Устройство динамометров - приборов для определения сил - основано на том, что упругая деформация прямо пропорциональна силе, вызывающей эту деформацию. Примером сказанного служит всем известный пружинный безмен.

Связь между упругими деформациями и внутренними силами в материале впервые была установлена английским ученым Р. Гуком. В настоящее время закон Гука формулируется следующим образом: механическое напряжение в упруго деформированном теле прямо пропорционально относительной деформации этого телах

Величина характеризующая зависимость механического напряжения в материале от рода последнего и от внешних условий, называется модулем упругости. Модуль упругости измеряется механическим напряжением, которое должно возникнуть в материале при относительной упругой деформации, равной единице.

Отметим, что относительная упругая деформация обычно выражается числом, много меньшим единицы. За редким исключением, получить равное единице, практически невозможно, так как материал задолго до этого разрушается. Однако модуль упругости можно найти из опыта как отношение и при малом так как в формуле (11.5) - величина постоянная.

Единицей модуля упругости в СИ является 1 Па. (Докажите это.)

Рассмотрим в качестве примера применение закона Гука к деформации одностороннего растяжения или сжатия. Формула (11.5) для этого случая принимает вид

где Е обозначает модуль упругости для этого вида деформации; его называют модулем Юнга. Модуль Юнга измеряется нормальным напряжением, которое должно возникнуть в материале

при относительной деформации, равной единице, т. е. при увеличении длины образца вдвое Числовое значение модуля Юнга определяют из опытов, проведенных в пределах упругой деформации, и при расчетах берут из таблиц.

Поскольку из (11.6) получаем откуда

Таким образом, абсолютная деформация при продольном растяжении или сжатии прямо пропорциональна действующей на тело силе и длине тела, обратно пропорциональна площади поперечного сечения тела и зависит от рода вещества.

Наибольшее напряжение в материале, после исчезновения которого форма и объем тела восстанавливаются, называется пределом упругости. Формулы (11.5) и (11.7) справедливы, пока не перейден предел упругости. При достижении предела упругости в теле возникают пластические деформации. В этом случае может наступить момент, когда при одной и той же нагрузке деформация начнет возрастать и материал разрушается. Нагрузку, при которой в материале возникает наибольшее возможное механическое напряжение, называют разрушающей.

При постройке машин и сооружений всегда создают запас прочности. Запасом прочности называется величина, показывающая, во сколько раз фактическая максимальная нагрузка в самом напряженном месте конструкции меньше, чем разрушающая нагрузка.

Силовые факторы и деформации, возникающие в брусе, тесно связаны между собой. Эта связь между нагрузкой и деформацией была сформулирована впервые Робертом Гуком в 1678 году. При растяжении или сжатии бруса закон Гука выражает прямую пропорциональность между напряжением и относительной деформацией, где Е модуль продольной упругости материала или модуль Юнга, который имеет размерность [МПа]:

Коэффициент пропорциональности Е характеризует сопротивляемость материала бруса продольным деформациям. Величина модуля упругости устанавливается экспериментально. Значения Е для различных материалов приведены в таблице 7.1.

Для однородных и изотропных материалов Е – const, тогда и напряжение тоже величина постоянная.

Как показано ранее, при растяжении (сжатии) нормальные напряжения определяются из соотношения

а относительная деформация – по формуле (7.1). Подставляя значения величин из формул (7.5) и (7.1) в выражение закона Гука (7.4), получаем

отсюда находим– удлинение (укорочение), получаемое брусом.

Величина ЕA , стоящая в знаменателе, называется жесткостью сечения при растяжении (сжатии). Если брус состоит из нескольких участков, то полная его деформация определится как алгебраическая сумма деформаций отдельных i -x участков:

Для определения деформации бруса в каждом его сечении строят эпюры продольных деформаций (эпюра).

Т а б л и ц а 7.2 – Значения модулей упругости для различных материалов

Конец работы -

Эта тема принадлежит разделу:

Прикладная механика

Белорусский государственный университет транспорта.. кафедра техническая физика и теоретическая механика..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Действие внешних сил на твердое тело приводит к возникновению в точках его объема напряжений и деформаций. При этом напряженное состояние в точке, связь между напряжениями на различных площадках, проходящих через эту точку, определяются уравнениями статики и не зависят от физических свойств материала. Деформированное состояние, связь между перемещениями и деформациями устанавливаются с привлечением геометрических или кинематических соображений и также не зависят от свойств материала. Для того чтобы установить связь между напряжениями и деформациями, необходимо учитывать реальные свойства материала и условия нагружения. Математические модели, описывающие соотношения между напряжениями и деформациями, разрабатываются на основе экспериментальных данных. Эти модели должны с достаточной степенью точности отражать реальные свойства материалов и условия нагружения.

