР с разделяемыми боеголовками

Первой в мире МБР с разделяющейся головной частью стала американская ракета LGM-30 Minuteman III, развертывание которой началось в 1970 году. По сравнению с предыдущей модификацией боевой блок W-56 был заменен тремя легкими боевыми блоками W-62, установленными на ступень разведения. Таким образом, ракета могла поразить три отдельные цели или сосредоточить все три боеголовки для удара по одной. В настоящее время на всех ракетах Minuteman III в рамках инициативы по разоружению оставлено лишь по одному боевому блоку.

Боеголовка с переменной мощностью

С начала 1960-х годов разрабатываются технологии создания термоядерных боеголовок с переменной мощностью. К таковым относится, например, боеголовка W80, которая устанавливалась, в частности, на ракету Tomahawk. Эти технологии создавались для термоядерных зарядов, построенных по схеме Теллера-Улама, где реакция деления ядер изотопов урана или плутония запускает реакцию слияния (то есть термоядерный взрыв). Изменение мощности происходило путем внесения поправок во взаимодействие двух этапов.

PS. Хочется еще добавить, что там, наверху, еще и отрабатывают свою задачу блоки постановки помех, выпускаются ложные цели, и вдобавок разгонные блоки и/или автобус подрываются после разведения, дабы увеличить число целей на радарах и перегрузить ПРО.

Вся громада межконтинентальной баллистической ракеты, десятки метров и тонн сверхпрочных сплавов, высокотехнологичного топлива и совершенной электроники нужны лишь для одного - доставить к месту назначения боеголовку: конус высотой метр-полтора и толщиной у основания с туловище человека.

Взглянем на некую типовую боеголовку (в реальности между боеголовками могут существовать конструктивные различия). Это конус из легких прочных сплавов. Внутри есть переборки, шпангоуты, силовой каркас — почти всё как в самолете. Силовой каркас покрыт прочной металлической обшивкой. На обшивку нанесен толстый слой теплозащитного покрытия. Это похоже на древнюю корзину эпохи неолита, щедро обмазанную глиной и обожженную в первых экспериментах человека с теплом и керамикой. Схожесть легко объяснима: и корзине, и боеголовке предстоит сопротивляться наружному жару.

Внутри конуса, закрепленные на своих «сиденьях», находятся два основных «пассажира», ради которых все и затеяно: термоядерный заряд и блок управления зарядом, или блок автоматики. Они поразительно компактны. Блок автоматики — размером с пятилитровую банку маринованных огурцов, а заряд — с обычное огородное ведро. Тяжелый и увесистый, союз банки и ведра взорвется килотонн на триста пятьдесят — четыреста. Два пассажира соединены между собой связью, как сиамские близнецы, и через эту связь постоянно чем-то обмениваются. Диалог их ведется все время, даже когда ракета стоит на боевом дежурстве, даже когда этих близнецов только везут с предприятия-производителя.

Есть и третий пассажир — блок измерения движения боеголовки или вообще управления ее полетом. В последнем случае в боеголовку встроены рабочие органы управления, позволяющие изменять траекторию. Например, исполнительные пневмосистемы или пороховые системы. А еще бортовая электросеть с источниками питания, линии связи со ступенью, в виде защищенных проводов и разъемов, защита от электромагнитного импульса и система термостатирования — поддержания нужной температуры заряда.

Технология, по которой боевые блоки отделяются от ракеты и ложатся на собственные курсы - отдельная большая тема, о которой можно писать книги.

Для начала объясним, что такое "просто боевой блок". Это устройство, в котором физически находится термоядерный заряд на борту межконтинентальной баллистической ракеты. В ракете есть так называемая головная часть, в которой могут находиться один, два и более боевых блоков. Если их несколько, головная часть называется разделяющейся головной частью (РГЧ).

Внутри РГЧ находится очень сложный агрегат (его еще называют платформой разведения), который после вывода ракетой-носителем за пределы атмосферы начинает выполнять целый ряд запрограммированных действий по индивидуальному наведению и отделению находящихся на нем боевых блоков; в пространстве выстраиваются боевые порядки из блоков и ложных целей, которые изначально тоже находятся на платформе. Таким образом, каждый блок выводится на траекторию, обеспечивающую попадание в заданную цель на поверхности Земли.

