Тезисы выступления на заседании круглого стола
«Боевые роботы в войне будущего: выводы для России»
в редакции еженедельника «Независимое военное обозрение»
г. Москва, 11 февраля 2016 г.

Ответ на вопрос, «Какие боевые роботы нужны России?», невозможен без понимания того для чего нужны боевые роботы, кому, когда и в каком количестве. Кроме того надо договориться о терминах: в первую очередь, что называть «боевым роботом». На сегодняшний день официальной считается формулировка из Военного энциклопедического словаря «боевой робот – это многофункциональное техническое устройство с антропоморфным (человекоподобным) поведением, частично или полностью выполняющее функции человека при решении определенных боевых задач». Словарь размещен на официальном сайте Министерства обороны РФ.

Мобильный робототехнический комплекс для разведки и огневой поддержки «Металлист»

Словарь классифицирует боевых роботов по степени их зависимости, или точнее независимости, от человека (оператора).

Боевые роботы 1-го поколения – это устройства с программным и дистанционным управлением способные функционировать только в организованной среде.
Боевые роботы 2-го поколения - адаптивные, имеющие своего рода органы "чувств" и способные функционировать в заранее неизвестных условиях, то есть приспосабливаться к изменениям обстановки.

Боевые роботы 3-го поколения - интеллектуальные, имеют систему управления с элементами искусственного интеллекта (созданы пока лишь в виде лабораторных макетов).

Составители словаря (в т.ч. Военно-научный комитет Генерального штаба Вооруженных Сил Российской Федерации), по-видимому, опирались на мнение специалистов Главного управления научно-исследовательской деятельности и технологического сопровождения передовых технологий (инновационных исследований) Министерства обороны Российской Федерации (ГУНИД МО РФ), которое определяет основные направления развития в области создания робототехнических комплексов в интересах Вооруженных Сил, и Главного научно-исследовательского испытательного центра робототехники МО РФ, который является головной научно-исследовательской организацией Минобороны России в области робототехники. Не осталась без внимания, наверно, и позиция Фонда перспективных исследований (ФПИ), с которым упомянутые организации тесно сотрудничают по вопросам роботизации.

Для сравнения, западные специалисты также делят роботов на три категории: «человек-в-системе-управления» (human-in-the-loop), «человек-над-системой-управления» (human-on-the-loop) и «человек-вне-системы-управления» (human-out-of-the-loop). К первой категории отнесены беспилотные машины способные самостоятельно обнаруживать цели и осуществлять их селекцию, однако решение об их уничтожении принимает только человек-оператор. Ко второй категории относятся системы, способные самостоятельно обнаруживать и выбирать цели, а также принимать решения на их уничтожение, но человек-оператор, выполняющий роль наблюдателя, в любой момент может вмешаться и скорректировать или заблокировать данное решение. В третью категорию отнесены роботы способные обнаруживать, выбирать и уничтожать цели самостоятельно без человеческого вмешательства.

Сегодня наиболее распространены боевые роботы первого поколения (управляемые устройства) и быстро совершенствуются системы второго поколения (полуавтономные устройства). Для перехода к использованию боевых роботов третьего поколения (автономных устройств) ученые разрабатывают самообучающуюся систему с искусственным интеллектом, в которой будут соединены возможности самых передовых технологий в области навигации, визуального распознавания объектов, искусственного интеллекта, вооружения, независимых источников питания, маскировки и др. Такие боевые системы будут значительно опережать человека в скорости распознавания окружающей среды (в любой сфере) и в скорости и точности реагирования на изменения обстановки.

Искусственные нейронные сети уже самостоятельно научились распознавать на изображениях человеческие лица и части тел. По прогнозам специалистов полностью автономные боевые системы могут появиться уже через 20-30 лет или даже раньше. При этом высказываются опасения, что автономные боевые роботы, каким бы совершенным искусственным интеллектом они ни обладали, не смогут, как человек, анализировать поведение находящихся перед ними людей и, следовательно, будут представлять угрозу для невоюющего населения.

Ряд экспертов полагает, что будут созданы роботы-андроиды способные заменить солдата на любом участке боевых действий: на суше, на воде, под водой или в воздушно-космической среде.

Тем не менее, вопрос с терминологией нельзя считать решенным, так как не только западные специалисты не используют термин «боевой робот», но и Военная доктрина РФ (ст.15) относит к характерным чертам современных военных конфликтов «массированное применение систем вооружения и военной техники, …, информационно-управляющих систем, а также беспилотных летательных и автономных морских аппаратов, управляемых роботизированных образцов вооружения и военной техники».

Сами представители МО РФ видят роботизацию вооружения, военной и специальной техники в качестве приоритетного направления развития Вооружённых Сил предполагающего «создание безэкипажных машин в виде роботизированных систем и комплексов военного назначения различных сред применения».

Исходя из достижений науки и темпов внедрения новых технологий во все области человеческой жизнедеятельности, в обозримом будущем могут быть созданы автономные боевые системы («боевые роботы») способные решать большинство боевых задач и автономные системы для тылового и технического обеспечения войск. Но какой будет война через 10-20 лет? Как расставить приоритеты в разработке и постановке на вооружение боевых систем различной степени автономности с учетом финансово-экономических, технологических, ресурсных и иных возможностей государства?