Наиболее распространенными для конструкционных материалов являются модели упругости и пластичности. Упругость — это свойство тела изменять форму и размеры под действием внешних нагрузок и восстанавливать исходную конфигурацию при снятии нагрузок. Математически свойство упругости выражается в установлении взаимно однозначной функциональной зависимости между.компонентами тензора напряжений и тензора деформаций. Свойство упругости отражает не только свойства материалов, но и условия нагружения. Для большинства конструкционных материалов свойство упругости проявляется при умеренных значениях внешних сил, приводящих к малым деформациям, и при малых скоростях нагружения, когда потери энергии за счет температурных эффектов пренебрежимо малы. Материал называется линейно-упругим, если компоненты тензора напряжений и тензора деформаций связаны линейными соотношениями.

При высоких уровнях нагружения, когда в теле возникают значительные деформации, материал частично теряет упругие свойства: при разгрузке его первоначальные размеры и форма полностью не восстанавливаются, а при полном снятии внешних нагрузок фиксируются остаточные деформации. В этом случае зависимость между напряжениями и деформациями перестает быть однозначной. Это свойство материала называется пластичностью. Накапливаемые в процессе пластического деформирования остаточные деформации называются пластическими.

Высокий уровень нагружения может вызвать разрушение, т. е. разделение тела на части. Твердые тела, выполненные из различных материалов, разрушаются при разной величине деформации. Разрушение носит хрупкий характер при малых деформациях и происходит, как правило, без заметных пластических деформаций. Такое разрушение характерно для чугуна, легированных сталей, бетона, стекла, керамики и некоторых других конструкционных материалов. Для малоуглеродистых сталей, цветных металлов, пластмасс характерен пластический тип разрушения при наличии значительных остаточных деформаций. Однако подразделение материалов по характеру разрушения на хрупкие и пластичные весьма условно, оно обычно относится к некоторым стандартным условиям эксплуатации. Один и тот же материал может вести себя в зависимости от условий (температура, характер нагружены я, технология изготовления и др.) как хрупкий или как пластичный. Например, пластичные при нормальной температуре материалы разрушаются как хрупкие при низких температурах. Поэтому правильнее говорить не о хрупких и пластичных материалах, а о хрупком или пластическом состоянии материала.

Пусть материал является линейно-упругим и изотропным. Рассмотрим элементарный объем, находящийся в условиях одноосного напряженного состояния (рис. 1), так что тензор напряжений имеет вид

При таком нагружении происходит увеличение размеров в направлении оси Ох, характеризуемое линейной деформацией , которая пропорциональна величине напряжения


Рис.1. Одноосное напряженное состояние

Это соотношение является математической записью закона Гука, устанавливающего пропорциональную зависимость между напряжением и соответствующей линейной деформацией при одноосном напряженном состоянии. Коэффициент пропорциональности E называется модулем продольной упругости или модулем Юнга. Он имеет размерность напряжений.

Наряду с увеличением размеров в направлении действия; же напряжения происходит уменьшение размеров в двух ортогональных направлениях (рис. 1). Соответствующие деформации обозначим через и , причем эти деформации отрицательны при положительных и пропорциональны :

При одновременном действии напряжений по трем ортогональным осям, когда отсутствуют касательные напряжения, для линейно-упругого материала справедлив принцип суперпозиции (наложения решений):

С учетом формул (1 — 4) получим

Касательные напряжения вызывают угловые деформации, причем при малых деформациях они не влияют на изменение линейных размеров, и следовательно, на линейные деформации. Поэтому они справедливы также в случае произвольного напряженного состояния и выражают так называемый обобщенный закон Гука.

Угловая деформация обусловлена касательным напряжением , а деформации и — соответственно напряжениями и . Между соответствующими касательными напряжениями и угловыми деформациями для линейно-упругого изотропного тела существуют пропорциональные зависимости

которые выражают закон Гука при сдвиге. Коэффициент пропорциональности G называется модулем сдвига. Существенно, что нормальное напряжение не влияет на угловые деформации, так как при этом изменяются только линейные размеры отрезков, а не углы между ними (рис. 1).

Линейная зависимость существует также между средним напряжением (2.18), пропорциональным первому инварианту тензора напряжений, и объемной деформацией (2.32), совпадающей с первым инвариантом тензора деформаций:



Рис.2. Плоская деформация сдвига

Соответствующий коэффициент пропорциональности К называется объемным модулем упругости.