Боевые блоки бывают разные. Те, что движутся по баллистическим траекториям после отделения от платформы, называются неуправляемыми. Управляемые же боевые блоки после отделения начинают "жить своей жизнью". Они снабжены двигателями ориентации для осуществления маневров в космическом пространстве, аэродинамическими рулевыми поверхностями для управления полетом в атмосфере, у них на борту установлена инерциальная система управления, несколько вычислительных устройств, радиолокатор со своим собственным вычислителем… Ну и, разумеется, боевой заряд.

Практически управляемый боевой блок сочетает в себе свойства беспилотного космического корабля и гиперзвукового беспилотного самолета. Все действия как в космосе, так и во время полета в атмосфере, этот аппарат обязан выполнять автономно.

После отделения от платформы разведения боевой блок относительно долго летит на очень большой высоте — в космосе. В это время система управления блока осуществляет целую серию переориентаций, чтобы создать условия для точного определения собственных параметров движения, облегчения преодоления зоны возможных ядерных взрывов противоракет…
Перед вхождением в верхние слои атмосферы бортовой компьютер вычисляет необходимую ориентацию боевого блока и выполняет ее. Примерно в тот же период проходят сеансы определения фактического местоположения при помощи радиолокатора, для чего тоже нужно сделать ряд маневров. Затем антенна локатора отстреливается, и для боевого блока начинается атмосферный участок движения.

Внизу перед боеголовкой раскинулся огромный, контрастно блестящий с грозных больших высот, затянутый голубой кислородной дымкой, подернутый аэрозольными взвесями, необозримый и безбрежный пятый океан. Медленно и еле заметно поворачиваясь от остаточных воздействий разделения, боеголовка по пологой траектории продолжает спуск. Но вот навстречу ей тихонько потянул очень необычный ветерок. Чуть тронул ее — и стал заметен, обтянул корпус тонкой, уходящей назад волной бледного бело-голубого свечения. Волна эта умопомрачительно высокотемпературная, но она пока не жжет боеголовку, так как слишком уж бесплотна. Ветерок, обдувающий боеголовку, — электропроводящий. Скорость конуса настолько высока, что он в буквальном смысле дробит своим ударом молекулы воздуха на электрически заряженные осколки, происходит ударная ионизация воздуха. Этот плазменный ветерок называется гиперзвуковым потоком больших чисел Маха, и его скорость в двадцать раз превосходит скорость звука.

Из-за большой разреженности ветерок в первые секунды почти незаметен. Нарастая и уплотняясь с углублением в атмосферу, он сперва больше греет, чем давит на боеголовку. Но постепенно начинает с силой обжимать ее конус. Поток разворачивает боеголовку носиком вперед. Разворачивает не сразу — конус слегка раскачивается туда-сюда, постепенно замедляя свои колебания, и наконец стабилизируется.

Уплотняясь по мере снижения, поток все сильнее давит на боеголовку, замедляя ее полет. С замедлением плавно снижается температура. От огромных значений начала входа, бело-голубого свечения десятка тысяч кельвинов, до желто-белого сияния пяти-шести тысяч градусов. Это температура поверхностных слоев Солнца. Сияние становится ослепительным, потому что плотность воздуха быстро растет, а с ней и тепловой поток в стенки боеголовки. Теплозащитное покрытие обугливается и начинает гореть.

Оно горит вовсе не от трения об воздух, как часто неверно говорят. Из-за огромной гиперзвуковой скорости движения (сейчас в пятнадцать раз быстрее звука) от вершины корпуса расходится в воздухе другой конус — ударно-волновой, как бы заключая в себе боеголовку. Набегающий воздух, попадая внутрь ударно-волнового конуса, мгновенно уплотняется во много раз и плотно прижимается к поверхности боеголовки. От скачкообразного, мгновенного и многократного сжатия его температура сразу подскакивает до нескольких тысяч градусов. Причина этого — сумасшедшая быстрота происходящего, запредельная динамичность процесса. Газодинамическое сжатие потока, а не трение — вот что сейчас прогревает боеголовке бока.