В 2014 г. военно-научный комплекс МО РФ совместно с органами военного управления разработал концепцию применения робототехнических комплексов военного назначения на период до 2030 года, а в декабре 2014 г. министр обороны утвердил комплексную целевую программу «Создание перспективной военной робототехники до 2025 года».

Выступая 10 февраля 2016 г. на конференции «Роботизация Вооруженных Сил РФ» Начальник Главного научно-исследовательского испытательного центра робототехники МО РФ полковник С.Попов заявил, что "основными целями роботизации Вооруженных сил РФ являются достижение нового качества средств вооруженной борьбы для повышения эффективности выполнения боевых задач и снижения потерь военнослужащих". "При этом особое внимание уделяется рациональному сочетанию возможностей человека и техники".

Отвечая перед конференцией на вопрос «Из чего вы будете исходить при отборе тех или иных экспонатов и включении их в перечень перспективных образцов?» он сказал следующее: «Из практической потребности оснащения Вооружённых Сил робототехническими комплексами военного назначения, которая, в свою очередь, определяется прогнозируемым характером будущих войн и вооружённых конфликтов. Зачем, к примеру, рисковать жизнью и здоровьем военнослужащих, когда их боевые задачи смогут выполнить роботы? Зачем поручать личному составу сложные, трудоёмкие и ответственные работы, которые окажутся по силам робототехнике? Применяя военные роботы, мы, самое главное, сумеем снизить боевые потери, сведём к минимуму причинение вреда жизни и здоровью военнослужащих в ходе профессиональной деятельности и при этом обеспечим требуемую эффективность выполнения задач по предназначению».
Данное заявление соответствует положению Стратегии национальной безопасности РФ 2015 г., что «совершенствование форм и способов применения Вооруженных Сил Российской Федерации, других войск, воинских формирований и органов предусматривает своевременный учет тенденций изменения характера современных войн и вооруженных конфликтов, …» (ст.38). Однако возникает вопрос, как планируемая (а скорее, уже начавшаяся) роботизация Вооруженных Сил соотносится со ст.41 той же Стратегии: «Обеспечение обороны страны осуществляется на основании принципов рациональной достаточности и эффективности, …».

Простая замена роботом человека в бою не просто гуманна, она целесообразна, если действительно «обеспечивается требуемая эффективность выполнения задач по предназначению». Но для этого сначала надо определить, что понимать под эффективностью выполнения задач и в какой мере такой подход соответствует финансовым и экономическим возможностям страны. Представляется, что задачи роботизации ВС РФ должны быть ранжированы в соответствии с приоритетами общих задач военной организации государства по обеспечению военной безопасности в мирное время и задач соответствующих силовых министерств и ведомств в военное время.

Из находящихся в открытом доступе документов этого не прослеживается, зато очевидно стремление соответствовать положениям ст.115 Стратегии национальной безопасности РФ, в которую пока включен лишь один военный «показатель, необходимый для оценки состояния национальной безопасности», а именно – «доля современных образцов вооружения, военной и специальной техники в Вооруженных Силах Российской Федерации, других войсках, воинских формированиях и органах».

Представленные общественности образцы робототехники никак нельзя отнести к «боевым роботам», способным повысить эффективность решения главных задач вооруженных сил – сдерживание и отражение возможной агрессии.

Хотя перечень военных опасностей и военных угроз, изложенный в Военной доктрине РФ (ст.12, 13, 14), основных задач Российской Федерации по сдерживанию и предотвращению конфликтов (ст.21) и основных задач Вооруженных Сил в мирное время (ст.32) позволяет расставить приоритеты в роботизации Вооруженных Сил и других войск.

«Смещения военных опасностей и военных угроз в информационное пространство и внутреннюю сферу Российской Федерации» требует ускорить в первую очередь развитие устройств и систем для ведения наступательных и оборонительных действий в киберпространстве. Киберпространство – это та сфера, где уже сегодня искусственный интеллект опережает возможности человека. Более того, ряд машин и комплексов уже могут действовать автономно. Можно ли киберпространство считать боевой средой и, следовательно, называть компьютерные роботы «боевыми роботами», этот вопрос пока остается открытым.
Одним из инструментов «противодействия попыткам отдельных государств (групп государств) добиться военного превосходства путем развертывания систем стратегической противоракетной обороны, размещения в космическом пространстве, развертывания стратегических неядерных систем высокоточного оружия» могла бы стать разработка боевых роботов – автономных космических аппаратов, способных нарушить работу (вывести из строя) космических систем разведки, управления и навигации вероятного противника. Одновременно это способствовало бы обеспечению воздушно-космической обороны Российской Федерации и явилось бы для главных оппонентов России дополнительным стимулом к заключению международного договора о предотвращении размещения в космическом пространстве любых видов оружия.

Огромная территория, экстремальные физико-географические и погодно-климатические условия некоторых регионов страны, протяженная государственная границы, демографические ограничения и другие факторы требуют разработки и создания дистанционно управляемых и полуавтономных систем боевых систем способных решать задачи охраны и обороны границ на суше, на море, под водой и в воздушно-космическом пространстве. Это стало бы существенным вкладом в обеспечение национальных интересов Российской Федерации в Арктике.

Такие задачи, как борьба с терроризмом; охрана и оборона важных государственных и военных объектов, объектов на коммуникациях; обеспечение общественной безопасности; участие в ликвидации чрезвычайных ситуаций уже частично решаются с помощью роботизированных комплексов различного назначения.

