Для того чтобы превратить мертвую материю в живую, не требовалось никакого акта творения или жизненной искры. И та и другая состоят из одних и тех же атомов, и разница заключается лишь в их архитектуре.

Джейкоб Броновски. The Identity of Man

Броновски начинает свою знаменитую книгу «Восхождение человечества» такими словами: «Человек - уникальное творение природы. Он активно меняет мир вокруг себя, наблюдая за повадками животных и умело пользуясь полученными знаниями. Современные люди заняли особое положение среди живых существ, потому что сумели обустроиться на всех континентах, адаптироваться к любым условиям». Но почему люди не только населяют наш мир, но и активно изменяют его? От гепарда или от морского конька нас отличает генетическая наследственность - совокупность ДНК, в которой закодировано наше существование. Эту совокупность мы называем геномом или, в данном случае, человеческим геномом .

Наш геном - это то, что определяет нас на глубинном уровне. Он присутствует в каждой из примерно 100 000 миллиардов клеток, составляющих человеческий организм и специфичный для каждого отдельного человека. Но на этом все не заканчивается. Мириады мельчайших различий, свойственные нашему геному, представляют собой самую нашу суть в генетическом и наследственном смысле. Мы передаем их своим потомкам, делая через них вклад в совокупное эволюционное наследие нашего вида. Понять геном - значит по-настоящему познать, что такое быть человеком. В мире нет двух людей с абсолютно одинаковым геномом. Даже однояйцовые близнецы, получившие при зачатии один и тот же геном, рождаются с небольшими генетическими различиями. Эти различия могут возникать в тех частях генома, которые не отвечают за кодирование элементов, называемых генами .

Кажется странным, что наш геном - это нечто большее, чем просто совокупность генов. Но давайте пока не будем вдаваться в подробности и сосредоточимся на более общей теме. Каким образом из относительно простого химического кода создается человек - сложное живое существо? Как человеческий геном развивался в ходе эволюции? Как он работает? Стоит задаться этими вопросами, и мы сталкиваемся с множеством загадок.

Для того чтобы получить ответы, нам нужно исследовать базовую структуру генома, его операционные системы, механизмы экспрессии и контроля. Некоторые читатели могут скептически отнестись к этому предложению. Разве не означает это погружение в невероятно загадочный мир, слишком сложный для неподготовленного человека? На самом деле именно на такого читателя и рассчитана эта книга. Как вы увидите, базовые понятия легки для восприятия, нужно лишь разделить наше путешествие на несколько простых логических этапов. Путь пройдет через череду блестящих открытий в истории человечества и уведет нас в далекое прошлое, к нашим предкам и их познанию Земли в древние времена.

По ходу путешествия у нас будут возникать новые вопросы, в том числе достаточно важные. Каким образом эта удивительная субстанция, которую мы называем человеческим геномом, обеспечивает воспроизведение людьми себе подобных, то есть оплодотворение материнской яйцеклетки спермой отца? Как геном контролирует невероятный процесс развития эмбриона в матке? Вернувшись на секунду к общим вопросам, отметим, что важным элементом генома и его сутью является память - например, память о целостности генетического наследия каждого человека. Но как именно она сохраняется? Мы уже знаем, что волшебное вещество под названием ДНК играет роль кода. Каким образом код может воспроизводить сложнейшие инструкции по созданию клеток, тканей и органов, а затем объединять их в единое целое, которое мы называем организмом человека? Но даже ответив на эти вопросы, мы едва прикоснемся к загадкам человеческого генома. Каким образом эта чудесная структура получает программу, дающую ребенку способности к развитию речи, к обучению и письму? За счет чего новорожденный младенец превращается во взрослого человека, который, становясь отцом или матерью, снова запускает этот цикл?

Магия генома состоит в том, что все эти процессы могут быть записаны в крошечном кластере химических веществ, включая главную молекулу - дезоксирибонуклеиновую кислоту , или ДНК . Этим химическим кодом записаны генетические инструкции по созданию человека. В него встроены свобода мысли и изобретательность, благодаря которым в мире существуют художники, математики и ученые. Он составляет основу нашей внутренней индивидуальности, того, что мы называем своим «я». Один и тот же код, отвечающий за это «я», подарил человечеству гении Моцарта, Пикассо, Ньютона и Эйнштейна. Неудивительно, что мы с благоговением смотрим на вместилище такого чуда и мечтаем раскрыть тайну, скрывающую саму основу бытия.

Мы лишь недавно сумели достаточно полно и глубоко разобраться в человеческом геноме, чтобы понять его удивительную историю, - например, что он представляет собой нечто большее, чем просто ДНК. Эту историю я и постарался передать в данной книге.

Несколько лет назад я читал лекцию на подобную тему в лондонском Кингс-колледже. Председатель собрания спросил меня, не собираюсь ли я когда-нибудь написать об этом книгу. Когда я ответил утвердительно, он попросил использовать в книге такой язык, который сможет понять любой неподготовленный человек.

Насколько доступной должна быть эта книга? - спросил я.

Ну, представьте, что я - ваш читатель и вообще ничего не знаю.

