Биология

Токсины, вырабатываемые голотуриями, представляют интерес для фармакологии. Рыбаки на островах Тихого океана используют ядовитые кювьеровы трубочки некоторых видов при рыбной ловле.

См. также

Литература

  • Долматов И.Ю. , Машанов В.С. Регенерация у голотурий. - Владивосток: Дальнаука, 2007. - 208 с.

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Голотурии" в других словарях:

    Отр. червеобразных иглокожих морских животных, водится в Южном Океане. Сюда относится трепанг. Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф., 1907. ГОЛОТУРИИ или МОРСКИЕ КУБЫШКИ (греч. holothuriae). Отряд иглокожих… … Словарь иностранных слов русского языка

    голотурии - ий, мн. holothurie f. <гр. holothurion 1. Морское животное с червеобразным телом. БАС 2. А вон в стороне сложены рядами в длинные поленницы какие то маленькие, толстые серные палки, точно колбасы. Это все голотурии, морские животные, вроде… … Исторический словарь галлицизмов русского языка

    Морские огурцы (Holothuroidea), класс иглокожих. Ископаемые скелетные пластинки Г. известны с девона. Тело б. ч. бочонковидное или червеобразное (дл. от неск. мм до 2 м), у многих с внеш. придатками (щупальца, ножки, папиллы, парус и др.),… … Биологический энциклопедический словарь

    - (Holotburioidea), класс типа иглокожих, отличаются отдругих представителей того же типа червеобразным телом, кожистыминаружными покровами, заключающими в себе известковые тельца, отсутствиемнаружной мадреповой пластинки, венцом по большей части… … Энциклопедия Брокгауза и Ефрона

    - (морские огурцы), класс животных типа иглокожих. Тело обычно червеобразное, от нескольких мм до 2 м. Около 1100 видов, повсеместно в морях и океанах. Донные, ползающие формы. Многие при раздражении способны выбрасывать наружу внутренности или… … Современная энциклопедия

    - (морские огурцы морские кубышки), класс морских беспозвоночных животных типа иглокожих. Тело обычно червеобразное, от нескольких мм до 2 м. Ок. 1100 видов, почти повсеместно в морях и океанах. Донные ползающие формы. Некоторые способны к… … Большой Энциклопедический словарь

    - (Holothuroidea) класс иглокожих с сильно редуцированным скелетом, состоящим из многочисленных микроскопических известковых игл разл. формы. Морские животные, принадлежащие к нектону. В ископаемом виде редки, встречаются в виде отпечатков или… … Геологическая энциклопедия

    Морские огурцы, морские кубышки (Holothuroidea) ГОЛОТУРИИ Cucumeria planci один из видов съедобных трепангов. класс морских беспозвоночных типа иглокожих (Echinodermata). Обитают на дне, главным образом в мелководных зонах, где обычно лежат как… … Энциклопедия Кольера

    - (Holothurioidea) класс типа иглокожих (Echinodermata, см.), отличаются от других представителей того же типа червеобразным телом, кожистыми наружными покровами, заключающими в себе известковые тельца, отсутствием наружной мадрепоровой пластинки,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Ий; мн. (ед. голотурия, и; ж.). [греч. holothurion] Класс морских беспозвоночных животных типа иглокожих; морские огурцы. * * * голотурии (морские огурцы, морские кубышки), класс морских беспозвоночных животных типа иглокожих. Тело обычно… … Энциклопедический словарь

Раков, крабов в морских просторах. Их можно исследовать и описывать бесконечное количество времени. Ученые океанологи не перестают удивляться своим новым открытиям.

Некоторые обитатели живут у нас прямо на глазах, даже под ногами. Охотятся, питаются, размножаются. А есть виды, которые уходят далеко на глубину, где нет ни света и казалось бы, никакой жизни.

Невероятнейшее создание, с которым мы сейчас познакомимся – трепанг, он же голотурия, он же морской огурец . Внешне схож на очень ленивого, отъевшегося, огромных размеров червяка.

Это существо, живущее уже много миллионов лет в водных просторах и пережившее не один исторический период. Своё название – морской огурец, он получил от философа из Рима, Плиния. А, впервые несколько его видов уже описаны Аристотелем.

Мясо морских огурцов приносит пользу для здоровья, поэтому очень популярно в кулинарии, что приходится даже разводить их в бассейнах. Повара их прожаривают, высушивают, консервируют, замораживают.

Маринуют и добавляют в салаты. При приготовлении мяса голотурии, кулинары советуют, добавлять много специй, у него есть свойство максимально впитывать все запахи и вкусы.

Что интересно, питательная ценность мяса, при термообработке, не ухудшается. Японцы вообще едят морского огурца — кукумарию, исключительно в сыром виде, предварительно промариновав пять минут в соевом соусе с добавлением чеснока.

Считая, плоть голотурии, панацеей от всех болезней. Морские огурцы наполнены макро и микроэлементами, витаминами, минералами и аминокислотами. Более тридцати химических элементов из таблицы Миндилеева.

Его мясо содержит наибольшее количество полезных компонентов, как никто другой обитатель морских глубин, и оно абсолютно обеззаражено, вирусы, бактерии и микробы ему не знакомы.

Так же, в шестнадцатом веке, до нас дошли сведения об уникальных целебных свойствах морского огурца. Теперь его используют в фармакологической промышленности. В медицинских целях, особенно в Японии и Китае.

Жители этих стран называют трепанга – женьшенем, добытым из моря. Это природный компонент для полноценного восстановления организма человека после тяжелых болезней, сложных оперативных вмешательств.

Помогает регенерации ткани человека. Улучшает работу сердца, нормализует артериальное давление. Стимулирует работу желудочно-кишечного тракта. Так же морской огурец имеет определённые компоненты, которые помогают в лечении суставов.

Ещё, невероятно, но факт, у этого животного есть способность регенерироваться. Это подобие птицы Феникса, только морское. Даже если у него останется меньше половины тела, через некоторое время, это будет уже полноценное животное. Но для такого восстановления понадобиться немало времени, до полу года и более.

О писание и особенности морского огурца

Кто же такой, морской огурец ? Это иглокожий , беспозвоночный моллюск, обитающий только в морских водах. Его ближайшие родственники морская звезда и морской ёжик.

Своей внешностью он – натуральная гусеница шелкопряд, медленно и вольяжно ползущая по дну морскому. Темно болотного, коричневого, почти чёрного, иногда алого цвета. В зависимости, от того, где они проживают, их окрасы меняются.

Например, на речном, песчаном дне можно встретить даже голубых трепангов. Размеры тела разные. Некоторые виды бывают по полсантиметра длиной. А есть и пятидесяти сантиметровые особи. Средние размеры моллюска, как спичечный коробок – пять, шесть сантиметров в ширину, и в длину до двадцати см. Весит он почти один килограмм.

В бодрствующем, спокойном состоянии, морской огурец практически всегда лежит на боку. На его нижней части тела, называемое брюхом, находится рот, по всей окружности усыпан присосками. С помощью них животное питается.

Как бы пылесося со дна всё, чем можно поживиться. Этих присосок может быть до тридцати штук. Вся кожа трепанга плотно укрыта известковым налётом. На спине пупырчатые образования с маленькими светлыми шипчиками. У них, есть ножки, которые растут по всей длине тела, рядами.

Тело морского огурца имеет ещё одну уникальную способность, изменять свою плотность. Он становится твёрдым как камень, на случай, если чувствует угрозу для жизни. И может быть очень эластичным, если ему нужно будет залезть под какой-нибудь камень для укрытия.

Образ жизни и среда обитания

Трепангами называют виды морских огурцов, обитающие на северной части Курил центральные территории в Китае и Японии, в южном Сахалине. На территории России их насчитывают более ста разновидностей.

Морские огурцы – животные обитающие на глубине не более двадцати метров. Всё свое время они залегают на дне. В своей жизни они очень мало двигаются.

Трепанги живут только в солёной воде. Пресные воды для них губительны. Они любят тихую воду и илистое дно. Чтобы в случае опасности можно было в него зарыться. Или присосаться к какому-нибудь камню.

Когда, на иглокожого нападает враг, в бегстве животное может разъединиться на несколько частей. Со временем, эти части, конечно же, восстановятся.

Так как лёгких нет у этих животных, они дышат через анальное отверстие. Закачивая в себя воду, отсеивая кислород. Некоторые экземпляры могут перекачать через себя до семи сот литров воды за один час. Так же, морские огурцы используют анальное отверстие, как второй рот.

К перепадам температур они спокойно относятся, и незначительные минусы никак не влияют на их жизнедеятельность. К высоким температурам в водоёмах, они тоже положительно относятся.

Даже если, какой-нибудь моллюск примёрзнет во льду, и его постепенно отогревать, он отойдет, и будет продолжать дальше жить. Эти животные живут большими стаями, образуя на дне целые полотна из особей.