Создание роботизированных боевых систем для ведения боевых действий против противника, как на «традиционном поле боя» с наличием линии соприкосновения сторон (пусть даже быстро меняющейся), так и в урбанизированной военно-гражданской среде с хаотично меняющейся обстановкой, где отсутствуют привычные боевые порядки войск, также должно быть среди приоритетных задач. При этом полезно учесть опыт других стран, занимающихся роботизацией военного дела.

По сообщениям иностранных СМИ, около 40 стран, в т.ч. США, Россия, Великобритания, Франция, Китай, Израиль, Южная Корея, разрабатывают роботов, способных воевать без человеческого участия. Считается, что рынок подобных вооружений может достигать 20 млрд. долларов США. С 2005 г. по 2012 г. Израиль продал беспилотных летательных аппаратов (БЛА) на сумму в 4,6 млрд. долл. США. А всего разработками военных роботов занимаются специалисты более чем 80 стран.

Сегодня 30 государств разрабатывают и производят до 150 типов БЛА, из них 80 приняты на вооружение 55 армий мира. Лидируют в данной области США, Израиль и Китай. Следует заметить, что БЛА не относятся к классическим роботам, так как не воспроизводят человеческую деятельность, хотя и считаются роботизированными системами. По прогнозам, в 2015-2025гг. доля США в мировых расходах на БЛА составит: по НИОКР – 62%, по закупкам – 55%.

Ежегодник Лондонского института стратегических исследований Military Balance 2016 дает следующие цифры по количеству тяжелых БЛА у ведущих государств мира: США 540, Великобритания – 10, Франция – 9, Китай и Индия – по 4, Россия – «несколько единиц».

При вторжении в Ирак в 2003 г. США имели всего несколько десятков БЛА и ни одного наземного робота. В 2009 г. они уже имели 5300 БЛА, а в 2013 г. более 7000. Массированное применение повстанцами в Ираке самодельных взрывных устройств стало причиной резкого ускорения развития американцами наземных роботов. В 2009 г. ВС США уже имели более 12 тысяч роботизированных наземных устройств.

В конце 2010 года министерство обороны США обнародовало «План развития и интеграции автономных систем на 2011-2036 годы». Согласно этому документу, количество воздушных, наземных и подводных автономных систем будет заметно увеличено, причем перед разработчиками ставятся задачи сначала наделить эти аппараты «поднадзорной самостоятельностью» (то есть, их действия контролирует человек), а в конечном итоге - и «полной самостоятельностью». При этом специалисты ВВС США полагают, что перспективный искусственный интеллект в ходе боя будет способен самостоятельно принимать решения, не нарушающие законодательства.

Однако роботизация вооруженных сил имеет ряд серьезных ограничений, с которыми вынуждены считаться даже самые богатые и развитые страны.
В 2009 гг. США приостановили плановую реализацию программы «Боевые системы будущего» (Future Combat Systems) начатую в 2003 г. по причине финансовых ограничений и технологических проблем. Предполагалось создание для армии (сухопутных войск) США системы, включающей в т.ч. БЛА, наземные безэкипажные машины, автономные сенсоры поля боя, а также бронированные машины с экипажами и подсистему управления. Данная система должна была обеспечить реализацию концепции сетецентрического управления и распределения информации в реальном масштабе времени, конечным получателем которой должен был стать солдат на поле боя.

С мая 2003 г. по декабрь 2006 г. стоимость программы закупок выросла с 91,4 млрд. долл. до 160,9 млрд. долл. За тот же срок удалось реализовать лишь 2 технологии из 44 запланированных. Общая стоимость программы в 2006 г. оценивалась в 203,3-233,9 млрд. долл., затем она возросла до почти 340 млрд. долл., из которых 125 млрд. долл. планировалось потратить на НИОКР.

В конечном итоге, после израсходования более 18 млрд. долл. программа была остановлена, хотя по планам к 2015 г. треть боевой мощи армии должны были составлять роботы, точнее роботизированные системы.

Тем не менее, процесс роботизации вооруженных сил США продолжается. К настоящему времени разработано около 20 дистанционно управляемых наземных машин для армии. ВВС и ВМС работают над примерно таким же количеством воздушных, надводных и подводных систем. В июле 2014 г. подразделение морских пехотинцев испытало робота-мула способного транспортировать 200 кг груза (оружие, боеприпасы, продовольствие) по пересеченной местности на Гавайях. Правда, к месту эксперимента испытателей пришлось доставлять двумя рейсами: робот не уместился в «Оспрей» вместе с отделением морпехов.

К 2020 году в США планируют разработать робота, который будет сопровождать военнослужащего, при этом управление будет голосовым и жестами. Обсуждается идея совместного комплектования пехотных и специальных подразделений людьми и роботами. Другая идея – комплексировать отработанные и новые технологии. Например, использовать транспортные самолеты и корабли в качестве «платформ-маток» для групп воздушных (С-17 и 50 БЛА) и морских беспилотников, что изменит тактику их использования и увечит их возможности.

То есть пока американцы отдают предпочтение смешанным системам: «человек плюс робот» либо робот, управляемый человеком. Роботам отводится выполнение задач, которые они выполняют эффективнее человека, либо те, где риск жизни человека превышает допустимые ограничения. Преследуется также цель удешевления вооружения и военной техники. Аргумент – стоимость разрабатываемых образцов: истребитель – 180 млн. долл., бомбардировщик – 550 млн. долл., эсминец – 3 млрд. долл.