Именно это я вам и обещаю. В этой книге не будет сложного научного языка, математических или химических формул, заумных терминов или десятков иллюстраций. Я начну с базовых принципов, исходя из установки, что мои читатели почти ничего не знают о биологии или генетике. Даже те, кто не имеет отношения к биологии, могут помнить, сколько сюрпризов преподнесла миру первая расшифровка человеческого генома, результаты которой были опубликованы в 2001 году. Сделанные с тех пор открытия подтвердили, что значительная часть человеческого генома (его эволюция, структура и механизмы работы) отличается от наших ранних представлений. Эти неожиданные факты не умаляют важности знаний, накопленных ранее, но, как и любые научные открытия, лишь обогащают их. Благодаря этим новым знаниям человечество вступило в золотой век генетического и геномного просвещения, охватывающего множество сфер нашей деятельности - от медицины до ранней истории человечества. Я считаю, что наше общество должно понимать важность этого открытия для будущего.

Освальду Т. Эвери

Наверное, я стал ученым потому, что в детстве был очень любопытным. Я помню, как в 10, 11, 12 лет постоянно задавался вопросами: «Почему это происходит? Почему я наблюдаю то или иное явление? Я хочу его понять».

Лайнус Полинг

The Misterious World of the Human Genome

© FPR-Books, Ltd., 2015

© Перевод на русский язык, издание на русском языке, ООО Издательство «Питер», 2017

© Серия «New Science», 2017

Введение

Для того чтобы превратить мертвую материю в живую, не требовалось никакого акта творения или жизненной искры. И та и другая состоят из одних и тех же атомов, и разница заключается лишь в их архитектуре.

Джейкоб Броновски. The Identity of Man

Броновски начинает свою знаменитую книгу «Восхождение человечества» такими словами: «Человек – уникальное творение природы. Он активно меняет мир вокруг себя, наблюдая за повадками животных и умело пользуясь полученными знаниями. Современные люди заняли особое положение среди живых существ, потому что сумели обустроиться на всех континентах, адаптироваться к любым условиям». Но почему люди не только населяют наш мир, но и активно изменяют его? От гепарда или от морского конька нас отличает генетическая наследственность – совокупность ДНК, в которой закодировано наше существование. Эту совокупность мы называем геномом или, в данном случае, человеческим геномом .

Наш геном – это то, что определяет нас на глубинном уровне. Он присутствует в каждой из примерно 100 000 миллиардов клеток, составляющих человеческий организм и специфичный для каждого отдельного человека. Но на этом все не заканчивается. Мириады мельчайших различий, свойственные нашему геному, представляют собой самую нашу суть в генетическом и наследственном смысле. Мы передаем их своим потомкам, делая через них вклад в совокупное эволюционное наследие нашего вида. Понять геном – значит по-настоящему познать, что такое быть человеком. В мире нет двух людей с абсолютно одинаковым геномом. Даже однояйцовые близнецы, получившие при зачатии один и тот же геном, рождаются с небольшими генетическими различиями. Эти различия могут возникать в тех частях генома, которые не отвечают за кодирование элементов, называемых генами .

Кажется странным, что наш геном – это нечто большее, чем просто совокупность генов. Но давайте пока не будем вдаваться в подробности и сосредоточимся на более общей теме. Каким образом из относительно простого химического кода создается человек – сложное живое существо? Как человеческий геном развивался в ходе эволюции? Как он работает? Стоит задаться этими вопросами, и мы сталкиваемся с множеством загадок.

Для того чтобы получить ответы, нам нужно исследовать базовую структуру генома, его операционные системы, механизмы экспрессии и контроля. Некоторые читатели могут скептически отнестись к этому предложению. Разве не означает это погружение в невероятно загадочный мир, слишком сложный для неподготовленного человека? На самом деле именно на такого читателя и рассчитана эта книга. Как вы увидите, базовые понятия легки для восприятия, нужно лишь разделить наше путешествие на несколько простых логических этапов. Путь пройдет через череду блестящих открытий в истории человечества и уведет нас в далекое прошлое, к нашим предкам и их познанию Земли в древние времена.

По ходу путешествия у нас будут возникать новые вопросы, в том числе достаточно важные. Каким образом эта удивительная субстанция, которую мы называем человеческим геномом, обеспечивает воспроизведение людьми себе подобных, то есть оплодотворение материнской яйцеклетки спермой отца? Как геном контролирует невероятный процесс развития эмбриона в матке? Вернувшись на секунду к общим вопросам, отметим, что важным элементом генома и его сутью является память – например, память о целостности генетического наследия каждого человека. Но как именно она сохраняется? Мы уже знаем, что волшебное вещество под названием ДНК играет роль кода. Каким образом код может воспроизводить сложнейшие инструкции по созданию клеток, тканей и органов, а затем объединять их в единое целое, которое мы называем организмом человека? Но даже ответив на эти вопросы, мы едва прикоснемся к загадкам человеческого генома. Каким образом эта чудесная структура получает программу, дающую ребенку способности к развитию речи, к обучению и письму? За счет чего новорожденный младенец превращается во взрослого человека, который, становясь отцом или матерью, снова запускает этот цикл?

Магия генома состоит в том, что все эти процессы могут быть записаны в крошечном кластере химических веществ, включая главную молекулу – дезоксирибонуклеиновую кислоту , или ДНК . Этим химическим кодом записаны генетические инструкции по созданию человека. В него встроены свобода мысли и изобретательность, благодаря которым в мире существуют художники, математики и ученые. Он составляет основу нашей внутренней индивидуальности, того, что мы называем своим «я». Один и тот же код, отвечающий за это «я», подарил человечеству гении Моцарта, Пикассо, Ньютона и Эйнштейна. Неудивительно, что мы с благоговением смотрим на вместилище такого чуда и мечтаем раскрыть тайну, скрывающую саму основу бытия.