Питание морского огурца

Трепанги относятся тем животным, которые собирают и едят всю разлагающуюся падаль, находящуюся на дне. Морской огурец в охоте за планктонами, попутно собирает весь попадающийся на пути ил и песок. Затем пропускает его весь через себя. Поэтому, его внутренности на половину состоит из грунта.

Перетравившаяся, так называемая пища, выходит через анал. Учитывая тот факт, что песком сыт не будешь, морскому огурцу за день приходится поглотить огромное количество земли. Всего за один год своей жизни, эти моллюски пропускают через себя, до сорока килограмм песка и ила. Причем весной их аппетит удваивается.

У голотурий есть чувствительные рецепторы, с помощью которых они безошибочно определяют количество пищи находящейся на дне морском. И если добыча спряталась глубоко в песок, морской огурец это почувствует и будет закапываться в грунт, пока не поймает еду. А когда он чувствует, что кормов мало, то быстро пробежавшись по верхам, собирает отмершие остатки.

Размножение и продолжительность жизни морского огурца

К третьему году своей жизни морские огурцы уже половозрелые и готовы к размножению. По их внешнему виду трудно понять кто из них самец, а кто самка. Но они разнополые животные.

Брачный период наступает с конца весны, и длиться всё лето. Но есть и такие виды, у которых нерестовый период может наступить в любое время года. Разбившись на пары, моллюски выбираются поближе к берегу на возвышенности, то ли вползают на камни, или на лежащие мидии.

Когда спаривание уже произошло, задними ногами присосками, они крепятся к какой-нибудь поверхности, и поднимают вверх голову. В такой изогнутой позе начинают метать икру.

Эта процедура длиться до трёх дней. И что примечательно, в тёмное время суток. В один год, самка голотурия может отложить более пятидесяти миллионов яиц. Эти особи очень плодовитые.

По окончанию, измученные животные заползают в выбранное ими убежище, и почти на два месяца впадают в спячку. Выспавшись и отдохнув, у трепангов появляется зверский аппетит, и они начинают кушать всё подряд.

На третьей недели жизни, у мальков, вокруг ротового отверстия появляется подобие присосок. С их помощью, они присасываются к морской растительности и далее на ней растут и развиваются.

А многие виды морских огурцов – самок, вынашивают детёнышей у себя на спине, забрасывая их к себе хвостом. Ещё у детёнышей начинают расти пупырышки на спине, а на брюхе — маленькие ноги.

Малёк подрастает, его тело увеличивается, количество ног добавляется. Он уже становится похож на своих родителей, мини червячок. В первый год они достигают небольших размеров, до пяти сантиметров. К концу второго года вырастают вдвое больше, и уже выглядят как молодая, взрослая особь. Живут голотурии восемь, десять лет.

В настоящее время морского огурца можно купить без проблем. Существуют целые фермы-аквариумы по их выращиванию. Дорогие рыбные рестораны, целыми партиями заказывают к себе на кухни. Да и покопавшись в интернете, вы без проблем приобретёте желаемое.

​Ученые Принстонской лаборатории физики плазмы предложили идею самого долговечного устройства для ядерного синтеза, которое сможет работать более 60 лет. В данный момент это трудноосуществимая задача: ученые бьются над тем, чтобы заставить термоядерный реактор проработать в течение нескольких минут - а тут годы. Несмотря на сложность, строительство термоядерного реактора - одна из самых перспективных задач науки, которая может принести огромную пользу. Рассказываем, что нужно знать о термоядерном синтезе.

1. Что такое термоядерный синтез?

Не пугайтесь этого громоздкого словосочетания, на деле все довольно просто. Термоядерный синтез - это разновидность ядерной реакции.

В ходе ядерной реакции ядро атома взаимодействует либо с элементарной частицей, либо с ядром другого атома, за счет чего состав и строение ядра изменяются. Тяжелое атомное ядро может распасться на два-три более легких - это реакция деления. Существует также реакция синтеза: это когда два легких атомных ядра сливаются в одно тяжелое.

В отличие от ядерного деления, которое может проходить как самопроизвольно, так и вынужденно, ядерный синтез невозможен без подвода внешней энергии. Как известно, притягиваются противоположности, но вот атомные ядра заряжены положительно - поэтому они отталкиваются друг от друга. Эта ситуация называется кулоновским барьером. Чтобы преодолеть отталкивание, необходимо разогнать эти частицы до сумасшедших скоростей. Это можно осуществить при очень высокой температуре - порядка нескольких миллионов кельвинов. Именно такие реакции и называются термоядерными.

2. Зачем нам термоядерный синтез?

В ходе ядерных и термоядерных реакций выделяется огромное количество энергии, которую можно использовать в различных целях - можно создать мощнейшее оружие, а можно преобразовать ядерную энергию в электричество и снабдить им весь мир. Энергия распада ядра давно используется на атомных электростанциях. Но термоядерная энергетика выглядит перспективнее. При термоядерной реакции на каждый нуклон (так называются составляющие ядра, протоны и нейтроны) выделяется намного больше энергии, чем при ядерной реакции. К примеру, при делении ядра урана на один нуклон приходится 0,9 МэВ (мегаэлектронвольт), а при синтезе ядра гелия из ядер водорода выделяется энергия, равная 6 МэВ. Поэтому ученые учатся проводить термоядерные реакции.

Исследования термоядерного синтеза и строительство реакторов позволяют расширить высокотехнологичное производство, которое полезно и в других сферах науки и хай-тека.

3. Какие бывают термоядерные реакции?

Термоядерные реакции делят на самоподдерживающиеся, неуправляемые (используются в водородных бомбах) и управляемые (подходят для мирных целей).

Самоподдерживающиеся реакции проходят в недрах звезд. Однако на Земле нет условий для проведения таких реакций.

Неуправляемый, или взрывной термоядерный синтез люди проводят давно. В 1952 году в ходе операции "Иви Майк" американцы взорвали первое в мире термоядерное взрывное устройство, которое не имело практической ценности в качестве оружия. А в октябре 1961 года прошли испытания первой в мире термоядерной (водородной) бомбы ("Царь-бомба", "Кузькина мать"), разработанной советскими учеными под руководством Игоря Курчатова. Это было самое мощное взрывное устройство за всю историю человечества: полная энергия взрыва, по разным данным, составляла от 57 до 58,6 мегатонн в тротиловом эквиваленте. Чтобы взорвать водородную бомбу, необходимо сначала в ходе обычного ядерного взрыва получить высокую температуру - лишь тогда атомные ядра начнут реагировать.

Мощность взрыва при неуправляемой ядерной реакции очень велика, кроме того, высока доля радиоактивного загрязнения. Поэтому чтобы использовать термоядерную энергию в мирных целях, необходимо научиться ею управлять.

4. Что нужно для управляемой термоядерной реакции?

Удержать плазму!

Непонятно? Сейчас поясним.

Во-первых, атомные ядра. В ядерной энергетике используются изотопы - атомы, отличающиеся друг от друга количеством нейтронов и, соответственно, атомной массой. Изотоп водорода дейтерий (D) добывают из воды. Сверхтяжелый водород или тритий (Т) - радиоактивный изотоп водорода, который является побочным продуктом реакций распада, проводимых на обычных ядерных реакторах. Также в термоядерных реакциях используется легкий изотоп водорода - протий: это единственный стабильный элемент, не имеющий нейтронов в ядре. Гелий-3 содержится на Земле в ничтожно малых количествах, зато его очень много в лунном грунте (реголите): в 80-х гг НАСА разрабатывало план гипотетических установок по переработке реголита и выделению ценного изотопа. Зато на нашей планете широко распространен другой изотоп - бор-11. 80% бора на Земле - это необходимый ядерщикам изотоп.

Во-вторых, очень высокая температура. Вещество, участвующее в термоядерной реакции, должно представлять собой практически полностью ионизированную плазму - это газ, в котором отдельно плавают свободные электроны и ионы различных зарядов. Чтобы превратить вещество в плазму, необходима температура 10 7 –10 8 К - это сотни миллионов градусов Цельсия! Такие сверхвысокие температуры можно получить путем создания в плазме электрических разрядов большой мощности.

Однако просто нагреть необходимые химические элементы нельзя. Любой реактор моментально испарится при таких температурах. Здесь требуется совершенно иной подход. На сегодняшний день удается удерживать плазму на ограниченной территории с помощью сверхмощных электрических магнитов. Но полноценно использовать получаемую в результате термоядерной реакции энергию пока не удается: даже под воздействием магнитного поля плазма растекается в пространстве.

5. Какие реакции наиболее перспективны?

В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться дейтерий (2H) и тритий (3H), а в более отдалённой перспективе гелий-3 (3He) и бор-11 (11B).

Вот как выглядят самые интересные реакции.

1) 2 D+ 3 T -> 4 He (3.5 MeV) + n (14.1 MeV) - реакция дейтерий-тритий.