В 2015 китайские разработчики продемонстрировали комплекс боевых роботов, созданный для борьбы с террористами. В него входят робот-разведчик, который способен находить отравляющие и взрывоопасные вещества. Второй робот специализируется на утилизации боеприпасов. Для непосредственного уничтожения террористов будет задействован третий робот-боец. Он оснащен стрелковым оружием и гранатомётом. Стоимость комплекта из трёх машин составляет 235 тысяч долл.

Мировой опыт использования роботов свидетельствует, что роботизация промышленности многократно опережает другие сферы их использования, в том числе военную. То есть развитие робототехники в гражданских отраслях питает ее развитие в военных целях.

Мировым лидером в гражданской робототехнике является Япония. По общему количеству промышленных роботов (около 350 тыс. шт.) Япония значительно опережает идущих за ней Германию и США. Она также лидер по количеству промышленных роботов на 10 000 человек занятых в автомобильной промышленности, на которую приходится более 40% от всего объема продаж роботов в мире. В 2012 году этот показатель у лидеров составлял: Япония – 1562 единиц; Франция – 1137; Германия – 1133; США – 1091. Китай имел 213 роботов на 10 000 работающих в автопроме.

Однако по количеству промышленных роботов на 10 000 человек занятых во всех отраслях промышленности лидировала Южная Корея– 396 единиц; далее Япония – 332 и Германия – 273. Средняя мировая плотность промышленных роботов к концу 2012 года составляла 58 единиц. При этом в Европе этот показатель составил - 80, в Америке - 68, в Азии – 47 единиц. У России было 2 промышленных робота на 10000 работающих. В 2012 г. в США было продано 22411 промышленных роботов, в России – 307 единиц.

Видимо с учетом данных реалий роботизация Вооруженных Сил, по мнению Начальника Главного научно-исследовательского испытательного центра робототехники МО РФ, стала «не только новой стратегической линией совершенствования вооружения, военной и специальной техники, но и ключевой составляющей развития отраслей промышленности». С этим трудно спорить, если учесть, что в 2012 г. зависимость предприятий ВПК РФ от импортной комплектации по некоторым направлениям доходила до 85%. В последние годы предпринимаются экстренные меры, чтобы уменьшить долю импортных комплектующих до 10-15%.

Помимо финансовых проблем и технических проблем, связанных с электронной компонентной базой, источниками питания, сенсорами, оптикой, навигацией, защитой каналов управления, разработкой искусственного интеллекта и др., роботизация Вооруженных Сил обязывает решать проблемы в сфере образования, общественного сознания и морали, психологии воина.

Чтобы конструировать и создавать боевых роботов нужны подготовленные люди: конструкторы, математики, инженеры, технологи, сборщики и др. Но не только их должна готовить современная система образования России, но и тех кто, их будет применять и обслуживать. Нужны те, кто способен согласовать роботизацию военного дела и эволюцию войны в стратегиях, планах, программах.

Как относиться к разработке боевых роботов-киборгов? Видимо, международное и национальное законодательство должно определить пределы внедрения искусственного интеллекта, чтобы предотвратить восстание машин против человека и уничтожение человечества.

Потребуется формирование новой психологии войны и воина. Состояние опасности меняется, на войну идет не человек, а машина. Кого награждать: погибшего робота или «офисного бойца», сидящего за монитором далеко от поля боя, а то и на другом континенте.

Безусловно, роботизация военного дела это естественный процесс. В России, где роботизации Вооруженных Сил опережает гражданские отрасли, она может способствовать обеспечению национальной безопасности страны. Главное при этом, чтобы она способствовала ускорению общего развития России.

Мы с нетерпением ждём, когда роботы начнут активно входить в нашу жизнь. Например, беспилотные автомобили - это, по сути, самые настоящие роботы. А кто из нас не мечтал о домашнем механическом помощнике-слуге?

Но многие упускают из виду, что все наиболее продвинутые технологии человечество сначала внедряет и обкатывает в одной и той же индустрии - индустрии войны. С роботами наверняка будет то же самое: самые совершенные образцы в первую очередь станут появляться в армиях разных стран, а потом уже проникать в гражданский сектор. Собственно, этот процесс уже давно идёт, просто о действительно передовых разработках военные не распространяются. Зато более простые боевые роботы уже превратились в обыденность.

Более простые - это не автономные, а управляемые человеком. В первую очередь на ум приходят всевозможные беспилотники, в Ираке и Афганистане превратившиеся в символ западной демократии. Воздушные роботы сегодня наиболее развиты, но в будущих войнах большую роль будут играть и роботы наземные.

Роботы-пионеры

В нашей стране эксперименты с боевой наземной робототехникой велись с 1920-х годов. К началу войны на вооружении Красной Армии стояло несколько десятков телетанков - ТТ-26 и ТУ-26. Первые представляли собой лёгкие огнемётные танки Т-26 с аппаратурой дистанционного управления. Оператор находился в танке управления - ТУ-26 - и мог управлять телетанком на расстоянии 0,5-1,5 километра. Телетанки вполне успешно применялись во время советско-финской войны в 1940 году для прорыва укреплённых районов.

Кстати, в войне с Финляндией ТТ-26 использовался и как самоходная мина: на него грузили несколько сотен килограммов взрывчатки, подгоняли к полевому укреплению и давали команду на подрыв. Однако самой известной - но тоже слишком дорогой и малоэффективной - самоходной миной стал немецкий «Голиаф» : крохотная танкетка, управлявшаяся по проводам; ящик с 65-100 кг динамита, оснащённый электродвигателем, аккумулятором и гусеницами.