Хуже всего приходится носовой части. Там образуется наибольшее уплотнение встречного потока. Зона этого уплотнения слегка отходит вперед, как бы отсоединяясь от корпуса. И держится впереди, принимая форму толстой линзы или подушки. Такое образование называется «отсоединенная головная ударная волна». Она в несколько раз толще остальной поверхности ударно-волнового конуса вокруг боеголовки. Лобовое сжатие набегающего потока здесь самое сильное. Поэтому в отсоединенной головной ударной волне самая высокая температура и самая большая плотность тепла. Это маленькое солнце обжигает носовую часть боеголовки лучистым путем — высвечивая, излучая из себя тепло прямо в нос корпуса и вызывая сильное обгорание носовой части. Поэтому там самый толстый слой теплозащиты. Именно головная ударная волна освещает темной ночью местность на многие километры вокруг летящей в атмосфере боеголовки.

Связанные одной целью

Термоядерный заряд и блок управления непрерывно общаются друг с другом. "Диалог" этот начинается сразу после установки боеголовки на ракету, а завершается он в момент ядерного взрыва. Все это время система управления готовит заряд к срабатыванию, как тренер - боксера к ответственному поединку. И в нужный момент отдает последнюю и самую главную команду.

При постановке ракеты на боевое дежурство ее заряд оснащают до полной комплектации: устанавливают импульсный нейтронный активатор, детонаторы и другое оборудование. Но к взрыву он еще не готов. Десятилетиями держать в шахте или на мобильной пусковой установке ядерную ракету, готовую рвануть в любой момент, попросту опасно.

Поэтому во время полета система управления переводит заряд в состояние готовности к взрыву. Происходит это постепенно, сложными последовательными алгоритмами, базирующимися на двух основных условиях: надежность движения к цели и контроль над процессом. Стоит одному из этих факторов отклониться от расчетных значений и подготовка будет прекращена. Электроника переводит заряд во все более высокую степень готовности, чтобы в расчетной точке дать команду на срабатывание.

И когда в полностью готовый заряд придет из блока управления боевая команда на подрыв, взрыв произойдет немедленно, мгновенно. Боеголовка, летящая со скоростью снайперской пули, пройдет лишь пару сотых долей миллиметра, не успев сместиться в пространстве даже на толщину человеческого волоса, когда в ее заряде начнется, разовьется, полностью пройдет и уже завершится термоядерная реакция, выделив всю штатную мощность.
Взрыв на поверхности Земли планируется редко — только для углубленных в землю объектов вроде ракетных шахт. Большинство целей лежит на поверхности. И для их наибольшего поражения подрыв производят на некоторой высоте, зависящей от мощности заряда. Для тактических двадцати килотонн это 400−600 м. Для стратегической мегатонны оптимальная высота взрыва — 1200 м. Почему? От взрыва по местности проходят две волны. Ближе к эпицентру взрывная волна обрушится раньше. Упадет и отразится, отскочив в стороны, где и сольется с только что дошедшей сюда сверху, из точки взрыва, свежей волной. Две волны — падающая из центра взрыва и отраженная от поверхности — складываются, образуя в приземном слое наиболее мощную ударную волну, главный фактор поражения.

При испытательных же пусках боеголовка обычно беспрепятственно достигает земли. На ее борту находится полцентнера взрывчатки, подрываемой при падении. Зачем? Во-первых, боеголовка — секретный объект и должна надежно уничтожаться после использования. Во-вторых, это необходимо для измерительных систем полигона — для оперативного обнаружения точки падения и измерения отклонений.

Многометровая дымящаяся воронка завершает картину. Но перед этим, за пару километров до удара, с испытательной боеголовки отстреливается наружу бронекассета запоминающего устройства с записью всего, что регистрировалось на борту во время полета. Эта бронефлешка подстрахует от потери бортовой информации. Ее найдут позже, когда прилетит вертолет со спецгруппой поиска. И зафиксируют результаты фантастического полета.

Атомное оружие – устройство, получающее огромную взрывную мощность от реакций ДЕЛЕНИЯ АТОМНОГО ЯДРА и ЯДЕРНОГО СИНТЕЗА.