2) 2 D+ 2 D -> 3 T (1.01 MeV) + p (3.02 MeV) 50%

2 D+ 2 D -> 3 He (0.82 MeV) + n (2.45 MeV) 50% - это так называемое монотопливо из дейтерия.

Реакции 1 и 2 чреваты нейтронным радиоактивным загрязнением. Поэтому наиболее перспективны "безнейтронные" реакции.

3) 2 D+ 3 He -> 4 He (3.6 MeV) + p (14.7 MeV) - дейтерий реагирует с гелием-3. Проблема в том, что гелий-3 чрезвычайно редок. Однако безнейтронный выход делает эту реакцию перспективной.

4) p+ 11 B -> 3 4 He + 8.7 MeV - бор-11 реагирует с протием, в результате получаются альфа-частицы, которые можно поглотить алюминиевой фольгой.

6. Где провести такую реакцию?

Естественным термоядерным реактором является звезда. В ней плазма удерживается под действием гравитации, а излучение поглощается - таким образом, ядро не остывает.

На Земле же термоядерные реакции можно провести лишь в специальных установках.

Импульсные системы. В таких системах дейтерий и тритий облучают сверхмощными лазерными лучи или пучками электронов/ионов. Такое облучение вызывает последовательность термоядерных микровзрывов. Однако такие системы невыгодно использовать в промышленных масштабах: на разгон атомов тратится намного больше энергии, чем получается в результате синтеза, так как не все разгоняемые атомы вступают в реакцию. Поэтому многие страны строят квазистационарные системы.

Квазистационарные системы. В таких реакторах плазма удерживается с помощью магнитного поля при низком давлении и высокой температуре. Существует три типа реакторов, основанных на различных конфигурациях магнитного поля. Это токамаки, стеллараторы (торсатроны) и зеркальные ловушки.

Токамак расшифровывается как "тороидальная камера с магнитными катушками". Это камера в виде "бублика" (тора), на которую намотаны катушки. Главной особенностью токамака является использование переменного электрического тока, который протекает через плазму, нагревает ее и, создавая вокруг себя магнитное поле, удерживает ее.

В стеллараторе (торсатроне) магнитное поле полностью удерживается с помощью магнитных катушек и, в отличие от токамака, может работать постоянно.

В зеркальных (открытых) ловушках используется принцип отражения. Камера с двух сторон закрыта магнитными "пробками", которые отражают плазму, удерживая ее в реакторе.

Долгое время зеркальные ловушки и токамаки боролись за первенство. Изначально концепция ловушки казалась более простой и потому более дешевой. В начале 60-х годов открытые ловушки обильно финансировались, однако нестабильность плазмы и неудачные попытки удержать ее магнитным полем заставляли усложнять эти установки - простые на вид конструкции превратились в адские машины, и добиться стабильного результата не выходило. Поэтому в 80-х годах на первый план вышли токамаки. В 1984 году был запущен европейский токамак JET, стоимость которого составила всего 180 млн долларов и параметры которого позволяли провести термоядерную реакцию. В СССР и Франции проектировали сверхпроводящие токамаки, которые почти не тратили энергию на работу магнитной системы.

7. Кто сейчас учится проводить термоядерные реакции?

Многие страны строят свои термоядерные реакторы. Свои экспериментальные реакторы есть в Казахстане, Китае, США и Японии. Курчатовский институт работает над реактором IGNITOR. Германия запустила термоядерный реактор-стелларатор Wendelstein 7-X.

Наиболее известен международный проект токамака ИТЭР (ITER, Международный экспериментальный термоядерный реактор) в исследовательском центре Кадараш (Франция). Его строительство предполагалось закончить в 2016 году, однако размеры необходимого финансового обеспечения выросли, а сроки экспериментов сдвинулись на 2025 год. В деятельности ИТЭР участвует Евросоюз, США, Китай, Индия, Япония, Южная Корея и Россия . Основную долю в финансировании играет ЕС (45%), остальные участники поставляют высокотехнологичное оборудование. В частности, Россия производит сверхпроводниковые материалы и кабели, радиолампы для нагрева плазмы (гиротроны) и предохранители для сверхпроводящих катушек, а также компоненты для сложнейшей детали реактора - первой стенки, которая должна выдержать электромагнитные силы, нейтронное излучение и излучение плазмы.

8. Почему мы до сих пор не пользуемся термоядерными реакторами?

Современные установки токамак - не термоядерные реакторы, а исследовательские установки, в которых возможно лишь на некоторое время существование и сохранение плазмы. Дело в том, что ученые пока не научились удерживать плазму в реакторе на длительный срок.

На данный момент одним из самых больших достижений в области ядерного синтеза считается успех немецких ученых, которым удалось нагреть водородный газ до 80 миллионов градусов по Цельсию и поддерживать облако плазмы водорода в течение четверти секунды. А в Китае водородную плазму нагрели до 49.999 миллионов градусов и продержали ее 102 секунды. Российским ученым из (Институт ядерной физики имени Г. И. Будкера, Новосибирск) удалось добиться стабильного нагрева плазмы до десяти миллионов градусов Цельсия. Однако недавно американцы предложили способ удержания плазмы в течение 60 лет - и это внушает оптимизм.

Кроме того, ведутся споры относительно рентабельности термоядерного синтеза в промышленности. Неизвестно, покроют ли выгоды от производства электроэнергии затраты на термоядерный синтез. Предлагается экспериментировать с реакциями (например, отказаться от традиционной реакции дейтерий-тритий или монотоплива в пользу других реакций), конструкционными материалами - а то и отказаться от идеи промышленного термоядерного синтеза, используя лишь его для отдельных реакций в реакциях деления. Однако ученые все равно продолжают эксперименты.

9. Безопасны ли термоядерные реакторы?

Относительно. Тритий, который используется в термоядерных реакциях, радиоактивен. Кроме того, нейроны, выделяющиеся в результате синтеза, облучают конструкцию реактора. Сами элементы реактора покрываются радиоактивной пылью из-за воздействия плазмы.

Тем не менее, термоядерный реактор намного безопасней ядерного реактора в радиационном отношении. Радиоактивных веществ в реакторе относительно мало. Кроме того, сама конструкция реактора предполагает отсутствие "дыр", через которые может просочиться радиация. Вакуумная камера реактора должна быть герметичной, иначе реактор просто не сможет работать. При строительстве термоядерных реакторов применяются испытанные ядерной энергетикой материалы, а в помещениях поддерживается пониженное давление.

  • Когда появятся термоядерные электростанции?

    Ученые чаще всего говорят, что-то вроде “через 20 лет мы решим все принципиальные вопросы”. Инженеры из атомной индустрии говорят про вторую половину 21 века. Политики рассуждают про море чистой энергии за копейки, не утруждая себя датами.

  • Как ученые ищут темную материю в недрах Земли

    Сотни миллионов лет назад минералы под земной поверхностью могли сохранять в себе следы загадочного вещества. Осталось только до них добраться. ​Больше двух десятков подземных лабораторий, разбросанных по всему миру, заняты поиском темной материи.

  • Как сибирские ученые помогли человеку улететь к звездам

    ​12 апреля 1961 года Юрий Гагарин совершил первый полет в космос - добродушная улыбка летчика и его бодрое "Поехали!" стали триумфом советской космонавтики. Чтобы этот полет состоялся, ученые по всей стране ломали головы, как же сделать такую ракету, которая бы выдержала все опасности неизведанного космоса, - здесь не обошлось без идей ученых Сибирского отделения Академии наук.

  • Вторая половина XX века была периодом бурного развития ядерной физики. Стало ясно, что ядерные реакции можно использовать для получения огромной энергии из мизерного количества топлива. От взрыва первой ядерной бомбы до первой АЭС прошло всего девять лет, и когда в 1952 году была испытана водородная бомба, появились прогнозы, что уже в 1960-х вступят в строй термоядерные электростанции. Увы, эти надежды не оправдались.

    Термоядерные реакции Из всех термоядерных реакций в ближайшей перспективе интересны лишь четыре: дейтерий+дейтерий (продукты – тритий и протон, выделяемая энергия 4,0 МэВ), дейтерий+дейтерий (гелий-3 и нейтрон, 3,3 МэВ), дейтерий+тритий (гелий-4 и нейтрон, 17,6 МэВ) и дейтерий+гелий-3 (гелий-4 и протон, 18,2 МэВ). Первая и вторая реакции идут параллельно с равной вероятностью. Образующиеся тритий и гелий-3 «сгорают» в третьей и четвертой реакциях

    Игорь Егоров

    Основной источник энергии для человечества в настоящее время — сжигание угля, нефти и газа. Но их запасы ограничены, а продукты сгорания загрязняют окружающую среду. Угольная электростанция дает больше радиоактивных выбросов, чем АЭС такой же мощности! Так почему же мы до сих пор не перешли на ядерные источники энергии? Причин тому много, но главной из них в последнее время стала радиофобия. Несмотря на то что угольная электростанция даже при штатной работе вредит здоровью куда большего числа людей, чем аварийные выбросы на АЭС, она делает это тихо и незаметно для публики. Аварии же на АЭС сразу становятся главными новостями в СМИ, вызывая общую панику (часто совершенно необоснованную). Впрочем, это вовсе не означает, что у ядерной энергетики нет объективных проблем. Немало хлопот доставляют радиоактивные отходы: технологии работы с ними все еще крайне дороги, и до идеальной ситуации, когда все они будут полностью перерабатываться и использоваться, еще далеко.