В формулы (1 — 7) входят упругие характеристики материала Е, , G и К, определяющие его упругие свойства. Однако эти характеристики не являются независимыми. Для изотропного материала независимыми упругими характеристиками являются две, в качестве которых обычно выбираются модуль упругости Е и коэффициент Пуассона . Чтобы выразить модуль сдвига G через Е и , рассмотрим плоскую деформацию сдвига под действием касательных напряжений (рис. 2). Для упрощения выкладок используем квадратный элемент со стороной а. Вычислим главные напряжения , . Эти напряжения действуют на площадках, расположенных под углом к исходным площадкам. Из рис. 2 найдем связь между линейной деформацией в направлении действия напряжения и угловой деформацией . Большая диагональ ромба, характеризующая деформацию , равна

Для малых деформаций

С учетом этих соотношений

До деформации эта диагональ имела размер . Тогда будем иметь

Из обобщенного закона Гука (5) получим

Сравнение полученной формулы с записью закона Гука при сдвиге (6) дает

В итоге получим

Сравнивая это выражение с объемным законом Гука (7), приходим к результату

Механические характеристики Е, , G и К находятся после обработки экспериментальных данных испытаний образцов на различные виды нагрузок. Из физического смысла все эти характеристики не могут быть отрицательными. Кроме того, из последнего выражения следует, что коэффициент Пуассона для изотропного материала не превышает значения 1/2. Таким образом, получаем следующие ограничения для упругих постоянных изотропного материала:

Предельное значение приводит к предельному значению , что соответствует несжимаемому материалу ( при ). В заключение выразим из соотношений упругости (5) напряжения через деформации. Запишем первое из соотношений (5) в виде

С использованием равенства (9) будем иметь

Аналогичные соотношения можно вывести для и . В результате получим

Здесь использовано соотношение (8) для модуля сдвига. Кроме того, введено обозначение

ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ УПРУГОЙ ДЕФОРМАЦИИ

Рассмотрим вначале элементарный объем dV=dxdydz в условиях одноосного напряженного состояния (рис. 1). Мысленно закрепим площадку х=0 (рис. 3). На противоположную площадку действует сила . Эта сила совершает работу на перемещении . При увеличении напряжения от нулевого уровня до значения соответствующая деформация в силу закона Гука также увеличивается от нуля до значения , а работа пропорциональна заштрихованной на рис. 4 площади: . Если пренебречь кинетической энергией и потерями, связанными с тепловыми, электромагнитными и другими явлениями, то в силу закона сохранения энергии совершаемая работа перейдет в потенциальную энергию, накапливаемую в процессе деформирования: . Величина Ф=dU / dV называется удельной потенциальной энергией деформации, имеющей смысл потенциальной энергии, накопленной в единице объема тела. В случае одноосного напряженного состояния

УПРУГОСТЬ, МОДУЛЬ УПРУГОСТИ, ЗАКОН ГУКА. Упругость – свойство тела деформироваться под действием нагрузки и восстанавливать первоначальную форму и размеры после ее снятия. Проявление упругости лучше всего проследить, проведя простой опыт с пружинными весами – динамометром, схема которого показана на рис.1.

При нагрузке в 1 кг стрелка-индикатор сместится на 1 деление, при 2 кг – на два деления, и так далее. Если нагрузки последовательно снимать, процесс идет в обратную сторону. Пружина динамометра – упругое тело, ее удлинение D l , во-первых, пропорционально нагрузке P и, во-вторых полностью исчезает при полном снятии нагрузки. Если построить график, отложить по вертикали оси величины нагрузки, а по горизонтальной – удлинение пружины, то получаются точки, лежащие на прямой, проходящей через начало координат, рис.2. Это справедливо как для точек, изображающих процесс нагружения так и для точек, соответствующих нагрузке.

Угол наклона прямой характеризует способность пружины сопротивляться действию нагрузки: ясно, что «слабая» пружина (рис.3). Эти графики называются характеристиками пружины.

Тангенс угла наклона характеристики называется жесткостью пружины С . Теперь можно записать уравнение деформирования пружины D l = P / C

Жесткость пружины С имеет размерность кг / см\up122 и зависит от материала пружины (например, сталь или бронза) и ее размеров – длины пружины, диаметра ее витка и толщины проволоки, из которой она сделана.

В той или иной мере все тела, которые можно считать твердыми, обладают свойством упругости, но заметить это обстоятельство можно далеко не всегда: упругие деформации обычно очень малы и наблюдать их без специальных приборов удается практически только при деформировании пластинок, струн, пружин, гибких стержней.