Мы лишь недавно сумели достаточно полно и глубоко разобраться в человеческом геноме, чтобы понять его удивительную историю, – например, что он представляет собой нечто большее, чем просто ДНК. Эту историю я и постарался передать в данной книге.

Несколько лет назад я читал лекцию на подобную тему в лондонском Кингс-колледже. Председатель собрания спросил меня, не собираюсь ли я когда-нибудь написать об этом книгу. Когда я ответил утвердительно, он попросил использовать в книге такой язык, который сможет понять любой неподготовленный человек.

– Насколько доступной должна быть эта книга? – спросил я.

– Ну, представьте, что я – ваш читатель и вообще ничего не знаю.

Именно это я вам и обещаю. В этой книге не будет сложного научного языка, математических или химических формул, заумных терминов или десятков иллюстраций. Я начну с базовых принципов, исходя из установки, что мои читатели почти ничего не знают о биологии или генетике. Даже те, кто не имеет отношения к биологии, могут помнить, сколько сюрпризов преподнесла миру первая расшифровка человеческого генома, результаты которой были опубликованы в 2001 году. Сделанные с тех пор открытия подтвердили, что значительная часть человеческого генома (его эволюция, структура и механизмы работы) отличается от наших ранних представлений. Эти неожиданные факты не умаляют важности знаний, накопленных ранее, но, как и любые научные открытия, лишь обогащают их. Благодаря этим новым знаниям человечество вступило в золотой век генетического и геномного просвещения, охватывающего множество сфер нашей деятельности – от медицины до ранней истории человечества. Я считаю, что наше общество должно понимать важность этого открытия для будущего.

1. Кто бы мог подумать?

Большой, важный и часто обсуждаемый вопрос состоит вот в чем: как физика и химия должны анализировать пространственно-временные явления, происходящие в пределах живого организма?

Эрвин Шрёдингер

В апреле 1927 года молодой француз по имени Рене Жюль Дюбо приехал в Рокфеллеровский институт медицинских исследований в Нью-Йорке, чтобы выполнить, казалось бы, совершенно безнадежную задачу. Этот высокий мужчина в очках, недавний выпускник Ратгерского университета и обладатель докторской степени по микробиологии почв, имел необычный философский подход к науке. Ознакомившись с работами видного русского микробиолога Сергея Виноградского, он пришел к выводу, что исследовать бактерии в пробирках и на лабораторных культурах нет никакого смысла. Дюбо верил: для того, чтобы понять бактерии, нужно наблюдать за ними там, где они живут и взаимодействуют друг с другом и с жизнью в целом – в природе.

После окончания университета Дюбо не сумел найти работу. Он подал в научно-исследовательский совет заявку на получение гранта, но ее отклонили, потому что ученый не был американцем. Однако на полях письма с отказом кто-то сделал приписку от руки (позже Дюбо вспоминал, что почерк был женским, – вероятно, запись была сделана доброй секретаршей какого-то официального лица): «Почему бы вам не обратиться за помощью и советом к своему знаменитому соотечественнику, доктору Алексису Каррелю из Рокфеллеровского института?» Дюбо последовал этой рекомендации, и в апреле 1927 года прибыл по указанному адресу на Йорк-авеню на берегу Ист-Ривер.

До этого Дюбо ничего не слышал ни о Карреле, ни о Рокфеллеровском институте медицинских исследований и был заинтригован, узнав, что Каррель работает сосудистым хирургом. Дюбо не обладал никакими академическими познаниями в медицине, а Каррель понятия не имел о микробах, живущих в почве. Результат их беседы был предсказуем: Каррель ничем не смог помочь молодому ученому. Разговор закончился в середине дня, и Дюбо решил пообедать в столовой института, которая привлекла голодного француза запахом свежеиспеченного хлеба.

В какой-то момент к Дюбо подсел невысокий, хрупкого сложения джентльмен с круглой лысой головой. Незнакомец, говорящий с канадским акцентом, вежливо обратился к нашему герою. Этого человека звали Освальд Теодор Эвери. Позже Дюбо признавался, что знал о нем так же мало, как и о Карреле, однако профессор Эвери (или Фесс, как звали его близкие) на тот момент был светилом медицинской микробиологии. Эта встреча имела историческую значимость как для биологии, так и для медицины.

Эвери сделал Дюбо своим научным ассистентом, и, работая на этом посту, Дюбо открыл первые антибиотики на основе культуры почвенных бактерий. Параллельно с этим Эвери и его небольшая команда, работавшая над тем, что он называл «маленькой кухонной химией», занимались еще одной задачей, решив которую они надеялись получить ключ к тайне наследственности. Почему общество почти ничего не знает об этом блестящем ученом? Для того чтобы объяснить подобную аномалию, нам нужно переместиться в прошлое и поговорить о самом Эвери и о проблемах, с которыми он сталкивался три четверти века назад.

* * *

В 1927 году, когда Дюбо познакомился с Эвери, ученые еще плохо понимали принципы наследования. Термин «ген» был введен в употребление за два десятилетия до этого датским генетиком Вильгельмом Иогансеном. Интересно, что сам Иогансен придерживался туманной концепции наследования, называемой «пангеном», которая была предложена еще Чарльзом Дарвином. Иогансен модифицировал ее с учетом открытий, сделанных в XIX веке Грегором Менделем.