    Из всех термоядерных реакций в ближайшей перспективе интересны лишь четыре: дейтерий+дейтерий (продукты — тритий и протон, выделяемая энергия 4,0 МэВ), дейтерий+дейтерий (гелий-3 и нейтрон, 3,3 МэВ), дейтерий+тритий (гелий-4 и нейтрон, 17,6 МэВ) и дейтерий+гелий-3 (гелий-4 и протон, 18,2 МэВ). Первая и вторая реакции идут параллельно с равной вероятностью. Образующиеся тритий и гелий-3 «сгорают» в третьей и четвертой реакциях.

    От деления к синтезу

    Потенциально решить эти проблемы позволяет переход от реакторов деления к реакторам синтеза. Если типичный реактор деления содержит десятки тонн радиоактивного топлива, которое преобразуется в десятки тонн радиоактивных отходов, содержащих самые разнообразные радиоактивные изотопы, то реактор синтеза использует лишь сотни граммов, максимум килограммы, одного радиоактивного изотопа водорода — трития. Кроме того, что для реакции требуется ничтожное количество этого наименее опасного радиоактивного изотопа, его производство к тому же планируется осуществлять непосредственно на электростанции, чтобы минимизировать риски, связанные с транспортировкой. Продуктами синтеза являются стабильные (не радиоактивные) и нетоксичные водород и гелий. Кроме того, в отличие от реакции деления, термоядерная реакция при разрушении установки моментально прекращается, не создавая опасности теплового взрыва. Так почему же до сих пор не построено ни одной действующей термоядерной электростанции? Причина в том, что из перечисленных преимуществ неизбежно вытекают недостатки: создать условия синтеза оказалось куда сложнее, чем предполагалось в начале.

    Критерий Лоусона

    Чтобы термоядерная реакция была энергетически выгодной, нужно обеспечить достаточно высокую температуру термоядерного топлива, достаточно высокую его плотность и достаточно малые потери энергии. Последние численно характеризуются так называемым «временем удержания», которое равно отношению запасённой в плазме тепловой энергии к мощности потерь энергии (многие ошибочно полагают, что «время удержания» — это время, в течение которого в установке поддерживается горячая плазма, но это не так). При температуре смеси дейтерия и трития, равной 10 кэВ (примерно 110 000 000 градусов), нам нужно получить произведение числа частиц топлива в 1 см 3 (т.е. концентрации плазмы) на время удержания (в секундах) не менее 10 14 . При этом неважно, будет ли у нас плазма с концентрацией 1014 см -3 и временем удержания 1 с, или плазма с концентрацией 10 23 и время удержания 1 нс. Это критерий называется «критерием Лоусона».
    Кроме критерия Лоусона, отвечающего за получение энергетически выгодной реакции, существует ещё критерий зажигания плазмы, который для дейтерий-тритиевой реакции примерно втрое больше критерия Лоусона. «Зажигание» означает, что той доли термоядерной энергии, что остаётся в плазме, будет хватать для поддержания необходимой температуры, и дополнительный нагрев плазмы больше не потребуется.

    Z-пинч

    Первым устройством, в котором планировалось получить управляемую термоядерную реакцию, стал так называемый Z-пинч. Эта установка в простейшем случае состоит всего из двух электродов, находящихся среде дейтерия (водорода-2) или смеси дейтерия и трития, и батареи высоковольтных импульсных конденсаторов. На первый взгляд кажется, что она позволяет получить сжатую плазму, разогретую до огромной температуры: именно то, что нужно для термоядерной реакции! Однако в жизни все оказалось, увы, далеко не так радужно. Плазменный жгут оказался неустойчивым: малейший его изгиб приводит к усилению магнитного поля с одной стороны и ослаблению с другой, возникающие силы еще больше увеличивают изгиб жгута — и вся плазма «вываливается» на боковую стенку камеры. Жгут неустойчив не только к изгибу, малейшее его утоньшение приводит к усилению в этой части магнитного поля, которое еще сильнее сжимает плазму, выдавливая ее в оставшийся объем жгута, пока жгут не будет окончательно «передавлен». Передавленная часть обладает большим электрическим сопротивлением, так что ток обрывается, магнитное поле исчезает, и вся плазма рассеивается.


    Принцип работы Z-пинча прост: электрический ток порождает кольцевое магнитное поле, которое взаимодействует с этим же током и сжимает его. В результате плотность и температура плазмы, через которую течёт ток, возрастают.

    Стабилизировать плазменный жгут удалось, наложив на него мощное внешнее магнитное поле, параллельное току, и поместив в толстый проводящий кожух (при перемещении плазмы перемещается и магнитное поле, что индуцирует в кожухе электрический ток, стремящийся вернуть плазму на место). Плазма перестала изгибаться и пережиматься, но до термоядерной реакции в сколько-нибудь серьезных масштабах все равно было далеко: плазма касается электродов и отдает им свое тепло.

    Современные работы в области синтеза на Z-пинче предполагают еще один принцип создания термоядерной плазмы: ток протекает через трубку из плазмы вольфрама, которая создает мощное рентгеновское излучение, сжимающее и разогревающее капсулу с термоядерным топливом, находящуюся внутри плазменной трубки, подобно тому, как это происходит в термоядерной бомбе. Однако эти работы имеют чисто исследовательский характер (изучаются механизмы работы ядерного оружия), а выделение энергии в этом процессе все еще в миллионы раз меньше, чем потребление.


    Чем меньше отношение большого радиуса тора токамака (расстояния от центра всего тора до центра поперечного сечения его трубы) к малому (радиусу сечения трубы), тем больше может быть давление плазмы при том же магнитном поле. Уменьшая это отношение, учёные перешли от круглого сечения плазмы и вакуумной камеры к D-образному (в этом случае роль малого радиуса выполняет половина высоты сечения). У всех современных токамаков форма сечения именно такая. Предельным случаем стал так называемый «сферический токамак». В таких токамаках вакуумная камера и плазма имеют почти сферическую форму, за исключением узкого канала, соединяющего полюса сферы. В канале проходят проводники магнитных катушек. Первый сферический токамак, START, появился лишь в 1991-м году, так что это достаточно молодое направление, но оно уже показало возможность получить то же давление плазмы при втрое меньшем магнитном поле.

    Пробкотрон, стелларатор, токамак

    Другой вариант создания необходимых для реакции условий — так называемые открытые магнитные ловушки. Самая известная из них — «пробкотрон»: труба с продольным магнитным полем, которое усиливается на ее концах и ослабевает в середине. Увеличенное на концах поле создает «магнитную пробку» (откуда русское название), или «магнитное зеркало» (английское — mirror machine), которое удерживает плазму от выхода за пределы установки через торцы. Однако такое удержание неполное, часть заряженных частиц, движущихся по определенным траекториям, оказывается способной пройти через эти пробки. А в результате столкновений любая частица рано или поздно попадет на такую траекторию. Кроме того, плазма в пробкотроне оказалась еще и неустойчивой: если в каком-то месте небольшой участок плазмы удаляется от оси установки, возникают силы, выбрасывающие плазму на стенку камеры. Хотя базовая идея пробкотрона была значительно усовершенствована (что позволило уменьшить как неустойчивость плазмы, так и проницаемость пробок), к параметрам, необходимым для энергетически выгодного синтеза, на практике даже приблизиться не удалось.


    Можно ли сделать так, чтобы плазма не уходила через «пробки»? Казалось бы, очевидное решение — свернуть плазму в кольцо. Однако тогда магнитное поле внутри кольца получается сильнее, чем снаружи, и плазма снова стремится уйти на стенку камеры. Выход из этой непростой ситуации тоже казался довольно очевидным: вместо кольца сделать «восьмерку», тогда на одном участке частица будет удаляться от оси установки, а на другом — возвращаться назад. Именно так ученые пришли к идее первого стелларатора. Но такую «восьмерку» нельзя сделать в одной плоскости, так что пришлось использовать третье измерение, изгибая магнитное поле во втором направлении, что тоже привело к постепенному уходу частиц от оси к стенке камеры.

    Ситуация резко изменилась с созданием установок типа «токамак». Результаты, полученные на токамаке Т-3 во второй половине 1960-х годов, были столь ошеломляющими для того времени, что западные ученые приезжали в СССР со своим измерительным оборудованием, чтобы убедиться в параметрах плазмы самостоятельно. Реальность даже превзошла их ожидания.


    Эти фантастически переплетенные трубы не арт-проект, а камера стелларатора, изогнутая в виде сложной трехмерной кривой.