Прямым следствием упругих деформаций являются упругие колебания конструкций и природных объектов. Можно легко обнаружить дрожание стального моста, по которому идет поезд;иногда можно услышать, как звенит посуда, когда на улице проезжает тяжелый грузовик; все струнные музыкальные инструменты так или иначе преобразуют упругие колебания струн в колебания частичек воздуха;в ударных инструментах тоже упругие колебания (например, мембраны барабана) преобразуются в звук.

При землетрясении происходят упругие колебания поверхности земной коры; при сильном землетрясении кроме упругих деформаций возникают пластические (которые остаются после катаклизма как изменения микрорельефа), а иногда появляются трещины. Эти явления не относятся к упругости: можно сказать, что в процессе деформирования твердого тела сначала всегда появляются упругие деформации, потом пластические, и, наконец, образуются микротрещины. Упругие деформации очень малы – не больше 1%, а пластические могут достигнуть 5–10% и более, поэтому обычное представление о деформациях относится к пластическим деформациям – например, пластилин или медная проволока. Однако, несмотря на свою малость, упругие деформации играют важнейшую роль в технике: расчет на прочность авиалайнеров, подводных лодок, танкеров, мостов, туннелей, космических ракет – это, в первую очередь, научный анализ малых упругих деформаций, возникающих в перечисленных объектах под действием эксплуатационных нагрузок.

Еще в неолите наши предки изобрели первое дальнобойное оружие – лук и стрелы, используя упругость изогнутой ветки дерева; потом катапульты и баллисты, построенные для метания больших камней, использовали упругость канатов, свитых из растительных волокон или даже из женских длинных волос. Эти примеры доказывают, что проявление упругих свойств было давно известно и давно использовалось людьми. Но понимание того, что любое твердое тело под действием даже небольших нагрузок обязательно деформируется, хотя и на очень малую величину, впервые появилось в 1660 у Роберта Гука , современника и коллеги великого Ньютона . Гук был выдающимся ученым, инженером и архитектором. В 1676 он сформулировал свое открытие очень кратко, в виде латинского афоризма: «Ut tensio sic vis», смысл которого состоит в том, что «какова сила, таково и удлинение». Но опубликовал Гук не этот тезис, а только его анаграмму: «ceiiinosssttuu». (Таким образом тогда обеспечивали приоритет, не раскрывая сути открытия.)

Вероятно, в это время Гук уже понимал, что упругость – универсальное свойство твердых тел, но считал необходимым подтвердить свою уверенность экспериментально. В 1678 вышла книга Гука, посвященная упругости, где описывались опыты, из которых следует, что упругость есть свойство «металлов, дерева, каменных пород, кирпича, волос, рога, шелка, кости, мышцы, стекла и т.п.» Там же была расшифрована анаграмма. Исследования Роберта Гука привели не только к открытию фундаментального закона упругости, но и к изобретению пружинных хронометров (до того были только маятниковые). Изучая различные упругие тела (пружины, стержни, луки), Гук установил, что «коэффициент пропорциональности» (в частности, жесткость пружины) сильно зависит от формы и размеров упругого тела, хотя материал играет решающую роль.

Прошло более ста лет, в течение которых опыты с упругими материалами проводили Бойль, Кулон, Навье и некоторые другие, менее известные физики. Одним из основных опытов стало растяжение пробного стержня из изучаемого материала. Для сравнения результатов, полученных в разных лабораториях, нужно было либо использовать всегда одинаковые образцы, либо научиться исключать слияние размеров образца. И в 1807 появилась книга Томаса Юнга, в которой был введен модуль упругости – величина, описывающая свойство упругости материала независимо от формы и размеров образца, который использовался в опыте. Для этого нужно силу P , приложенную к образцу, разделить на площадь сечения F , а произошедшее при этом удлинение D l разделить на первоначальную длину образца l . Соответствующие отношения – это напряжение s и деформация e .

Теперь закон Гука о пропорциональности можно записать в виде:

s = Е e

Коэффициент пропорциональности Е называется модулем Юнга, имеет размерность, как у напряжения (МПа), а обозначение его есть первая буква латинского слова elasticitat – упругость.

Модуль упругости Е – это характеристика материала того же типа, как его плотность или теплопроводность.

В обычных условиях, чтобы продеформировать твердое тело, требуется значительная сила. Это означает, что модуль Е должен быть большой величиной – по сравнению с предельными напряжениями, после которых упругие деформации сменяются пластическими и форма тела заметно искажается.

Если измерять величину модуля Е в мегапаскалях (МПа), получатся такие средние значения:

Физическая природа упругости связана с электромагнитным взаимодействием (в том числе с силами Ван-дер-Ваальса в решетке кристалла). Можно считать, что упругие деформации связаны с изменением расстояния между атомами.