Развитие наземных роботов было приостановлено из-за несовершенства и ненадёжности аппаратуры управления, необходимости визуального контакта, неудобства управления на больших расстояниях, риска потери связи из-за пересечённого рельефа местности и неэффективности действий радиоуправляемого танка по сравнению с танком обычным. У страны было множество гораздо более важных задач.

Сверхлёгкие малыши

Спустя годы в СССР вернулись к идее создания радиоуправляемых роботов, но к каким-то значимым результатам это не привело. Как ни крути, а использовать людей было и эффективнее, и проще, и дешевле. Но с развитием технологий, изменением видения будущих войн и необходимостью вести противопартизанские боевые действия в многочисленных горячих точках боевые наземные роботы становились всё более востребованным видом вооружения.

Лыжню начали прокладывать американцы со своими роботами сверхлёгкого класса. Сегодня они активно используются по всему Ближнему Востоку, играя роль разведчиков, сапёров и самоходных пулемётных точек. Такие роботы оснащаются видеокамерами, приборами ночного видения, лазерными дальномерами, манипуляторами для обезвреживания мин. В качестве вооружения чаще всего несут пехотные пулемёты, хотя на них ставят и противотанковые ракетные комплексы, и дробовики, и гранатомёты.

А что же из сверхлёгкого класса есть у нас?

Сапёрные роботы

Инсектоидное название «Богомол-3» носит робот-сапёр, созданный в Миасском филиале Южно-Уральского госуниверситета. «Богомол» может дотянуться до мины на крыше микроавтобуса или под днищем машины с клиренсом всего в 10 см. Как и «Стрелец», робот-сапёр способен подниматься по лестницам.

По заказу ФСБ в МГТУ им. Баумана был разработан и сапёрный робот «Варан» , который может использоваться и в качестве разведчика.

Коротенькое видео, как устроен привод клешни-манипулятора: ссылка .

Колёсный робот-сапёр «Вездеход-ТМ5» , помимо манипулятора, может нести на себе ещё и водомёт для разрушения взрывных устройств. Также он способен вести разведку, перевозить до 30 кг груза, открывать двери ключами, выбивать замки.

«Кобра-1600» - ещё один отечественный робот-сапёр, способный преодолевать лестничные марши. Задачи у него всё те же: манипулирование объектами и видеонаблюдение.

В Бауманке разработали платформу МРК - по сути, целое семейство сверхлёгких роботов разного назначения: боевых, сапёрных, спасательных и разведывательных.

Среди них особо впечатляют МРК-46 и МРК-61 .

Правда, их прадедушки «Мобот-Ч-ХВ» и «Мобот-Ч-ХВ2» выглядят ещё внушительнее. Они были созданы в 1986 году и предназначались для работы в условиях высокого радиоактивного фона: убирали радиоактивные обломки с крыши третьего блока Чернобыльской АЭС.

«Летальные» роботы

Переходим к сверхлёгким роботам, несущим вооружение.

Пулемётный робот «Стрелок» предназначен в основном для городских боёв. Он способен взбираться по лестницам и помогать в зачистке зданий. Оснащён тремя камерами и пулемётом Калашникова.

МРК-27-БТ. Это вам не баран чихнул - гусеничная платформа размером с большую газонокосилку несёт на себе два реактивных огнемёта «Шмель», два гранатомёта РШГ-2 , пулемёт «Печенег» и дымовые гранаты. Весь этот арсенал быстросъёмный, то есть находящиеся рядом бойцы могут позаимствовать у робота его оружие.

«Платформа-М»

Сверхлёгкие боевые роботы - вещь хорошая, но у них своя ниша. Более-менее серьёзный бой им уже не по зубам: отсутствие брони и неспособность нести более тяжёлое вооружение, хотя бы крупнокалиберный пулемёт, серьёзно ограничивают их возможности и живучесть на поле боя. Поэтому в России активно развиваются роботы лёгкого-среднего класса.

«Нерехта»

Фонд перспективных исследований и завод им. Дегтярёва в Коврове разработали робототехническую платформу «Нерехта». Гусеничное шасси весом около 1 тонны может комплектоваться как вооружением, так и разведывательной аппаратурой. «Нерехта» способна даже играть роль транспортёра.

Есть вариант машины оптико-электронного подавления: робот на расстоянии до 5 км способен обнаружить оптические средства (прицелы, лазерные целеуказатели, камеры) и, подобравшись на 2 км, ослеплять их лазерным импульсом мощностью 4 МВт.

Машина разведки и артиллерийского наведения:

Силовая установка гибридная - дизель + электродвигатели. Дизельный мотор также заряжает аккумуляторы, и при необходимости «Нерехта» может проехать до 20 км только на электротяге. Максимальная скорость - 32 км/ч.

Варианты вооружения: пулемёт Калашникова, крупнокалиберный пулемёт «Корд».

Этот робот засветился в свежей передаче про действия бойцов Сил

Радиус действия - до 8 км.