    В руках инерции

    Помимо магнитного удержания существует и принципиально иной подход к термоядерному синтезу — инерциальное удержание. Если в первом случае мы стараемся долгое время удерживать плазму очень низкой концентрации (концентрация молекул в воздухе вокруг вас в сотни тысяч раз больше), то во втором — сжимаем плазму до огромной плотности, на порядок выше плотности самых тяжелых металлов, в расчете, что реакция успеет пройти за то короткое время, пока плазма не успела разлететься в стороны.

    Первоначально, в 1960-х годах, планировалось использовать маленький шарик из замороженного термоядерного топлива, равномерно облучаемый со всех сторон множеством лазерных лучей. Поверхность шарика должна была моментально испариться и, равномерно расширяясь во все стороны, сжать и нагреть оставшуюся часть топлива. Однако на практике облучение оказалось недостаточно равномерным. Кроме того, часть энергии излучения передавалась во внутренние слои, вызывая их нагрев, что усложняло сжатие. В итоге шарик сжимался неравномерно и слабо.


    Есть ряд современных конфигураций стеллараторов, и все они близки к тору. Одна из наиболее распространённых конфигураций предполагает использование катушек, аналогичных катушкам полоидального поля токамаков, и четырёх-шести скрученных винтом вокруг вакуумной камеры проводников с разнонаправленным током. Создаваемое при этом сложное магнитное поле позволяет надёжно удерживать плазму, не требуя протекания через неё кольцевого электрического тока. Кроме того, в стеллараторах могут быть использованы и катушки тороидального поля, как у токамаков. А винтовые проводники могут отсутствовать, но тогда катушки «тороидального» поля устанавливаются вдоль сложной трёхмерной кривой. Последние разработки в области стеллараторов предполагают использование магнитных катушек и вакуумной камеры очень сложной формы (сильно «мятый» тор), просчитанной на компьютере.

    Проблему неравномерности удалось решить, существенно изменив конструкцию мишени. Теперь шарик размещается внутри специальной небольшой металлической камеры (она называется «хольраум», от нем. hohlraum — полость) с отверстиями, через которые внутрь попадают лазерные лучи. Кроме того, используются кристаллы, конвертирующие лазерное излучение ИК-диапазона в ультрафиолетовое. Это УФ-излучение поглощается тончайшим слоем материала хольраума, который при этом нагревается до огромной температуры и излучает в области мягкого рентгена. В свою очередь, рентгеновское излучение поглощается тончайшим слоем на поверхности топливной капсулы (шарика с топливом). Это же позволило решить и проблему преждевременного нагрева внутренних слоев.

    Однако мощность лазеров оказалась недостаточной для того, чтобы в реакцию успела вступить заметная часть топлива. Кроме того, эффективность лазеров была весьма мала, лишь около 1%. Чтобы синтез был энергетически выгодным при таком низком КПД лазеров, должно было прореагировать практически все сжатое топливо. При попытках заменить лазеры на пучки легких или тяжелых ионов, которые можно генерировать с куда большим КПД, ученые также столкнулись с массой проблем: легкие ионы отталкиваются друг от друга, что мешает их фокусировке, и тормозятся при столкновениях с остаточным газом в камере, а ускорителей тяжелых ионов с нужными параметрами создать не удалось.

    Магнитные перспективы

    Большинство надежд в области термоядерной энергетики сейчас связано с токамаками. Особенно после открытия у них режима с улучшенным удержанием. Токамак является одновременно и свернутым в кольцо Z-пинчем (по плазме протекает кольцевой электрический ток, создающий магнитное поле, необходимое для ее удержания), и последовательностью пробкотронов, собранных в кольцо и создающих «гофрированное» тороидальное магнитное поле. Кроме того, на тороидальное поле катушек и поле плазменного тока накладывается перпендикулярное плоскости тора поле, создаваемое несколькими отдельными катушками. Это дополнительное поле, называемое полоидальным, усиливает магнитное поле плазменного тока (также полоидальное) с внешней стороны тора и ослабляет его с внутренней стороны. Таким образом суммарное магнитное поле со всех сторон от плазменного жгута оказывается одинаковым, и его положение остается стабильным. Меняя это дополнительное поле, можно в определенных пределах перемещать плазменный жгут внутри вакуумной камеры.


    Принципиально иной подход к синтезу предлагает концепция мюонного катализа. Мюон — это нестабильная элементарная частица, имеющая такой же заряд, как и электрон, но в 207 раз большую массу. Мюон может замещать электрон в атоме водорода, при этом размер атома уменьшается в 207 раз. Это позволяет одному ядру водорода приближаться к другому, не затрачивая на это энергию. Но на получение одного мюона тратится порядка 10 ГэВ энергии, что означает необходимость произвести нескольких тысяч реакций синтеза на один мюон для получения энергетической выгодны. Из-за возможности «прилипания» мюона к образующемуся в реакции гелию пока не удалось достичь более нескольких сотен реакций. На фото — сборка стелларатора Wendelstein z-x института физики плазмы Макса Планка.

    Важной проблемой токамаков долгое время была необходимость создавать в плазме кольцевой ток. Для этого через центральное отверстие тора токамака пропускали магнитопровод, магнитный поток в котором непрерывно изменяли. Изменение магнитного потока рождает вихревое электрическое поле, которое ионизирует газ в вакуумной камере и поддерживает ток в получившейся плазме. Однако ток в плазме должен поддерживаться непрерывно, а это означает, что магнитный поток должен непрерывно изменяться в одном направлении. Это, разумеется, невозможно, так что ток в токамаках удавалось поддерживать лишь ограниченное время (от долей секунды до нескольких секунд). К счастью, был обнаружен так называемый бутстреп-ток, который возникает в плазме без внешнего вихревого поля. Кроме того, были разработаны методы нагрева плазмы, одновременно вызывающие в ней необходимый кольцевой ток. Совместно это дало потенциальную возможность сколь угодно длительного поддержания горячей плазмы. На практике рекорд на данный момент принадлежит токамаку Tore Supra, где плазма непрерывно «горела» более шести минут.


    Второй тип установок удержания плазмы, с которым связаны большие надежды, — это стеллараторы. За прошедшие десятилетия конструкция стеллараторов кардинально изменилась. От первоначальной «восьмерки» почти ничего не осталось, и эти установки стали гораздо ближе к токамакам. Хотя пока время удержания у стеллараторов меньше, чем у токамаков (из-за менее эффективной H-моды), а себестоимость их постройки выше, поведение плазмы в них более спокойное, что означает более высокий ресурс первой внутренней стенки вакуумной камеры. Для коммерческого освоения термоядерного синтеза этот фактор представляет очень большое значение.

    Выбор реакции

    На первый взгляд, в качестве термоядерного топлива логичнее всего использовать чистый дейтерий: он стоит относительно дёшево и безопасен. Однако дейтерий с дейтерием реагирует в сотню раз менее охотно, чем с тритием. Это означает, что для работы реактора на смеси дейтерия и трития достаточно температуры 10 кэВ, а для работы на чистом дейтерии нужна температура более 50 кэВ. А чем выше температура — тем выше потери энергии. Поэтому как минимум первое время термоядерную энергетику планируется строить на дейтерий-тритиевом топливе. Тритий при этом будет нарабатываться в самом реакторе за счёт облучения образующимися в нём быстрыми нейтронами лития.
    «Неправильные» нейтроны. В культовом фильме «9 дней одного года» главный герой, работая на термоядерной установке, получил серьёзную дозу нейтронного облучения. Однако позднее оказалось, что нейтроны эти рождены не в результате реакции синтеза. Это не выдумка режиссера, а реальный эффект, наблюдаемый в Z-пинчах. В момент обрыва электрического тока индуктивность плазмы приводит к генерации огромного напряжения — миллионы вольт. Отдельные ионы водорода, ускорившись в этом поле, способны буквально выбивать нейтроны из электродов. Поначалу это явление действительно было принято за верный признак протекания термоядерной реакции, но последующий анализ спектра энергий нейтронов показал, что они имеют иное происхождение.
    Режим с улучшенным удержанием. H-мода токамака — это такой режим его работы, когда при большой мощности дополнительного нагрева потери плазмой энергии резко уменьшаются. Случайное открытие в 1982 году режима с улучшенным удержанием по своей значимости не уступает изобретению самого токамака. Общепринятой теории этого явления пока еще не существует, но это ничуть не мешает использовать его на практике. Все современные токамаки работают в этом режиме, так как он уменьшает потери более чем в два раза. Впоследствии подобный режим был обнаружен и на стеллараторах, что указывает на то, что это общее свойство тороидальных систем, однако на них удержание улучшается лишь примерно на 30%.
    Нагрев плазмы. Существует три основных метода нагрева плазмы до термоядерных температур. Омический нагрев — это нагрев плазмы за счёт протекания через неё электрического тока. Этот метод наиболее эффективен на первых этапах, так как с ростом температуры у плазмы снижается электрическое сопротивление. Электромагнитный нагрев использует электромагнитные волны с частотой, совпадающей с частотой вращения вокруг магнитных силовых линий электронов или ионов. При инжекции быстрых нейтральных атомов создаётся поток отрицательных ионов, которые затем нейтрализуются, превращаясь в нейтральные атомы, способные проходить через магнитное поле в центр плазмы, чтобы передать свою энергию именно там.
    А реакторы ли это? Тритий радиоактивен, а мощное нейтронное облучение от D-T реакции создаёт наведённую радиоактивность в элементах конструкции реактора. Приходится использовать роботов, что усложняет работу. В то же время поведение плазмы обычного водорода или дейтерия весьма близко к поведению плазмы из смеси дейтерия и трития. Это привело к тому, что за всю историю лишь две термоядерные установки полноценно работали на смеси дейтерия и трития: токамаки TFTR и JET. На остальных установках даже дейтерий используется далеко не всегда. Так что название «термоядерная» в определении установки вовсе не означает, что в ней когда-либо реально происходили термоядерные реакции (а в тех, где происходят, почти всегда используют чистый дейтерий).
    Гибридный реактор. D-T реакция рождает 14 МэВ нейтроны, которые могут делить даже обеднённый уран. Деление одного ядра урана сопровождается выделением примерно 200 МэВ энергии, что в десять с лишним раз превосходит энергию, выделяющуюся при синтезе. Так что уже существующие токамаки могли бы стать энергетически выгодными, если бы их окружили урановой оболочкой. Перед реакторами деления такие гибридные реакторы имели бы преимущество в невозможности развития в них неуправляемой цепной реакции. Кроме того, крайне интенсивные потоки нейтронов должны перерабатывать долгоживущие продукты деления урана в короткоживущие, что существенно снижает проблему захоронения отходов.