Упругий стержень имеет еще одно фундаментальное свойство – утоньшаться при растяжении. То, что канаты при растяжении становятся тоньше, было известно давно, но специально поставленные опыты показали, что при растяжении упругого стержня всегда имеет место закономерность: если измерить поперечную деформацию e ", т.е. уменьшение ширины стержня d b , деленное на первоначальную ширину b , т.е.

и разделить ее на продольную деформацию e , то это отношение остается постоянным при всех значениях растягивающей силы P , то есть

(Полагают, что e "< 0 ; поэтому используется абсолютная величина). Константа v называется коэффициентом Пуассона (по имени французского математика и механика Симона Дени Пуассона) и зависит только от материала стержня, но не зависит от его размеров и формы сечения. Величина коэффициента Пуассона для разных материалов изменяется от 0 (у пробки) до 0,5 (у резины). В последнем случае объем образца в процессе растяжения не изменяется (такие материалы называются несжимаемыми). Для металлов значения различны, но близки к 0,3.

Модуль упругости E и коэффициент Пуассона вместе образуют пару величин, которые полностью характеризуют упругие свойства любого конкретного материала (имеются в виду изотропные материалы, т.е. такие, у которых свойства не зависят от направления; пример древесины показывает, что это не всегда так – ее свойства вдоль волокон и поперек волокон сильно различаются. Это – анизотропный материал. Анизотропными материалами являются монокристаллы, многие композиционные материалы (композиты) типа стеклопластика. Такие материалы тоже в известных пределах обладают упругостью, но само явление оказывается значительно более сложным).

ОПРЕДЕЛЕНИЕ

Деформация является упругой , в том случае, если она полностью исчезает при прекращении действия деформирующей силы.

Упругая деформация переходит неупругую (пластическую), перейти предел упругости. При упругой деформации частицы, смещенные в новые положения равновесия в кристаллической решетке, после снятия деформирующей силы занимают в старые места. Тело полностью восстанавливает свои размеры и форму после снятия нагрузки.

Закон упругой деформации

Английский естествоиспытатель Р. Гук опытным путем получил, прямую связь между деформирующей силой (F) и удлинением деформированной пружины (x). Внешняя сила порождает силы упругости тела. Эти силы равны по величине, сила упругости уравновешивает действие силы деформации. Закон Гука записывают как:

где - проекция силы на ось X; x- удлинение пружины по оси X; k - коэффициент упругости пружины (жесткость пружины). При использовании такой величины, как сила упругости () для деформированной пружины, то закон Гука приобретает вид:

где - проекция силы упругости на ось X. Коэффициент k - это величина, зависящая от материала, размеров витка пружины и ее длины. Закон Гука справедлив для малых удлинений и небольших нагрузок.

Закон упругой деформации справедлив для растяжения (сжатия) упругого стержня. Обычно, в этом случае, упругие силы в стержне описывают при помощи напряжения .

При этом считают, что сила распределяется равномерно по сечению и она перпендикулярна поверхности сечения. title="Rendered by QuickLaTeX.com" height="12" width="40" style="vertical-align: 0px;">, если происходит растяжение и при сжатии. Напряжение называют нормальным. При этом тангенциальное напряжение равно:

где — сила упругости, которая действует вдоль слоя тела; S - площадь рассматриваемого слоя.

Изменение длины стержня () равно:

где E - модуль Юнга; l - длина стержня. Модуль Юнга характеризует упругие свойства материала.

Закон упругой деформации при сдвиге

Сдвигом, называют такую деформацию, при которой плоские слои твердого тела смещаются параллельно друг другу. При таком виде деформации слои не изменяют свою форму и размер. Мерой данной деформации служит угол сдвига () или величина сдвига (). Закон Гука для упругой деформации сдвига записывают как:

где G - модуль поперечной упругости (модуль сдвига), h — толщина деформируемого слоя; - угол сдвига.

Все виды упругой деформации могут сводиться к деформациям растяжения или сжатия, которые происходят одномоментно.

Примеры решения задач

ПРИМЕР 1

Задание Стальной стержень нагревают от температуры K до K. При этом для того чтобы он не увеличивал свою длину его сжимают с силой F. Чему равна данная сила, приложенная к обоим концам стержня, если площадь его поперечного сечения равна ?

Решение Исходя из закона упругой деформации (закон Гука) стержень следует сжимать с силой раной:

Удлинение стержня, которое возникает при его нагревании, найдем как:

Подставим правую часть выражения (1.2) в закон Гука, имеем:

Модуль Юнга для стали примем равным Па, коэффициент линейного температурного расширения стали . Проведем вычисления:

Ответ Н