«Уран-6» - это инженерно-сапёрный робот. Он может оснащаться бульдозерным отвалом, бойковым, фрезерным или катковым тралами для разминирования. Это особенно актуально для очистки территорий, где раньше велись боевые действия, после чего остаётся множество мин и неразорвавшихся боеприпасов. Способен выдержать взрыв до 60 кг тротила. Причём «Уран-6» не просто тупо катается в надежде вызвать детонацию: на нём установлена аппаратура, позволяющая определять типы взрывчатых устройств - мины, снаряды, бомбы.

Масса - 6 тонн, радиус действия - до 1 км.

«Уран-14» - самый большой и тяжёлый из «Уранов». Правда, его предназначение не боевое, эта машина создавалась для тушения пожаров. Но при необходимости он может использоваться и для расчистки завалов и баррикад в зонах боевых действий. «Уран-14» оснащён пожарным насосом, цистерной для воды и пенообразующего реагента.

Мощность двигателя - 240 л. с., масса - 14 тонн, максимальная скорость - 12 км/ч.

Наверняка это далеко не полный перечень российских разработок. Но на то она и армия - свои новинки военные стараются не афишировать. Все вышеописанные роботы управляются людьми, но можно не сомневаться, что развитие искусственного интеллекта приведёт к появлению полностью автономных машин, которым человек понадобится лишь для технического обслуживания.

К слову, танк Т-14 «Армата», насколько известно , может в будущем управляться полностью дистанционно, а значит, станет боевым роботом сверхтяжёлого класса. И если его оснастят ИИ, то останется только сказать «ой».

Александр Пермяков: после 2021 года можно ждать появления роботов в парадном строю

Фонд перспективных исследований и НПО "Андроидная техника" завершили реализацию в интересах МЧС проекта "Спасатель", в рамках которого продемонстрировали антропоморфного робота "Федор", успешно преодолевшего полосу препятствий. По завершении испытаний гендиректор НПО Александр Пермяков рассказал в интервью ТАСС о способностях робота и перспективах дальнейшего развития проекта.

Да, мы с Фондом перспективных исследований завершили этот проект. Он был нацелен на получение технологического опережающего задела на 10–15 лет вперед в области создания электромеханических шасси. Сейчас мы имеем центр технологического превосходства в этой области.

- Какие действия или цепочки действий робот может выполнять автономно, реагируя на внешние факторы? Способен ли он инициативно действовать? Может ли он самообучаться?

На данном этапе в рамках написанного программного обеспечения инициативно действовать робот может только по очень узким сценариям.

Например, он может для локальной навигации выстраивать трехмерную карту помещения, определять предмет или препятствие и в рамках прописанного сценария выполнять действие: взять инструмент, произвести с ним какую-либо операцию - допустим, взять ключ и открыть замок в двери. Проект "Спасатель" замысливался как демонстрация технологий, таких как подъем по лестнице, возможность вставить ключ в замок, открыть дверь, включить свет, преодолеть завал из строительного мусора, воспользоваться автомобилем, использовать огнетушитель. Эти и другие задачи прописаны в должностных инструкциях спасателя МЧС, на которые мы ориентировались. Наш робот успешно выполнил все условия технического задания.

Процедура самообучения на этой модели, которая сейчас демонстрируется, не предусмотрена. В будущем она обязательно появится, ведь самообучение - это магистральное направление развития автономной робототехники.

- Когда могут состояться госиспытания робота?

В связи с тем, что "Федор" - это демонстратор технологии, а конечное изделие для использования на корабле "Федерация" мы должны получить к 2021 году, все необходимые испытания будут проведены до этого срока. Будет проведена необходимая переработка робототехнического комплекса под использование на космическом корабле.

- Будет ли "Федор" просто пассажиром или ему дадут возможность выполнить на борту какие-либо задачи?

Я не думаю, что разработчик корабля - РКК "Энергия" - даст нам возможность во время первого тестового полета что-либо трогать. Но неправильно было бы говорить, что "Федор" будет простым пассажиром. Мы хотим приблизить структуру его тела к строению тела человека и максимально насытить его измерительной аппаратурой. Наш робот привезет данные о перегрузках, параметрах атмосферы внутри корабля.

- Способен ли робот работать в условиях радиации?

- "Федор" создавался без требований к применению в условиях радиации. Но сейчас у нас совместно с Росатомом реализуется проект, в котором такая задача решается: мы создаем прототипы роботов для работы с радиационными материалами. Они должны вести сортировку радиационно загрязненных предметов, отходов. Это очень актуальное направление для применения робототехники, учитывая риск для здоровья человека. Нам поставлена задача создать антропоморфный торс, управление которым будет вестись дистанционно с помощью повторения движений оператора. После набора опыта по этой специализации мы намерены перевести роботов на автоматическую работу.

- В каких климатических зонах и в каких погодных условиях может работать "Федор", может ли он использоваться под водой?

Для подводной деятельности робот не предназначен, для этого у нас имеется отдельный научно-технический задел, не реализованный в "Федоре". Естественно, в своей деятельности робот может встретиться с разными средами, в том числе водной, но на этот случай у него будет специальная защита.

Что касается климата, то если он будет создаваться под военный ГОСТ, он сможет работать в любой климатической зоне. В проекте он выполнен не под военный ГОСТ. Сейчас возникла идея его напланетного использования, но это перспектива 15–20 лет, соответственно, думать о защите "Федора" для условий работы на других планетах еще преждевременно.

- Будет ли "Федор" производиться серийно или в штучном экземпляре под конкретные задачи заказчиков?