    Инерциальные надежды

    Инерциальный синтез тоже не стоит на месте. За десятки лет развития лазерной техники появились перспективы повысить КПД лазеров примерно в десять раз. А их мощность на практике удалось повысить в сотни и тысячи раз. Ведутся работы и над ускорителями тяжелых ионов с параметрами, пригодными для термоядерного применения. Кроме того, важнейшим фактором прогресса в области инерциального синтеза стала концепция «быстрого поджига». Она предполагает использование двух импульсов: один сжимает термоядерное топливо, а другой разогревает его небольшую часть. Предполагается, что начавшаяся в небольшой части топлива реакция впоследствии распространится дальше и охватит все топливо. Такой подход позволяет существенно снизить затраты энергии, а значит, сделать реакцию выгодной при меньшей доле прореагировавшего топлива.

    Проблемы токамаков

    Несмотря на прогресс установок иных типов, токамаки на данный момент все равно остаются вне конкуренции: если на двух токамаках (TFTR и JET) еще в 1990-х реально было получено выделение термоядерной энергии, приблизительно равное затратам энергии на нагрев плазмы (пусть такой режим и длился лишь около секунды), то на установках других типов ничего подобного добиться не удалось. Даже простое увеличение размеров токамаков приведет к осуществимости в них энергетически выгодного синтеза. Сейчас во Франции строится международный реактор ITER, который должен будет продемонстрировать это на практике.


    Однако проблем хватает и у токамаков. ITER стоит миллиарды долларов, что неприемлемо для будущих коммерческих реакторов. Ни один реактор не работал непрерывно в течение даже нескольких часов, не говоря уж о неделях и месяцах, что опять же необходимо для промышленного применения. Пока нет уверенности, что материалы внутренней стенки вакуумной камеры смогут выдержать длительное воздействие плазмы.

    Сделать проект менее затратным сможет концепция токамака с сильным полем. За счет увеличения поля в два-три раза планируется получить нужные параметры плазмы в относительно небольшой установке. На такой концепции, в частности, основан реактор Ignitor, который совместно с итальянскими коллегами сейчас начинают строить в подмосковном ТРИНИТИ (Троицкий институт инновационных и термоядерных исследований). Если расчеты инженеров оправдаются, то при многократно меньшей по сравнению с ITER цене в этом реакторе удастся получить зажигание плазмы.

    Вперед, к звездам!

    Продукты термоядерной реакции разлетаются в разные стороны со скоростями, составляющими тысячи километров в секунду. Это делает возможным создание сверхэффективных ракетных двигателей. Удельный импульс у них будет выше, чем у лучших электрореактивных двигателей, а потребление энергии при этом может быть даже отрицательным (теоретически возможна выработка, а не потребление энергии). Более того, есть все основания полагать, что сделать термоядерный ракетный двигатель будет даже проще, чем наземный реактор: нет проблемы с созданием вакуума, с теплоизоляцией сверхпроводящих магнитов, нет ограничений по габаритам и т. д. Кроме того, выработка двигателем электроэнергии желательна, но вовсе не обязательна, достаточно, чтобы он не слишком много ее потреблял.

    Электростатическое удержание

    Концепцию электростатического удержания ионов легче всего понять на примере установки, называемой «фузором». Её основу составляет сферический сетчатый электрод, на который подаётся отрицательный потенциал. Ускоренные в отдельном ускорителе или полем самого центрального электрода ионы попадают внутрь его и удерживаются там электростатическим полем: если ион стремится вылететь наружу, поле электрода разворачивает его назад. Увы, вероятность столкновения иона с сеткой на много порядков выше, чем вероятность вступить в реакцию синтеза, что делает энергетически выгодную реакцию невозможной. Подобные установки нашли применение лишь в качестве источников нейтронов.
    Стремясь совершить сенсационное открытие, многие учёные стремятся видеть синтез везде, где только можно. В прессе многократно возникали сообщения по поводу различных вариантов так называемого «холодного синтеза». Синтез обнаруживали в «пропитанных» дейтерием металлах при протекании через них электрического тока, при электролизе насыщенных дейтерием жидкостей, во время образования в них кавитационных пузырьков, а также в других случаях. Однако большинство из этих экспериментов не имели удовлетворительной воспроизводимости в других лабораториях, а их результаты практически всегда можно объяснить без использования синтеза.
    Продолжая «славную традицию», начавшуюся с «философского камня», а затем превратившуюся в «вечный двигатель», многие современные мошенники предлагают уже сейчас купить у них «генератор холодного синтеза», «кавитационный реактор» и прочие «бестопливные генераторы»: про философский камень все уже забыли, в вечный двигатель не верят, а вот ядерный синтез сейчас звучит вполне убедительно. Но, увы, на самом деле таких источников энергии пока не существует (а когда их удастся создать, это будет во всех выпусках новостей). Так что знайте: если вам предлагают купить устройство, вырабатывающее энергию за счёт холодного ядерного синтеза, то вас пытаются просто «надуть»!

    По предварительным оценкам, даже при современном уровне техники возможно создание термоядерного ракетного двигателя для полета к планетам Солнечной системы (при соответствующем финансировании). Освоение технологии таких двигателей в десятки раз повысит скорость пилотируемых полетов и даст возможность иметь на борту большие резервные запасы топлива, что позволит сделать полет на Марс не более сложным занятием, чем сейчас работа на МКС. Для автоматических станций потенциально станет доступной скорость в 10% от скорости света, что означает возможность отправки исследовательских зондов к ближайшим звездам и получение научных данных еще при жизни их создателей.


    Наиболее проработанной в настоящее время считается концепция термоядерного ракетного двигателя на основе инерциального синтеза. При этом отличие двигателя от реактора заключается в магнитном поле, которое направляет заряженные продукты реакции в одну сторону. Второй вариант предполагает использование открытой ловушки, у которой одна из пробок намеренно ослаблена. Истекающая из нее плазма будет создавать реактивную силу.

    Термоядерное будущее

    Освоение термоядерного синтеза оказалось на много порядков сложнее, чем это казалось вначале. И хотя множество проблем уже решено, оставшихся хватит на несколько ближайших десятилетий напряженного труда тысяч ученых и инженеров. Но перспективы, которые открывают перед нами превращения изотопов водорода и гелия, столь велики, а проделанный путь уже столь значителен, что останавливаться на полпути не имеет смысла. Что бы ни говорили многочисленные скептики, будущее, безусловно, за синтезом.

    1. Ядерная энергетика - это область науки и промышленной технологии, в которой разрабатываются и используются на практике методы и средства преобразования ядерной энергии в тепловую и электрическую. Основы ядерной энергетики составляют атомные электростанции(АЭС). Источником энергии на АЭС служат ядерные реакторы, в которых протекает управляемая цепная реакция деления ядер тяжелых элементов, в основном U-235 и Рu-239.

    Ядерные реакторы бывают двух типов: реакторы на медленных нейтронах и реакто­ры на быстрых нейтронах. Большинство АЭС в мире построены на основе реакторов на медленных нейтронах. Первые реакторы, построенные в США (1942г.), в СССР (1946г.) и в других развитых странах, предназначались для наработки оружейного плутония Рu-239. Вы­деляющееся в них тепло представляло собой побочный продукт. Это тепло отводилось из реактора с помощью системы охлаждения и просто сбрасывалось в окружающую среду.