Об Атомном оружиии

Атомное оружие – самое мощное оружие на сегодняшний день, находящееся на вооружении пяти стран: России, США, Великобритании, Франции и Китая. Существует также ряд государств, которые ведут более-менее успешные разработки атомного оружия, однако их исследования или не закончены, или эти страны не обладают необходимыми средствами доставки оружия к цели. Индия, Пакистан, Северная Корея, Ирак, Иран имеют разработки ядерного оружия на разных уровнях, ФРГ, Израиль, ЮАР и Япония теоретически обладают необходимыми мощностями для создания ядерного оружия в сравнительно короткие сроки.

Трудно переоценить роль ядерного оружия. С одной стороны, это мощное средство устрашения, с другой – самый эффективный инструмент укрепления мира и предотвращения военного конфликтами между державами, которые обладают этим оружием. С момента первого применения атомной бомбы в Хиросиме прошло 52 года. Мировое сообщество близко подошло к осознанию того, что ядерная война неминуемо приведет к глобальной экологической катастрофе, которая сделает дальнейшее существование человечества невозможным. В течение многих лет создавались правовые механизмы, призванные разрядить напряженность и ослабить противостояние между ядерными державами. Так например, было подписано множество договоров о сокращении ядерного потенциала держав, была подписана Конвенция о Нераспространении Ядерного Оружия, по которой страны-обладателя обязались не передавать технологии производства этого оружия другим странам, а страны, не имеющие ядерного оружия, обязались не предпринимать шагов для его разработки; наконец, совсем недавно сверхдержавы договорились о полном запрещении ядерных испытаний. Очевидно, что ядерное оружие является важнейшим инструментом, который стал регулирующим символом целой эпохи в истории международных отношений и в истории человечества.

Атомное оружие

АТОМНОЕ ОРУЖИЕ, устройство, получающее огромную взрывную мощность от реакций ДЕЛЕНИЯ АТОМНОГО ЯДРА и ЯДЕРНОГО СИНТЕЗА. Первое ядерное оружие было применено Соединенными Штатами против японских городов Хиросимы и Нагасаки в августе 1945 г. Эти атомные бомбы состояли из двух стабильных доктритических масс УРАНА и ПЛУТОНИЯ, которые при сильном сталкивании вызвали превышение КРИТИЧЕСКОЙ МАССЫ, тем самым провоцируя бесконтрольную ЦЕПНУЮ РЕАКЦИЮ деления атомных ядер. При таких взрывах высвобождается огромное количество энергии и губительной радиации: взрывная мощность может равняться мощности 200 000 тонн тринитротолуола. Гораздо более мощная водородная бомба (термоядерная бомба), впервые испытанная в 1952 г., состоит из атомной бомбы, которая во время взрыва создает температуру, достаточно высокую для того, чтобы вызвать ядерный синтез в близлежащем твердом слое, обычно - в детеррите лития. Взрывная мощность может равняться мощности нескольких миллионов тонн (мегатонн) тринитротолуола. Площадь поражения, вызванного такими бомбами, достигает больших размеров: 15 мегатонная бомба взорвет все горящие вещества в пределах 20 км. Третий тип ядерного оружия, нейтронная бомба, является небольшой водородной бомбой, называемой также оружием повышенной радиации. Она вызывает слабый взрыв, который, однако, сопровождается интенсивным выбросом высокоскоростных НЕЙТРОНОВ. Слабость взрыв означает то, что здания повреждаются не сильно. Нейтроны же вызывают серьезную лучевую болезнь у людей, находящихся в пределах определенного радиуса от места взрыва, и убивают всех пораженных в течении недели.

Вначале взрыв атомной бомбы (А) образует огненный шар (1) с температурой и миллионы градусов по Цельсию и испускает радиационное излучение (?) Через несколько минут (В) шар увеличивается в обьеме и создав!ударную волну с высоким давлением (3). Огненный шар поднимается (С), всасывая пыль и обломки, и образует грибовидное облако (D), По мере увеличения в обьеме огненный шар создает мощное конвекционное течение (4), выделяя горячее излучение (5) и образуя облако (6), При взрыве 15 мегатонной бомбы разрушение от взрывной волны являются полным (7) в радиусе 8 км, серьезными (8) в радиусе 15км и заметными (Я) в радиусе 30 км Даже на расстоянии 20 км (10) взрываются все легковоспламеняющиеся вещества, В течение двух дней после взрыва бомбы на расстоянии 300 км от взрыва продолжается выпадение осадков с радиоактивной дозой в 300 рентген Прилагаемая фотография показывает, как взрыв крупного ядерного оружия на земле создает огромное грибовидное облако радиоактивной пыли и обломков, которое может достигать высоты нескольких километров. Опасная пыль, находящаяся в воздухе, свободно переносится затем преобладающими ветрами в любом направлении Опустошение покрывает огромную территорию.