Возможно, читателям известна история Менделя – настоятеля августинского монастыря в Брно в Моравии (сегодня это часть Чехии). Мендель выглядел как монах Тук, любил сигары и проводил блестящие научные исследования, скрещивая горох на монастырском огороде. Эти опыты позволили ему сформулировать основы современных законов наследования. Оказалось, что некоторые характеристики родительского поколения гороха предсказуемым образом передавались потомкам. Среди этих характеристик были высота растения, наличие или отсутствие желтого и зеленого оттенков в цветках или пазухах листа, а также сморщенная или гладкая поверхность горошин. Мендель обнаружил, что за наследственность отвечают первичные половые клетки растений (впоследствии этот вывод будет экстраполирован на все живые организмы), которые представляют собой дискретные пакеты информации, кодирующие определенные физические характеристики, или черты. Иогансен вывел термин «ген» из предложенного Менделем образа пакета наследственной информации. Примерно в то же время британский ученый Уильям Бэтсон образовал от слова «ген» название дисциплины, занимающейся природой и процессами наследования, – генетика .

Если открыть в Интернете современный толковый словарь, можно найти такое определение гена: «Базовая физическая единица наследования; линейная последовательность нуклеотидов, представляющая собой сегмент ДНК и содержащая закодированные инструкции для синтеза РНК, которая после преобразования в белок приводит к экспрессии наследственных свойств». Но Мендель совсем не так представлял гены, а о ДНК и вовсе не подозревал. Его исследования были опубликованы в непопулярных изданиях, забыты на 40 лет, а затем заново открыты и переосмыслены. Однако в свое время представление Менделя о генах как о дискретных элементах наследственности помогло раскрыть важную медицинскую тайну: как некоторые заболевания проявляются через наследственные искажения.

Сегодня мы знаем, что гены – это базовые составные элементы наследственности. Они сродни атомам, частицам вещества, из которых состоит весь физический мир. В первые десятилетия ХХ века никто не представлял, из чего сделаны гены или как они работают, но некоторые ученые пытались исследовать их через физическую экспрессию, например, при формировании эмбрионов или в ходе наследственных заболеваний. Генетик Томас Хант Морган, работавший в лаборатории в Чикаго, использовал в качестве экспериментальной модели для своего новаторского исследования плодовых мушек. Его сотрудники обнаружили, что гены расположены в хромосомах – структурах, находящихся в ядрах половых клеток насекомых. Генетик-ботаник Барбара Макклинток подтвердила, что это верно и для растений. Она разработала технологии, позволившие биологам увидеть хромосомы в клетках кукурузы. Это привело к невероятному открытию: оказывается, во время формирования мужских и женских половых клеток совпадающие, или гомологичные, хромосомы обоих родителей располагаются друг напротив друга, а затем обмениваются одинаковыми частями. Так потомок наследует смешанные признаки отца и матери. Это интересное генетическое явление (называемое гомологичной половой рекомбинацией) объясняет, почему дети одних родителей отличаются друг от друга.

К началу 1930-х годов биологи и медики-исследователи уже понимали, что гены представляют собой физические объекты – химические информационные блоки, нанизанные на хромосомы, как бусины на леску. Если использовать другое сравнение, то геном можно назвать библиотекой химической информации, в которой хромосомы играют роль книг. В этом случае дискретные единицы, называемые генами, – это отдельные слова на книжных страницах. Библиотеки хранятся в ядрах половых клеток, то есть в яйцеклетках и сперматозоидах. Человеческая библиотека насчитывает по 46 книг в каждой клетке. Яйцеклетка и сперматозоид содержат по 23 хромосомы, и при зачатии ребенка два набора хромосом сливаются в оплодотворенной яйцеклетке. Но ответ на одну загадку наследования лишь открыл ящик Пандоры, полный новых генетических тайн, которые в изобилии встречаются среди живых организмов нашей плодородной планеты.

Например, неужели все формы жизни – от червей до орлов, от протистов, копошащихся в иле водоемов, до человечества – имеют в своих хромосомах одинаковые гены?

Микроскопические одноклеточные существа (бактерии, археи и другие) не хранят наследственную информацию в ядре. Такие живые организмы называют прокариотами , то есть доядерными . У всех остальных форм жизни, называемых эукариотами , наследственная информация содержится в ядрах клеток. Исследования плодовых мушек и растений, а также медицинские опыты показывают, что для всех эукариотов характерны общие глубинные черты. Но можно ли применить те же генетические понятия (начиная с гена) к прокариотам, которые размножаются вегетативно почкованием и не образуют половых клеток? На заре бактериологии велись споры, можно ли вообще считать бактерии формами жизни. А вирусы, которые зачастую гораздо мельче бактерий, и вовсе были очень слабо изучены.

С течением времени многие ученые пришли к выводу, что бактерии являются живыми организмами, и начали классифицировать их в соответствии с биноминальной линнеевской системой. Так, возбудитель туберкулеза был назван Mycobacterium tuberculosis, а вызывающий нагноение коккоподобный микроб – Staphylococcus aureus . Будучи крайним консерватором, Освальд Эвери не торопился примкнуть ни к одному из лагерей, воздерживался от использования биноминальной системы и по-прежнему использовал выражение «туберкулезная бактерия». Интересно, что Дюбо, который знал Эвери лучше других коллег, наблюдал у него такую же консервативность в подходе к лабораторным исследованиям. Наука должна с пуританской строгостью придерживаться только фактов, которые можно вывести логически и однозначно подтвердить лабораторным путем.