    Мехаиизм выделения тепла в реакторе состоит в следующем. Возникающие при деле­нии ядра урана два осколка уносят огромную кинетическую энергию около 200 МэВ. Их на­чальная скорость достигает 5000 км/с. Двигаясь среди урана, замедлителя или элементов конструкции, эти осколки, сталкиваясь с атомами, передают им свою энергию и постепенно замедляются до тепловых скоростей. Активная зона реактора разогревается. Увеличивая ин­тенсивность ядерной реакции, можно достигнуть больших тепловых мощностей.

    Тепло, выделяющееся в реакторе, выносится с помощью жидкого или газообразного теплоносителя. В целом реактор с теплоносителем напоминает паротрубный котел (вода протекает по трубам внутри топки и нагревается). Поэтому наряду с понятием «ядерный ре­актор» часто используют синоним «ядерный котел».

    На рис. 144 показана схема АЭС, в реакторе 1. Плот­ность потока нейтронов внутри работающего реактора достигает 10 14 частиц через 1 см 2 в секунду.

    Различают тепловую и электрическую мощ­ность реактора. Электрическая мощность составляет не более 30 % от тепловой. Первая в мире АЭС была построена в 1954 г. в СССР в г. Обнинске. Её тепловая мощ­ность 30 МВт, электрическая 5 МВт. Активная зона уран-графитового реактора на медлен­ных нейтронах имеет форму цилиндра диаметром 1,5 м и высотой 1,7 м. Теплоноситель -вода. Температура воды на входе в реактор + 190°С, на выходе + 280°С, давление 100 атм.

    Загрузка реактора составляет 550 кг обогащенного до 5 % урана. Продолжительность работы на номинальной мощности 100 суток. Проектная глубина выгорания U-235 - 15%. Реактор содержит 128 тепловыделяющих элементов (ТВЭЛов). Обнинская АЭС была по­строена с целью отработки технологических решений ядерной энергетики. В более поздних серийных АЭС загрузка и мощность реакторов увеличиваются в сотни раз.

    2. Ядерный реактор на медленных нейтронах. Как уже говорилось в §21, основная задача при разработке ядерных реакторов заключалась в том, чтобы реактор мог работать на природном уране, т.е. добываемом химическим способом из руд и содержащем естественную смесь изотопов: U-238 (99,282%), U-235 (0,712%), U-234 (0,006%), или на сравнительно де­шевом низкообогощенпом уране, в котором содержание изотопа U-235 или Рu-239 увеличено до 2-5 %.

    Для этого надо выполнить три условия: во-первых, масса делящегося вещества в реак­торе (U-235 или Рu-239) должна быть при данной его конфигурации не меньше критической. Это значит, что в среднем один нейтрон из числа получающихся в каждом акте деления ядра смог бы вызвать следующий акт деления. Во-вторых, нейтроны нужно замедлять до тепло­вых скоростей, и делать это так, чтобы свести к минимуму их потери на радиационный за­хват ядрами неделящихся материалов. В-третьих, разработать принципы и создать средства управления цепной ядерной реакцией. Хотя все эти условия взаимосвязаны, по каждому из них можно выделить основные пути их реализации.

    а. Достижение критической массы делящегося вещества возможно двумя путями: простым увеличением массы урана и обогащением урана. Из-за низкой концентрации деля­щегося вещества его критическая масса в реакторе много больше, чем в атомной бомбе. На­пример, в Обнинской АЭС /m кр U-235 составляет около 25 кг. В более современных мощных реакторах m кр достигает нескольких тонн. Для сокращения потерь на утечку нейтронов из реактора его активная зона окружается отражателем нейтронов. Это вещество с лёгкими ядрами, слабо поглощающие нейтроны (графит, бериллий).

    б. Замедление нейтронов . На рис.145 покачан энергетический спектр нейтронов, ис­пускаемых делящимися ядрами U-235. По оси абсцисс отложена кинетическая энергия Е нейтронов, по оси ординат - относительная частота ΔN/N повторения такой энергии в услов­ных единицах. Кривая имеет максимум при Е= 0,645 МэВ. Из рисунка видно, что при деле­нии ядер U-235 образуются преимущественно быстрые нейтроны с энергией Е > 1 МэВ.

    Как уже говорилось ранее, эффективное се­чение захвата нейтронов ядрами U-235 максимально для тепловых нейтронов, когда их энергия Е< 1 Мэв. Поэтому для наиболее эффективного ис­пользования нейтронов их надо замедлять до тепло­вых скоростей. Казалось бы, это можно сделать про­стым наращиванием массы естественного урана. В этом случае нейтроны, последовательно сталкиваясь с ядрами урана, должны постепенно уменьшать свою энергию и приходить к тепловому равновесию с массой урана. Но в естественном уране на 1 ядро U-235 приходиться 140 ядер U-238. Сечение радиа­ционного захвата быстрых нейтронов ядрами U-238 невелико (σ=0,3 барна), и этот путь был бы возмо­жен, если бы не резонансная область (см. рис.139), где σ возрастает в тысячи раз. Например, при энергии нейтронов E=7эВ σ достигает 5000 барн. Нейтроны этот диапазон энергий в уране не пройдут. Они почти все будут захвачены ядрами U-238

    Чтобы такого поглощения не произошло, нейтроны должны выводиться из массы урана, замедляться в слабопоглощающем нейтроны замедлителе (графит, тяжелая вода, бе­риллий) и возвращаться обратно в массу урана (диффундировать) Это достигается тем, что уран загружается в тонкие трубки тепловыделяющих элементов (ТВЭЛов). А ТВЭЛы по­гружаются в.каналы замедлителя.

    Обычно ТВЭЛы представляют собой тонкостенные трубки диаметром 15-20 мм из циркониевого сплава. Внутри ТВЭЛов закладывается ядерное топливо в виде таблеток, спрессованных из оксида урана U0 2 . Оксид не спекается при высокой температуре и легко извлекается при перезарядке ТВЭЛов. В зависимости от размеров активной зоны реактора длина ТВЭЛов может достигать 7-8 м. Монтируют ТВЭЛы по несколько штук в контейнеры, представляющие собой трубы диаметром 10-20 см или призмы. При перезарядке реакторов заменяются эти контейнеры, а их разборка и замена ТВЭЛов производится на заводе.

    Сам реактор представляет собой чаще всего цилиндр, через верхнее основание кото­рого в шахматном порядке проделаны вертикальные каналы. В этих каналах размещаются контейнеры с ТВЭЛами и регулирующие стержни поглотителя.

    в. Управление цепной ядерной реакцией осуществляется с помощью стержней из ма­териалов, сильно поглощающих нейтроны - кадмия 48 113 Cd и бора 5 10 В. Последний часто в ви­де карбида В 4 С (Температура плавления у кадмия 321°С, у бора 2075°С). Их сечения погло­щения, соответственно σ = 20000 и 4000 барн. Параметры поглощающих стержней рассчи­тывают так, чтобы при полностью вставленных стержнях ядерная реакция в реакторе заве­домо не шла. При постепенном вынимании стержней коэффициент размножения К в актив­ной зоне растет и при некотором положении стержня доходит до единицы. В этот момент реактор начинает работать. В процессе работы коэффициент К постепенно уменьшается за счёт загрязнения реактора осколками деления. Это уменьшение К компенсируется выдвига­нием стержней. На случай внезапного роста интенсивности реакции есть дополнительные стержни. Их быстрый сброс в активную зону немедленно прекращает реакцию.

    Управление реактором облегчается благодаря наличию запаздывающих нейтронов. Их доля у разных изотопов колеблется от 0,6 до 0,8 %, у U-235 приблизительно 0,64 %. Средний период полураспада осколков деления, рождающих запаздывающие нейтроны, Т= 9 с, среднее время жизни одного поколения запаздывающих нейтронов τ= Т/ln2 = 13 с.

    При стационарной работе реактора коэффициент размножения быстрых нейтронов K б = 1. Полный коэффициент К = К б + К, отличается от единицы на долю запаздывающих нейтронов и может достигать К = 1 + 0,006. Во втором поколении через 13 секунд число ней­тронов N = N 0 K 2 = N 0 (1,006)2= 1,012МN 0 . В десятом поколении через 130с их число составит N 0 K 10 = 1.062МN 0 , что еще далеко от аварийной ситуации. Поэтому автоматическая система управления, основанная на контроле за плотностью потока нейтронов в активной зоне, впол­не успевает отслеживать малейшие нюансы в работе реактора и отвечать на них перемеще­нием регулирующих стержней.

    3. Отравление реактора - это накопление в нем радиоактивных продуктов. Накопление в нем стабильных продуктов называют зашлаковыванием реактора. В обоих случаях на­капливаются ядра, интенсивно поглощающие нейтроны. Сечение захвата у наиболее сильно­го отравителя ксенона-135 достигает 2,6*10 6 барн.