Современные атомные бомбы и снаряды

Радиус действия

В зависимости от мощности атомного заряда атомные бомбы,снаряды делят на калибры:малый,средний и крупный . Чтобы получить энергию, равную энергии взрыва атомной бомбы малого калибра, нужно взорвать несколько тысяч тонн тротила. Тротиловый эквивалент атомной бомбы среднего калибра составляет десятки тысяч, а бомбы крупного калибра – сотни тысяч тонн тротила. Еще большей мощностью может обладать термоядерное (водородное) оружие, его тротиловый эквивалент может достигать миллионов и даже десятков миллионов тонн. Атомные бомбы, тротиловый эквивалент которых равен 1- 50 тыс. т,относят к классу тактических атомных бомб и предназначают для решения оперативно-тактических задач. К тактическому оружию относят также: артиллерийские снаряды с атомным зарядом мощность 10 – 15 тыс. т. и атомные заряды (мощностью около 5 – 20 тыс. т) для зенитных управляемых снарядов и снарядов, используемых для вооружения истребителей. Атомные и водородные бомбы мощностью свыше 50 тыс. т относят к классу стратегического оружия.

Нужно отметить,что подобная классификация атомного оружия является лишь условной, поскольку в действительности последствие применения тактического атомного оружия могут быть не меньшими, чем те, которые испытало на себе население Хиросимы и Нагасаки, а даже большими. Сейчас очевидно, что взрыв только одной водородной бомбы способен вызвать такие тяжелые последствия на огромных территориях, каких не несли с собой десятки тысяч снарядов и бомб, применявшихся в прошлых мировых войнах. А нескольких водородных бомб вполне достаточно, чтобы превратить в зону пустыни огромные территории.

Ядерное оружие подразделяется на 2 основных типа: атомное и водородное (термоядерное). В атомном оружии выделение энергии происходит за счет реакции деления ядер атомов тяжелых элементов урана или плутония. В водородном оружии энергия выделяется в результате образования (или синтеза) ядер атомов гелия из атомов водорода.

Термоядерное оружие

Современное термоядерное оружие относится к стратегическому оружию, которое может применяться авиацией для разрушения в тылу противника важнейших промышленных, военных объектов, крупных городов как цивилизационных центров. Наиболее известным типом термоядерного оружия являются термоядерные (водородные) бомбы, которые могут доставляться к цели самолетами. Термоядерными зарядами могут начиняться также боевые части ракет различного назначения, в том числе межконтинентальных баллистических ракет. Впервые подобная ракета была испытана в СССР еще в 1957 году, в настоящее время на вооружения Ракетных Войск Стратегического Назначения состоят ракеты нескольких типов, базирующиеся на мобильных пусковых установках, в шахтных пусковых установках, на подводных лодках.

Атомная бомба

В основе действия термоядерного оружия лежит использование термоядерной реакции с водородом или его соединениями. В этих реакциях, протекающих при сверхвысоких температурах и давлении, энергия выделяется за счет образования ядер гелия из ядер водорода, или из ядер водорода и лития. Для образования гелия используется, в основном, тяжелый водород – дейтерий, ядра которого имеют необычную структуру – один протон и один нейтрон. При нагревании дейтерия до температур в несколько десятков миллионов градусов его атому теряют свои электронные оболочки при первых же столкновениях с другими атомами. В результате этого среда оказывается состоящей лишь из протонов и движущихся независимо от них электронов. Скорость теплового движения частиц достигает таких величин, что ядра дейтерия могут сближаться и благодаря действию мощных ядерных сил соединяться друг с другом, образуя ядра гелия. Результатом этого процесса и становится выделения энергии.