В 1882 году немецкий врач Роберт Кох открыл, что возбудителем смертельно опасной на то время болезни – туберкулеза – является Mycobacterium tuberculosis. Кох составил логическое правило, чтобы выявлять болезнетворность того или иного микроорганизма. Это правило называется постулатами Коха. После идентификации возбудитель заболевания исследовали под микроскопом и должным образом классифицировали. Если клетки микроорганизма были круглыми, его называли кокком, если продолговатыми – палочкой, а если спиралевидными – спирохетой. Бактериологи методично исследовали культурную среду, в которой тот или иной организм растет лучше всего: чистый агар или агар с добавлением бычьей крови либо что-то еще. Они также изучали внешний вид бактериальных колоний на культуральных планшетах: их цвет, размер, хаотичность или упорядоченность границ, выпуклость или уплощенность, гранулированность и различные геометрические формы, которые принимала та или иная колония. Научная база учебников по бактериологии расширялась за счет точных исследований и наблюдений. По мере роста знаний в борьбе против инфекций применялись все новые и новые открытия.

Среди полезной информации, которую бактериологи получили о болезнетворных (патогенных) бактериях, был и такой факт: течение болезни и, соответственно, поведение возбудителя в отношении носителя заболевания можно изменить с помощью определенных мер (например, используя определенную последовательность культур в лаборатории или заражая подопытных животных бактериями разных поколений). Такие манипуляции позволяли усилить или ослабить болезнь, делая микроб более или менее вирулентным. Бактериологи искали способы использования этих знаний в медицине. Так, во Франции Луи Пастер применил принцип ослабления возбудителей и разработал первую эффективную вакцину от бешенства, считавшегося смертельным заболеванием.

В результате этих исследований ученые также заметили, что после усиления или ослабления вирулентности микроба перемены в его поведении передавались будущим поколениям. Но может ли это происходить за счет каких-либо изменений наследственности?

Бактериологи объясняли это явление адаптацией . Данный термин как раз начал входить в моду у эволюционных биологов и обозначал эволюционные изменения в живых организмах, возникающие с течением времени в связи с приспособлением к среде. Тогда ученые еще не предполагали, что наследственность бактерий может определяться генами, поэтому пытались связывать ее с физическим строением самих микроорганизмов и их колоний, с внутренними химическими процессами или даже с их поведением в отношении носителей. Это были измеримые характеристики, бактериальный эквивалент того, что эволюционные биологи называют фенотипом (совокупность физических свойств организма в отличие от генотипа, то есть комплекса генетических характеристик).

Бактериологи также установили, что одни и те же бактерии могут существовать в нескольких подтипах, различие между которыми зачастую определяется антителами. Такие подтипы называют серотипами. В 1921 году британский бактериолог Дж. А. Аркрайт заметил, что колонии вирулентного типа возбудителя дизентерии Shigella , выращенные на покрытых слизью культуральных планшетах, имели гладкую поверхность и выпуклую полусферическую форму, в то время как колонии ослабленных и невирулентных бактерий того же вида имели изломанные границы и шероховатую поверхность и были гораздо более плоскими. Для описания характеристик таких колоний он ввел термины «гладкий» и «шероховатый» (или S и R – от английских слов smooth и rough). Аркрайт отметил, что R-формы возникают в культурах, выращенных в искусственной среде, а не в колониях бактерий, взятых из тканей зараженного человека. Он пришел к выводу, что своими глазами наблюдает дарвиновский процесс эволюции.

Вот как Аркрайт писал об этом: «Инфицированный человеческий организм можно считать средой, задающей патогенным бактериям такую форму, в которой они обычно встречаются нам».

Вскоре исследователи из других стран подтвердили, что утрата вирулентности некоторыми патогенными бактериями сопровождалась такими же изменениями во внешнем виде колоний. В 1923 году Фредерик Гриффит, эпидемиолог, работавший в Министерстве здравоохранения в Лондоне, сообщил, что пневмококки (возбудители эпидемической пневмонии и менингита, которые особенно интересовали Освальда Эвери в Рокфеллеровской лаборатории) формируют аналогичные S- и R-формы на культуральных планшетах. Гриффит был известен как добросовестный ученый, и Эвери был заинтригован.

Эксперименты Гриффита имели и другие результаты, которые поразили и даже шокировали Эвери.

Однажды Гриффит ввел лабораторным мышам невирулентные пневмококки R-типа, относящиеся к штамму, известному как тип I. К инъекции он должен был добавить так называемый адъювант – вещество, которое стимулирует иммунный ответ на пневмококки R-типа. Самым распространенным адъювантом в данном случае была слизь из желудка подопытного животного. Но по какой-то неясной причине Гриффит заменил адъювант взвесью из S-пневмококков, полученных из штамма типа II, которые были специально убиты тепловым воздействием. Лабораторные мыши погибли от острой инфекции, и Гриффит рассчитывал найти в их крови большое количество размножающихся R-бактерий типа I, которые он и ввел в начале эксперимента. Каково же было его удивление, когда вместо этого он обнаружил S-бактерии типа II! Каким образом добавление мертвых бактерий в инъекцию могло изменить серотип живых с R-типа I на крайне вирулентный S-тип II?

Исследователи, включая Эвери, уже доказали, что разница между типами S и R определялась различиями в составе полисахаридных капсул, в которые были заключены клетки бактерий. Опыт Гриффита показал, что тестовые бактерии, изначально представлявшие собой пневмококки R-типа, изменили свои полисахаридные оболочки внутри зараженных организмов и привели их в соответствие вирулентному штамму. Но они не могли просто сбросить одну оболочку и надеть другую. Состав оболочки определяется наследственностью бактерии – это наследуемая характеристика. Культуры бактерий типа S, полученных из тел мертвых мышей, продолжали размножаться. Этому могло быть только одно объяснение: добавление мертвых S-бактерий к живым R-бактериям вызвало у последних мутацию и буквально трансформировало их в S-бактерии типа II.