Существующий демонстратор был создан на пределе технической сложности, были использованы все самые совершенные устройства и комплектующие: приводы, моторы, лазерные сканеры. Серийно робот будет производиться, а в отдаленной перспективе даже очень большими тиражами, но на сегодняшний день требуется упрощение конструкции и повышение жизненного ресурса изделия. То есть в ближайшей перспективе он будет производиться в более упрощенном виде.

- Кто и где будет серийно производить "Федоров"?

Пока мы будем развивать собственную производственную площадку в Магнитогорске. Ведется проектирование гибких производственных линий, промышленных площадей, на которых будет организовано производство отечественных комплектующих. Для этого нами приобретено и находится в стадии ремонта помещение общей площадью около 11 тысяч метров.

- Как будет развиваться семейство роботов?

В НПО "Андроидная техника" мы ведем разработку антропоморфных роботов двух серий: AR-600 - бытовые роботы, роботы для сферы услуг, индустрии развлечений; и AR-700 - роботы для экстремальных условий, к которым относится "Федор". Во втором семействе модели роботов будут варьироваться от условий их применения - для условий работы в зоне повышенной радиации, спасения людей, для работы при химическом заражении местности. Было бы интересно комплектовать специализированными роботами, например, морские суда для снижения численности экипажа.

- Если "Федор" должен спасать людей и летать в космос, то какие функции будут у бытовых роботов?

Сейчас реальная экономика испытывает дефицит дисциплинированных кадров средней квалификации.

Это, допустим, сотрудники общепита, в индустрии развлечений это могут быть танцы антропоморфных роботов. Мы первые в мире, кто поставил вальс роботов, провел показ детского спектакля с роботами-артистами по "Бременским музыкантам". Также мы тестировали робота в качестве помощника учителя на школьном уроке информатики.

Если все вычисления, допустим, распознавание лиц, вынести в "облако", то стоимость такого робота может составить до $15 тысяч. Это уже приемлемая цена.

- Учитывая, что "Федор" создается как спасатель, может ли он провести эвакуацию раненых из-под завалов, не причиняя боль и не нанося дополнительных повреждений человеку?

В техническом задании, которое нам было предоставлено Фондом перспективных исследований и МЧС, не было условий имитировать нахождение человека в условиях завала и оказание ему первой помощи с эвакуацией. Решение, которое мы продемонстрировали в рамках выданного нам технического задания, показало, что это возможно при последующей работе по этому направлению. Нами подготовлена дорожная карта, как полученные технологии довести до практического применения. Сейчас наша задача - постепенно наращивать автономность решаемых задач и поднимать функционал робота.

- Что позволяет делать мелкая моторика робота? Может ли он взять в руки и не сломать стакан?

В рамках технического задания для "Федора" было поставлено условие прохождения испытаний: ключом попасть в замочную скважину - это довольно трудная задача, с которой мы справились. То же самое с автомобилем: он открыл дверь, сел на водительское кресло, работал с органами управления автомобиля. Конечно, мелкая моторика "Федора" еще далека от применения в коммерческих образцах, но имеются предпосылки к успешному развитию этого умения. Манипулятор создан, но необходимы сотни, а может и тысячи часов работы программистов, чтобы отточить мелкую моторику. Если в качестве примера привести собственный научно-технический задел, который мы получили вне требований проекта "Спасатель’", то это, например, способность робота вкрутить лампочку в патрон.

- Какую главную задачу вы сейчас перед собой ставите по развитию данного робота?

В рамках наших производственных задач мы видим перед собой необходимость перехода на собственные серийные комплектующие. Пока их не будет, наша работа останется лишь интеграцией иностранных комплектующих в единый робототехнический комплекс. В этой связи мы намерены частично уже со следующего года начать производство ряда агрегатов под наши изделия.

- Какой процент отечественных комплектующих будет в роботах вашего производства?

В роботах серии AR-600, мы думаем, что добьемся уровня 70–80%, а в AR-700 - 90–100% отечественных компонентов. Если будут ужесточаться вопросы по поставке в Россию импортных комплектующих, реализация проекта по созданию линий производства отечественных аналогов будет просто ускорена.

- Учитывая, что вся современная техника у нас демонстрируется на Параде в честь Дня Победы, то 9 мая какого года можно ожидать, что шеренги роботов "Федоров" промаршируют по брусчатке Красной площади в колонне МЧС?

В основном по Красной площади победным маршем проходят военнослужащие, а антропоморфный формат роботов для военных целей не самый эффективный. К тому же "Федор - не робот военного применения. Если говорить о парадной колонне МЧС, то на параде "Федора" нужно демонстрировать, ведь это передовая технология, которой обладает очень небольшое количество стран. Думаю, после 2021 года можно будет ждать появления роботов в парадном строю.

- Есть ли аналоги "Федора" у зарубежных государств? Опережаем ли мы их или отстаем в робототехнике?

Аналогов много. По презентациям, которые доступны в интернете, зарубежные проекты выглядят внушительно и кажется, что наши иностранные партнеры продвинулись очень далеко, но когда мы общаемся с ними напрямую, оказывается, что наши изделия во многом превосходят своих конкурентов.

Всего в мире не более ста коллективов, занимающихся антропоморфной робототехникой, а коллективов, обладающих технологией прямохождения и системой динамического равновесия, не более десяти. С точки зрения развитости электромеханического шасси мы входим даже в тройку передовых разработчиков.