Принципиальная схема водородной бомбы такова. Дейтерий и тритий в жидком состоянии помещаются в резервуар с теплонепроницаемой оболочкой, которая служит для длительного сохранения дейтерия и трития в сильно охлажденном состоянии (для поддержания из жидкостного агрегатного состояния). Теплонепроницаемая оболочка может содержать 3 слоя, состоящих из твердого сплава, твердой углекислоты и жидкого азота. Вблизи резервуара с изотопами водорода помещается атомный заряд. При подрыве атомного заряда изотопы водорода нагреваются до высоких температур, создаются условия для протекания термоядерной реакции и взрыва водородной бомбы. Однако, в процессе создания водородных бомб было установлено, что непрактично использовать изотопы водорода, так как в таком случае бомба приобретает слишком большой вес (более 60 т.), из-за чего нельзя было и думать об использовании таких зарядов на стратегических бомбардировщиках, а уж тем более в баллистических ракетах любой дальности. Второй проблемой, с которой столкнулись разработчики водородной бомбы была радиоактивность трития, которая делала невозможным его длительное хранение.

В ходе исследования 2 вышеуказанные проблемы были решены. Жидкие изотопы водорода были заменены твердым химическим соединением дейтерия с литием-6. Это позволило значительно уменьшить размеры и вес водородной бомбы. Кроме того, гидрид лития был использован вместо трития, что позволило размещать термоядерные заряды на истребителях бомбардировщиках и баллистических ракетах.

Создание водородной бомбы не стало концом развития термоядерного оружия, появлялись все новые и новые его образцы, была создана водородно- урановая бомба, а также некоторые ее разновидности – сверхмощные и, наоборот, малокалиберные бомбы. Последним этапом совершенствования термоядерного оружия стало создания так называемой «чистой» водородной бомбы.

Водородная бомба

Первые разработки этой модификации термоядерной бомбы появились еще в 1957 году, на волне пропагандистских заявлений США о создании некоего «гуманного» термоядерного оружия, которое не несет столько вреда для будущих поколений, сколько обычная термоядерная бомба. В претензиях на «гуманность» была доля истины. Хотя разрушительная сила бомбы не была меньшей, в то же время она могла быть взорвана так, чтобы не распространялся стронций-90, который при обычном водородном взрыве в течение длительного времени отравляем земную атмосферу. Все, что находится в радиусе действия подобной бомбы, будет уничтожено, однако опасность для живых организмов, которые удалены от взрыва, а также для будущих поколений, уменьшится. Однако данные утверждения были опровергнуты учеными, которые напомнили, что при взрывах атомных или водородных бомб образуется большое количество радиоактивной пыли, которая поднимается мощным потоком воздуха на высоту до 30 км, а потом постепенно оседает на землю на большой площади, заражая её. Исследования, проведенные учеными, показывают, что понадобится от 4 до 7 лет, чтобы половина этой пыли выпала на землю.

Видео

6-го августа 1945 первое ядерное оружие было использовано против японского города Хиросима. Три дня спустя город Нагасаки был подвергнут второму удару, и в настоящее время - последнему в истории человечества. Эти бомбежки попытались оправдать тем, что они прекратили войну с Японией и предотвратили дальнейшие потери миллионов жизней. В общей сложности, две бомбы убили приблизительно 240,000 человек и провозгласили начало новой, атомной эры. С 1945 года до краха Советского Союза в 1991, мир перенес холодную войну и постоянное ожидание возможного ядерного удара между Соединенными Штатами и Советским Союзом. В это время стороны построили тысячи единиц ядерного оружия, от маленьких бомб и крылатых ракет, к крупным межконтинентальным баллистическим боеголовкам (ICBM) и Морских баллистических ракет (SLBM). Великобритания, Франция и Китай добавили к этому запасу вооружения свои собственные ядерные арсеналы. Сегодня, страх перед ядерным уничтожением значительно меньше, чем в 1970-х, но несколько стран все еще обладают большим арсеналом этого разрушительного оружия.