По словам Дюбо, «[в то время] Гриффит считал естественным, что любые изменения должны оставаться в пределах вида. Он не подозревал, что тип пневмококка можно изменить, – это было сродни превращению из одного вида в другой. Ничего подобного ранее не наблюдалось».

* * *

Неудивительно, что Эвери потрясли открытия Гриффита. Как и Роберт Кох до него, Эвери считал, что наследственность бактериальных штаммов остается неизменной. Само понятие мутации, то есть изменения наследственности под влиянием действий экспериментатора, в то время было весьма противоречивым вопросом как в биологии, так и в медицине. Чтобы понять почему, следует сначала объяснить, что такое мутация .

В конце XIX века начался кризис дарвиновской теории. Дарвин и сам понимал, что процесс естественного отбора полагается на какой-то дополнительный механизм или механизмы, способные изменять наследственность таким образом, чтобы можно было выбирать из нескольких наследуемых вариаций. Много десятилетий спустя Джулиан Хаксли прямо указал на эту проблему в первых главах своей книги «Эволюция: современный синтез»: «Естественный отбор как эволюционный принцип подвергся важному критическому переосмыслению, а затем внимание сфокусировалось на природе наследуемых вариаций». В 1900 году голландский биолог Хуго де Фриз предложил инновационный механизм, который мог бы обеспечить возникновение таких вариаций, – концепцию случайных изменений в единице наследования. Возможность для изменения возникает при копировании генов в процессе размножения. Ошибка копирования наследственной информации может привести к случайному изменению в кодировке гена. Де Фриз назвал этот источник наследственных изменений мутацией. После этого Джулиан Хаксли разработал теорию синтеза, объединяющую генетику Менделя (включающую потенциал для изменения наследуемых генов через мутацию) и дарвиновский естественный отбор, действующий на наследственные вариации в рамках вида. Только после этого теория Дарвина вновь обрела авторитет в научных кругах.

Через некоторое время будет доказано, что результаты опыта Гриффита являются именно мутацией – процессом, который так заинтересовал Эвери. Генетики покажут, что превращение пневмококков R-типа в пневмококки S-типа обеспечивалось переносом генов от мертвых бактерий штамма II живым бактериям штамма I. Перенесенные гены были инкорпорированы в последующие циклы размножения, в ходе которого бактерии R-типа I трансформировались в S-тип II. На уровне бактерий это было равнозначно смене вида. Гриффит оказался прав, полагая, что дарвиновский естественный отбор работает даже в течение непродолжительного времени болезни лабораторных мышей.

Результаты экспериментов Гриффита всколыхнули бактериологическое и иммунологическое сообщество. Его открытие было подтверждено несколькими исследовательскими центрами, включая Институт Роберта Коха в Берлине, где пневмококки были впервые классифицированы по нескольким типам. В команде Эвери эта новость также широко обсуждалась, однако Дюбо вспоминает: «Поначалу мы даже не пытались повторить эти опыты. Мы были поражены и даже, можно сказать, интеллектуально парализованы этими невероятными результатами».

С самого начала Эвери просто не верил в возможность трансформации разных типов бактерий. Это можно понять, ведь он был одним из авторитетов в своей области и много лет назад утвердился в мысли о стабильности бактериального размножения. Но в 1926 году Эвери предложил молодому канадскому врачу М. Г. Досону, работавшему в лаборатории Рокфеллеровского института, заняться исследованием этого вопроса. По словам Дюбо, Досон, в отличие от Эвери, был уверен в правильности выводов Гриффита, так как считал, что «если работа сделана британским Министерством здравоохранения, в ней не может быть ошибок».

Досон начал с того, что подтвердил открытие Гриффита в экспериментах с лабораторными мышами. Его работа показала, что большая часть невирулентных бактерий (R-типа) способна в определенных обстоятельствах превращаться в болезнетворный S-тип. К 1930 году над этим же вопросом начал работать китайский коллега Досона Ричард П. Сиа. Вместе они еще дальше продвинулись в экспериментальных наблюдениях, доказав, что наследственные трансформации могут происходить не только в организмах мышей, но и в культуральной среде. На этом этапе Досон покинул отдел Эвери, и его работу продолжил другой молодой врач, Дж. Л. Эллоуэй. Он выяснил, что для запуска трансформации требовалась лишь растворимая фракция, полученная путем воздействия на живые клетки S-пневмококков дезоксихолатом натрия, а затем фильтрации раствора для удаления фрагментов клеток. Когда Эллоуэй добавил к отфильтрованному раствору спирт, активный материал выделился в осадок в форме липкого сиропа. Этот сироп в лаборатории называли трансформирующим началом. Работа продолжалась, годы шли, эксперимент следовал за экспериментом.