Но самое главное - на будущем рынке робототехники производство и продажа роботов займут лишь десятую часть от общего объема, в то время как 9/10 будет приходиться на программное обеспечение. Здесь возможна аналогия с рынком компьютерного программного обеспечения или программ для мобильных устройств. Каждое умение, каждый новый навык - это отдельная программа. В мире существует около ста тысяч профессий, одних только видов походки у человека можно насчитать десятки. Каждая из них - отдельный программный продукт. Поэтому мы намерены активно взяться за написание программ для антропоморфных роботов и видим здесь большие перспективы.

- Намерены ли вы делать внешний вид "Федора" более человечным?

Мы видим, что в будущем такое возможно. Там нас ждет классическая "долина ужаса", когда при максимальном приближении внешнего вида робота к человеку есть граница, после которой человек начинает испытывать ужас. Человек начинает воспринимать такого робота как больного человека и старается оградить себя от общения с ним. Думаю, что эта проблема в будущем будет решена.

Для наших задач те формы облика наших роботов, которые мы используем, нас вполне устраивают. Нет необходимости полностью воспроизводить человеческий облик, здесь важна, скорее, общая стилизация.

- Какова ремонтопригодность "Федора" и способны ли одни роботы ремонтировать других?

Полная сборка робота специалистом занимает 16 часов. Если что-то выходит из строя, на замену редуктора или мотора подготовленному специалисту требуется два-три часа.

Если мы продолжим двигаться по тому пути, который выбран, а именно по созданию универсальных блоков, то их замена при определенном уровне начальной подготовки не должна вызывать проблем, а в отдаленной перспективе "Федор", скорее всего, сможет самостоятельно ремонтировать своих собратьев.

- Зачем "Федора" научили садиться на шпагат, в решении каких задач это может пригодиться?

Это всего лишь демонстрация технических возможностей. Мало того, он может стоять на одной ноге, задрав вертикально вторую. Наше шасси позволяет это реализовать. Но в рамках испытаний эта технологическая возможность оказала услугу нашему роботу, когда ему пришлось преодолевать одно из препятствий.

Беседовал Дмитрий Струговец

https://vpk.name/news/170159_aleksandr_permyakov_posle_2021_goda_mozhno_...

Ещё более 100 лет назад развитие техники натолкнуло изобретателей на мысль об использовании различных беспилотных аппаратов и роботов на поле боя. Длительное время предпринимались попытки внедрить подобные изобретения, но они оказывались не очень удачными. А какова ситуация сегодня? Находятся ли боевые роботы на вооружении современных армий? Об этом — в данном посте.

В 21 веке роботы, конечно, ещё не могут в достаточной мере заменить солдат, но уже в больших количествах поступают на вооружение армий различных стран. Роботы в войсках могут выполнять различные задачи. Традиционными областями применения роботов были разведка и разминирование, но в последнее время всё больше появляется моделей роботов, оснащённых оружием, которые способны вести бой с противником.

Наибольшую известность на данный момент получили, конечно, беспилотные летательные аппараты (БПЛА). Хотя серийное производство этих машин началось ещё в 70-е, активное применение БПЛА началось лишь около 15 лет назад, в начале 2000-х. Военные США увидели в БПЛА хорошее средство сначала для разведки, а затем и для нанесения ударов. Американцы активно использовали беспилотники после вторжения в Ирак и Афганистан, а также для устранения неугодных, которых они называли «террористами». Правда, охотясь за «террористами» на территории других стран (в нарушение всех норм международного права), военные США убили при помощи беспилотников тысячи мирных жителей.

Американский ударный БПЛА MQ-9 Reaper

Американский палубный БПЛА X-47B

Ударные американские беспилотники последних модификаций могут быть вооружены бомбами и ракетами, имеют дальность полёта свыше 5000 км, способны подниматься на высоту до 15 км и находиться в воздухе до 30 часов.

Впрочем, американцы не ограничиваются тяжёлыми беспилотниками. Миллиарды долларов выделены на разработку миниатюрных роботов, напоминающих насекомых. Эти роботы могут незаметно собирать информацию и даже убивать. Так, несколько лет назад появились сообщения о том, что ЦРУ разработало роботов-убийц, напоминающих комаров.

На расстоянии до 100 м такие роботы обнаруживают человека и впрыскивают ему под кожу смертельную дозу яда.

Во время войны в Ираке американцы применяли и наземных роботов, таких, как этот робот фирмы Talon.

Роботы можно было использовать как для разведки, так и бою — он оснащался автоматическими винтовками, пулемётами и гранатомётами. Однако опыт применения оказался не очень удачным — были случаи, когда робот по непонятной причине выходил из-под контроля и начинал хаотично передвигаться или даже открывал стрельбу по своим.

Ещё одна разработка американцев — робот «Crusher», способный нести груз до 3 тонн и передвигаться по сложной пересечённой местности. На него можно установить оружие либо использовать для транспортировки грузов, при этом робот способен самостоятельно прокладывать маршрут между заданными точками и находить дорогу.

робот «Crusher»

Наряду с США, одной из лидеров в разработке боевых роботов является Израиль. В этой стране сконструировано большое число роботов самого разнообразного назначения. Например, робот-автомобиль «Guardium» предназначен для патрулирования, сопровождения и поддержки пехоты, разведки и прочих задач. Он способен патрулировать улицы в автономном режиме, фиксируя подозрительное движение и уничтожая цели после подтверждения оператора.