Несмотря на соглашения, нацеленные на ограничение числа ракет, ядерные державы продолжают развивать и улучшать их запасы и способы доставки. Успехи в разработке систем противоракетной защиты заставил некоторые страны увеличивать развитие новых и более эффективных ракет. Появилась угроза новой гонки вооружений между мировыми супердержавами. Этот список содержит десять самых разрушительных ядерных ракетных систем, находящихся в настоящее время на обслуживании в мире. Точность, диапазон, число боеголовок, мощность боеголовки и подвижность - факторы, которые делают эти системы настолько разрушительными и опасными. Этот список представлен без определенного порядка, потому что эти ядерные ракеты не всегда разделяют ту же самую задачу или цель. Одна ракета может быть разработана, чтобы разрушить город, в то время как другой тип может быть разработан, чтобы разрушить вражеские ракетные бункеры. Кроме того, этот список не включает ракеты, в настоящее время испытываемые, или не официально развернутые. Таким образом, ракетные системы Agni-V в Индии и JL-2 в Китае, тестируемые шаг за шагом и готовые к эксплуатации в этом году, не включены. Иерихон III Израиля также не учтен, поскольку об этой ракете вообще мало что известно. Важно иметь в виду, читая этот список, что размер бомб Хиросимы и Нагасаки был эквивалентен 16 килотоннам (x1000) и 21 килотонне TNT соответственно.

M51, Франция

После Соединенных Штатов и России, Франция развертывает третий по величине ядерный арсенал в мире. В дополнение к ядерным бомбам и крылатым ракетам, Франция полагается на свои SLBM, как основное ядерное средство устрашения. Ракета M51 - самый современный компонент. Она поступила в эксплуатацию в 2010 и в настоящее время устанавливается на классе субмарин Triomphant. Ракета имеет диапазон приблизительно 10,000 км и способна к переносу 6 - 10 боеголовок на 100 кт. Круговое вероятное отклонение (CEP) ракеты отмечено между 150 и 200 метрами. Это значит, что у боеголовки есть 50%-я вероятность нанесения удара в пределах 150-200 метров от цели. M51 оснащена множеством систем, которые существенно усложняют попытки перехвата боеголовок.

DF-31/31A, Китай

Dong Feng 31 является дорожно-мобильной и бункерной межконтинентальной системой серии МБР, развернутой Китаем с 2006. Оригинальная модель этой ракеты несла большую боеголовку на 1 мегатонну и имела диапазон 8,000 км. Вероятное отклонение ракеты - 300 м. Улучшенный 31 А имеет три боеголовки на 150 кт и способен преодолеть расстояние в 11,000 км, с вероятным отклонением в 150 м. Дополнительный факт, что эти ракеты могут быть перемещены и запущены с мобильного ракето-носителя, что делает их еще более опасными.

Тополь-М, Россия

Известный как SS-27 по классификации НАТО, Тополь-М был введен в использование Россией в 1997 году. Межконтинентальная ракета базируется в бункерах, но несколько Тополей также мобильны. В настоящее время ракета вооружена единственной боеголовкой на 800 кт, но может быть оборудована максимум шестью боеголовками и ложными целями. С максимальной скоростью 7.3 км в секунду, относительно плоской траекторией полета и вероятным отклонением приблизительно в 200 м, Тополь-М - очень эффективная ядерная ракета, которую трудно остановить в полете. Трудность прослеживания мобильных единиц делает его более эффективной системой оружия, достойной этого списка.

РС-24 Ярс, Россия

Планы Администрации Буша развить сеть противоракетной обороны в Восточной Европе разозлили лидеров в Кремле. Несмотря на заявление, что экран для защиты от внешних ударных воздействий предназначается не против России, российские лидеры рассмотрели его, как угрозу собственной безопасности и решили разработать новую баллистическую ракету. Результатом было развитие РС-24 Ярс. Эта ракета тесно связана с Тополь-М, но доставляет четыре боеголовки на 150-300 килотонн и имеет отклонение в 50 м. Обладая многими особенностями Тополя, Ярс может также изменить направление в полете и несет ложные цели, что делает перехват системой противоракетной обороны чрезвычайно трудным.

LGM-30G Minuteman III, США

Это единственная наземная МБР, развернутая США. Впервые развернутый в 1970, LGM-30G Minuteman III должен был быть заменен на MX Peacekeeper. Та программа была отменена, и Пентагон вместо этого потратил $7 миллиардов на обновление и модернизацию существующих 450 Активных систем LGM-30G за прошлое десятилетие. Со скоростью почти 8 км/с и отклонением менее чем 200 м (точное число строго засекречено) старый Minuteman остается грозным ядерным оружием. Первоначально эта ракета доставляла три маленьких боеголовки. Сегодня же, используется единственная боеголовка в 300-475 кт.