Когда в 1932 году Эллоуэй ушел из отдела, Эвери отвел часть собственного времени на исследование трансформаций пневмококков, в частности на доработку процесса приготовления трансформирующего вещества. Однако на этом пути его ждало одно разочарование за другим. Через какое-то время Эвери решил сфокусироваться на химическом составе трансформирующего начала. В лаборатории начались оживленные дискуссии: кто-то полагал, что им является «пламаген», якобы вызывающий рак у кур (сегодня мы знаем, что под этим термином имелся в виду ретровирус), кто-то считал, что генетические изменения в бактериях имеют вирусную природу. По словам Дюбо, Эллоуэй предполагал, что трансформирующим агентом может быть белково-полисахаридный комплекс. Но к 1935 году Эвери начал мыслить в другом направлении. В годовом отчете отдела он указал, что удалось получить трансформирующий материал, не содержащий капсульных полисахаридов. В 1936 году биохимик Роллин Хотчкисс, ставший сотрудником отдела Эвери, сделал историческую запись в личном дневнике: «Эвери убедил меня, что трансформирующий агент вряд ли может быть углеводом и что на белок он тоже мало похож, а затем мечтательно предположил, что это могла бы быть нуклеиновая кислота!» На тот момент Дюбо, который через много лет напишет книгу об Эвери и его работе, расценил это как очередной домысел. И на то были веские причины.

В тот год несколько исследователей из разных стран мира предположили, что нуклеиновые кислоты могут стать ключом к тайне наследования. Эти соединения были открыты в конце XIX века швейцарским биохимиком Иоганном Фридрихом Мишером. Он интересовался химией клеточных ядер, и из белых кровяных клеток, содержащихся в гное, а также из сперматозоидов лосося ему удалось выделить новое химическое соединение с высокой кислотностью, богатое фосфором и состоявшее из невероятно больших молекул. После многолетних исследований ученик Мишера Рихард Альтман ввел для описания этого открытия термин «нуклеиновая кислота». К 1920-м годам генетики уже знали, что существует две разновидности нуклеиновых кислот: рибонуклеиновая кислота, или РНК, состоящая из четырех структурных веществ (гуанина, аденина, цитозина и урацила, или ГАЦУ), и дезоксирибонуклеиновая кислота, или ДНК, являющаяся основным компонентом хромосом. Ее элементы почти совпадают с компонентами РНК, только вместо урацила в ДНК присутствует тимин (ГАЦТ). Ученым было известно, что эти базовые компоненты можно разделить на две пары сходных органических веществ: аденин и гуанин являются пиринами, а цитозин и тимин – пиримидинами. Было понятно и то, что, связываясь, эти вещества образуют очень длинные молекулы. Первоначально генетики полагали, что РНК характерна для растений, а ДНК – для животных, но к началу 1930-х годов было обнаружено, что обе нуклеиновых кислоты равно распространены как в растительном, так и в животном мире. Тем не менее роль нуклеиновых кислот в ядре клетки все еще была неясна.


Фрэнк Райан

Таинственный геном человека

Освальду Т. Эвери

Наверное, я стал ученым потому, что в детстве был очень любопытным. Я помню, как в 10, 11, 12 лет постоянно задавался вопросами: «Почему это происходит? Почему я наблюдаю то или иное явление? Я хочу его понять».

Лайнус Полинг

The Misterious World of the Human Genome

© FPR-Books, Ltd., 2015

© Перевод на русский язык, издание на русском языке, ООО Издательство «Питер», 2017

© Серия «New Science», 2017

Введение

Для того чтобы превратить мертвую материю в живую, не требовалось никакого акта творения или жизненной искры. И та и другая состоят из одних и тех же атомов, и разница заключается лишь в их архитектуре.

Джейкоб Броновски. The Identity of Man

Броновски начинает свою знаменитую книгу «Восхождение человечества» такими словами: «Человек - уникальное творение природы. Он активно меняет мир вокруг себя, наблюдая за повадками животных и умело пользуясь полученными знаниями. Современные люди заняли особое положение среди живых существ, потому что сумели обустроиться на всех континентах, адаптироваться к любым условиям». Но почему люди не только населяют наш мир, но и активно изменяют его? От гепарда или от морского конька нас отличает генетическая наследственность - совокупность ДНК, в которой закодировано наше существование. Эту совокупность мы называем геномом или, в данном случае, человеческим геномом .

Наш геном - это то, что определяет нас на глубинном уровне. Он присутствует в каждой из примерно 100 000 миллиардов клеток, составляющих человеческий организм и специфичный для каждого отдельного человека. Но на этом все не заканчивается. Мириады мельчайших различий, свойственные нашему геному, представляют собой самую нашу суть в генетическом и наследственном смысле. Мы передаем их своим потомкам, делая через них вклад в совокупное эволюционное наследие нашего вида. Понять геном - значит по-настоящему познать, что такое быть человеком. В мире нет двух людей с абсолютно одинаковым геномом. Даже однояйцовые близнецы, получившие при зачатии один и тот же геном, рождаются с небольшими генетическими различиями. Эти различия могут возникать в тех частях генома, которые не отвечают за кодирование элементов, называемых генами .

Кажется странным, что наш геном - это нечто большее, чем просто совокупность генов. Но давайте пока не будем вдаваться в подробности и сосредоточимся на более общей теме. Каким образом из относительно простого химического кода создается человек - сложное живое существо? Как человеческий геном развивался в ходе эволюции? Как он работает? Стоит задаться этими вопросами, и мы сталкиваемся с множеством загадок.

Для того чтобы получить ответы, нам нужно исследовать базовую структуру генома, его операционные системы, механизмы экспрессии и контроля. Некоторые читатели могут скептически отнестись к этому предложению. Разве не означает это погружение в невероятно загадочный мир, слишком сложный для неподготовленного человека? На самом деле именно на такого читателя и рассчитана эта книга. Как вы увидите, базовые понятия легки для восприятия, нужно лишь разделить наше путешествие на несколько простых логических этапов. Путь пройдет через череду блестящих открытий в истории человечества и уведет нас в далекое прошлое, к нашим предкам и их познанию Земли в древние времена.