    Механизм образования Хе-135 следующий. При делении U-235 или Рu-239 медлен­ными нейтронами с вероятностью 6 % получается осколок - ядро теллура 52 135 Тe. С периодом 0,5 мин Тe-135 испытывает β - -распад, превращаясь в ядро изотопа йода I. Этот изотоп тоже β - активен с периодом 6,7 часов. Продуктом распада I-135 и является изотоп ксенона 54 135 Хе. С периодом T= 9,2 ч Хе-135 испытывает β - распад, превращаясь в практически стабильный изотоп цезия 55 135 Сz. (/T= 3*10 6 лет).

    В результате других схем распада образуются другие вредные ядра, например сама­рий 62 139 Sm . Особенно быстро отравление идет в начальный период работы реактора. С тече­нием времени устанавливается радиоактивное равновесие между продуктами распада. С это­го момента начинается рост зашлаковывания реактора.

    Реактор, в котором делящееся вещество (уран), замедлитель (графит) и поглотитель (кадмий) представляют собой отдельные фазы и имеют границы раздела, называется гетеро­генным. Еели все эти элементы в жидком или газообразном состоянии представляют собой одну общую фазу, реактор называется гомогенным. Для энергетических цепей строят исклю­чительно гетерогенные реакторы.

    5. Реакторы на быстрых нейтронах. Ядра U-235, Рu-239 и U-233 делятся на всех нейтронах. Поэтому если увеличить обогащение урана, например, изотопом U-235, то из-за увеличения концентрации делящихся ядер всё большая часть нейтронов будет делить ядра U-235, не выходя из массы урана. При некоторой концентрации делящихся ядер и при доста­точной массе урана в активной зоне коэффициент размножения нейтронов достигает едини­цы и без их замедления. Реактор будет работать на быстрых нейтронах (Сокращенно - бы­страя реакция).

    Преимущество быстрой реакции перед медленной (то есть перед реакцией на медлен­ных нейтронах) в том, что более эффективно используются нейтроны. В результате увеличивается воспроизводство ядерного горючего. В медленной реакции из 2,5 нейтронов также 1 идёт в ядро U-235, поддерживая реак­цию, примерно 1 - в ядро U-238, образуя затем Рu-239 (ядерное горючее), и 0,5 нейтрона те­ряется. Па одно ядро "сгоревшего" U-235 получается примерно 1 ядро Рu-239. В быстрой реакции из 2,5 нейтронов также 1 идет на поддержание реакции. Но теря­ется нейтронов меньше 0,5. Поэтому в ядра U-238 попадает больше нейтронов. В результате на одно ядро «сгоревшего» U-235 образуется больше 1ядра Рu-239. Происходит расширен­ное воспроизводство ядерного горючего. Создание и эксплуатация реакторов на быстрых нейтронах сложнее, чем на медлен­ных. Во-первых, резко уменьшается объем активной зоны. Это увеличивает плотность энер­говыделения, что приводит к росту температуры и ужесточает требования к конструкцион­ным материалам и теплоносителю. Во-вторых, повышаются требования к системе управле­ния реакторами, то есть к скорости выполнения операций управляющей системой.

    6. Перспективы ядерной энергетики. На сегодняшний день нормально работающие АЭС являются экологически самыми чистыми из всех энергетических источников. Они не выделяют С0 2 и S0 2 , как тепловые станции, и потому не усугубляют парниковый эффект и не заливают водой пахотные земли, как ГЭС. С учетом возможности переработки U-238 в Рu-239 и Th-232 в U-233, запасов легко доступного ядерного горючего хватит на сотни лет. Использование АЭС позволит сохранит нефть, газ и уголь для химической промышленности. Трудностей с расширением парка АЭС две. Одна объективная, суть её в том, что не до конца решены проблемы, связанные с утилизацией и захоронением отходов ядерного горю­чего и элементов конструкции, отработавших ресурс реакторов.

    Вторая трудность носит субъективный характер. По сравнению с тепловыми и гидро­станциями обслуживание АЭС требует более высокой технической культуры и накладывает на человека огромную ответственность. Малейшее отступления от технологической дисцип­лины может обернуться трагедией для тысяч людей.

    7. Термоядерный синтез . Из кривой распределения удельной энергии связи следует, что слияние легких ядер в одно ядро, как и деление тяжелых ядер, должно сопровождаться выделением огромного количества энергии. Все ядра несут одноимённый положительный заряд. Чтобы их сблизить на расстоя­ние, на котором начинается синтез, два взаимодействующих ядра нужно разогнать навстречу друг другу. Это можно сделать двумя путями. Во-первых, с помощью ускорителей. Этот путь громоздок и малоэффективен. Во-вторых, просто нагревая газ до необходимой темпера­туры. Поэтому реакции слияния легких ядер, инициированные нагреванием газа, называют термоядерными реакциями. Оценим температуру дейтериевого газа, при которой начинается термоядерный син­тез дейтерий + дейтерий. 1 2 Н+ 1 2 Н→ 2 3 Не + 0 1 n + 3,27 МэВ.

    Для слияния ядер их нужно сблизить на расстояние r = 2*10 -15 м. Потенциальная энер­гия при таком сближении должна быть равной кинетической энергии обоих ядер в системе

    центра масс. (1/4πε 0)*(e 2 /r) = 2*(mυ 2 /2) = 2*(3/2)* кТ. Температура газа Т=(1/3K)*(1/4πε 0)*(e 2 /r)=3*10 9 K. Распределение частиц по энергиям близко к максвеловскому. Поэтому всегда есть бо­лее "горячие" частицы, а также благодаря туннельному эффекту, реакция синтеза начинается при меньших температурах Т ≈ 10 7 К.

    Кроме реакции особый интерес представляют ещё две: дейтерий + дейтерий и дейтерий + тритий. 2 1 Н + 1 2 Н+ 1 2 p + 4,03 МэВ. (22.3) и 1 2 Н + 1 3 Н → 2 4 Не + 0 1 n +17,59 МэВ. (22.4)

    В последней реакции на единицу массы выделяется примерно в 5 раз больше энергии, чем при делении U-235. Эта энергия представляет собой кинетическую энергию движения нейтронов и образующихся ядер гелия. В земных условиях удалось реализовать реакцию ядерного синтеза в виде неуправляемого взрыва термоядерной водородной бомбы.

    8. Водородная бомба представляет собой обычную атомную бомбу, ядерный заряд которой (U-235 или Ри-239) окружен бланкетом из вещества, содержащего легкие атомы. Например, дейтерида лития LiD. Возникающая при подрыве атомного заряда высокая темпе­ратура инициирует термоядерный синтез легких атомов. Благодаря этому выделяется допол­нительная энергия, увеличивающая мощность бомбы. Помимо реакций (22.1) и (22.3) в бомбе с бланкетом из дейтерида лития может идти ещё одна. 3 6 Li+ 1 1 р→ 2 4 Нe + 2 3 Не + 4МэВ. (22.5). (22.4). Но тритий – β - - активный элемент. С периодом 12 лет он превращает­ся в Не-3. Поэтому водородные заряды с тритием имеют ограниченный срок хранения и должны регулярно испытываться. Из веществ, участвующих в термоядерном синтезе, не образуется радиоактивных продуктов. Но благодаря интенсивному нейтронному потоку радиоактивность наводится в ядрах конструкционных материалов и окружающих тел. Поэтому реализовать "чистую" ре­акцию синтеза без радиоактивных отходов нельзя.

    9. Проблема управляемого термоядерного синтеза (У ГС) не решена до сих пор. Ее решение очень перспективно для энергетики. В воде морей и океанов содержится примерно 0,015% дейтерия (по числу атомов). Воды на земле около 10 20 кг. Если извлечь из этой воды дейтерий, то энергия, которую можно из неё получить, эквивалентна 6*10 18 К)" тонн каменного угля, это гигантская величина (примерно 0,001 массы Земли), Поэтому дейтерий морей и океанов представляет собой практически неисчерпаемый источник энергии.

    Проблема УТС сводится к двум задачам, Во-первых, нужно научиться создавать в ог­раниченном объеме высокую температуру Т>10 7 К. Во-вторых, удерживать объём разоде­той до этой температуры плазмы в течение времени, достаточного для протекания реакции синтеза ядер. Обе эти задачи далеки от решения.

    10. Термоядерные реакции в звездах. По современным представлениям, звезда рож­дается из протяженных газопылевых облаков, состоящих в основном из водорода. В результате гравитационного сжатия облако уплотняется и начинает разодеваться, превращаясь в протозвезду. Когда температура в центре протозвезды достигает 10 7 К, в ней возбуждаются термоядерные реакции синтеза легких элементов, в основном, водорода Гравитационное сжатие приостанавливается возросшим газокинетическим и оптическим давлением. Протозвезда превращается в звезду. Возможны два цикла превращения водорода в гелий. Ниже перечислены основные реакции, составляющие каждый цикл. В скобках рядом с уравнениями реакций указано среднее время реакции τ, вычисленное но эффективному сечению реакции для тех давлений и температур, которые есть внутри звезды.