РСМ 56 Булава, Россия

Морская баллистическая ракета РСМ 56 Булава находится на вооружении у России. С точки зрения морских ракет Советский Союз и Россия несколько отстали от Соединенных Штатов в эффективности работы и способностях. Чтобы исправить этот недочет, была создана Булава - более свежее дополнение к российскому подводному арсеналу. Ракета была разработана для новой субмарины Борей-класса. После многочисленных неудач во время фазы тестирования, Россия приняла ракету на службу в 2013. Булава в настоящее время оснащается шестью боеголовками на 150 кт, хотя в сообщениях говорится, что она может нести целых 10. Как и большинство современных баллистических ракет, РСМ 56 несет несколько ложных целей, чтобы повысить жизнеспособность перед лицом системы противоракетной обороны. Диапазон составляет приблизительно 8,000 км при полной загрузке, с примерной вероятности отклонения в 300-350 метров.

Р-29РМУ2 Лайнер, Россия

Новейшая разработка в российском вооружении, Лайнер был введен в эксплуатацию с 2014. Ракета - эффективно обновленная версия предыдущей российской БРПЛ (Синева Р-29РМУ2), разработанная, чтобы восполнить проблемы и некоторые недочеты Булавы. Лайнер имеет диапазон 11,000 км и может нести максимум двенадцать боеголовок по 100 кт каждая. Груз боеголовки может быть уменьшен и заменен ложными целями, чтобы улучшить жизнеспособность. Отклонение боеголовки держится в секрете, но, вероятно, схоже с 350 метрами Булавы.

UGM-133 Trident II, США

Текущая БРПЛ американских и британских подводных сил - Трайдент II. Ракета была введена в эксплуатацию с 1990 и была обновлена и модернизирована с тех пор. Полностью оборудованный, Трайдент может нести 14 боеголовок на борту. Позже это число уменьшили, и ракета в настоящее время доставляет 4-5 боеголовок на 475 кт. Максимальный диапазон зависит от груза боеголовок и варьируется между 7800 и 11,000 км. ВМС США потребовали вероятность отклонения не более 120 метров, чтобы ракета была принята на службу. Многочисленные отчеты и военные журналы часто заявляют, что на самом деле отклонение Трайдента превысило это требование на довольно значительный показатель.

DF-5/5A, Китай

По сравнению с другими ракетами в этом списке, китайский DF-5/5A можно считать серой рабочей лошадкой. Ракета не выделяется ни внешностью, ни сложностью, но при этом способна выполнить любую поставленную задачу. DF-5 поступила в эксплуатацию в 1981, как сообщение любым потенциальным врагам, что Китай не планирует превентивных ударов, но накажет любого, кто решится напасть на него. Эта МБР может нести огромную боеголовку на 5 мт и имеет диапазон более чем 12,000 км. У DF-5 отклонение приблизительно в 1 км, что означает, что у ракеты одна цель – уничтожать города. Размер боеголовки, отклонение и факт, что на её полную подготовку к запуску требуется всего час, все это означают, что DF-5 - карательное оружие, предназначенное для наказания любых потенциальных нападающих. Версия 5A имеет увеличенный диапазон, улучшение отклонения на 300 м и способность нести несколько боеголовок.

Р-36М2 «Воевода»

Р-36М2 «Воевода» - ракета, которую на Западе называют не иначе, как Сатана и на это есть весомые причины. Впервые развернутый в 1974, разработанный в Днепропетровске комплекс Р-36 прошел с тех пор много изменений, включая перенос боеголовки. Последняя модификация этой ракеты, Р-36M2 может нести десять боеголовок на 750 кт и имеет диапазон приблизительно 11,000 км. С максимальной скоростью почти 8 км/с и вероятным отклонением в 220 м, Сатана - оружие, которое вызвало большое беспокойство американских военных планировщиков. Беспокойства было бы гораздо больше, если бы советским планировщикам дали зеленый свет, чтобы развернуть одну версию этой ракеты, у которой должно было быть 38 боеголовок на 250 кт. Россия планирует снять с использования все эти ракеты к 2019.


В продолжение, посетите подборку самого мощного оружия в истории, где собраны не только ракеты.