По ходу путешествия у нас будут возникать новые вопросы, в том числе достаточно важные. Каким образом эта удивительная субстанция, которую мы называем человеческим геномом, обеспечивает воспроизведение людьми себе подобных, то есть оплодотворение материнской яйцеклетки спермой отца? Как геном контролирует невероятный процесс развития эмбриона в матке? Вернувшись на секунду к общим вопросам, отметим, что важным элементом генома и его сутью является память - например, память о целостности генетического наследия каждого человека. Но как именно она сохраняется? Мы уже знаем, что волшебное вещество под названием ДНК играет роль кода. Каким образом код может воспроизводить сложнейшие инструкции по созданию клеток, тканей и органов, а затем объединять их в единое целое, которое мы называем организмом человека? Но даже ответив на эти вопросы, мы едва прикоснемся к загадкам человеческого генома. Каким образом эта чудесная структура получает программу, дающую ребенку способности к развитию речи, к обучению и письму? За счет чего новорожденный младенец превращается во взрослого человека, который, становясь отцом или матерью, снова запускает этот цикл?

Затем мы получаем бутсы и выходим на улицу.

Мы играем в квадрат на отмеченном участке поля. Восемь человек передают мяч друг другу, а двое в середине пытаются его перехватить. Это упражнение помогает нам привыкнуть к мячу. Затем мы выполняем короткие спурты между конусами, чтобы запустить наши легкие и ноги.

Наступает моя самая любимая часть тренировки – игра.

Я никогда не знаю, что мы будем отрабатывать в конкретной игре. Иногда мы работаем над владением, иногда над тактикой. Сегодня мы разбираем, как будем взламывать оборону соперника по следующему матчу – "Чарльтона". В это время Менеджер стоит на кромке поля и наблюдает за тем, как мы играем. Он требует увеличить темп, когда необходимо. Он требует, чтобы мы доводили мяч до штрафной быстрее. Он меняет нас местами.

В тренировочной игре все хотят победить, даже в таком формате, как сейчас – восемь на восемь. Подкаты летят один за другим.

Уэс Браун поздно идет в подкат, его нога над мячом. Он бьет меня в лодыжку. Я в штрафной, но рефери, наш тренер по физподготовке, не свистит. Моя команда жалуется, я взбешен. Несколько мгновений спустя, в том же месте, Уэс снова ловит меня. Его шипы взмывают в воздух, и это вопиющий фол, но снова ни намека на то, что мы заработаем пенальти. Уэс бежит на другой конец поля и забивает.

Менеджер наблюдает с бровки. Внезапно он останавливает игру.

– Парни, успокойтесь! Поосторожнее с подкатами. Я не хочу, чтобы кто-нибудь получил травму.

В следующий раз, когда я в штрафной, я чувствую легкое прикосновение и решаю нырять (на тренировках мы все грешим этим).

Я взбешен!

Начинаю кричать на рефери, потому что хочу выиграть эту игру так же, как и матч Премьер-лиги против "Челси", "Сити" или "Астон Виллы". Ссоры случаются регулярно, но это в порядке вещей. Боевой настрой исходит от Менеджера – он хочет, чтобы мы тренировались так, как будто играем по-настоящему.

Рефери свистит.

Игра окончена.

Я взбешен, потому что мы проиграли, но остаюсь поработать над ударами. Бью по воротам в течение десяти минут. Все это часть рутины: я готовлюсь к любой возможности, которая может появиться у меня в выходные.

Бью с лета.

Бью из-за пределов штрафной площади.

Бью после паса, который принимаю на грудь.

Пенальти, штрафные.

Один из тренеров ставит меня спиной к мячу. Он отдает передачу в штрафную в случайном направлении, после этого окликает меня. Оборачиваюсь, реагирую и бью как можно быстрее. Такое упражнение готовит меня к свободным мячам – я должен всегда быть начеку.

Я не один. Когда я смотрю на тренировочную площадку, вижу, что разные игроки работают над разными упражнениями. Рио тренирует удары головой, наш вратарь Тим Ховард – игру при навесах, а Гиггзи – штрафные удары.

Все мы можем стать лучше, даже в "Юнайтед".

Люди постоянно рассуждают о бомбардирском искусстве и о том, чем оно обусловлено – упорными тренировками или природным талантом. Признаться честно, я считаю, что голы рождаются из комбинации обоих факторов. Кое-что вы можете натренировать, но вы не можете обучиться инстинкту. Либо он есть, либо его нет.

Наверное, у меня он есть. Всегда был. Еще ребенком я чувствовал все неприкаянные мячи в штрафной. Когда я играю на острие в "Юнайтед", я всегда в боевой готовности. Чуткий к любой возможности забить. Все время пытаюсь угадать, где мяч окажется в следующую секунду, чтобы успеть подготовиться. Я ищу, высматриваю, угадываю свободные мячи и ошибки в защите, но это природная способность. Предчувствие, в какую сторону двигаться (а затем и забивать, если ты выходишь один на один с вратарем) – умение, которое некоторым игрокам дано, а некоторым нет. Именно этот инстинкт может сыграть решающую роль в том, забьете вы пять или двадцать пять мячей за сезон, на любом уровне.

Всякий раз, когда играю за "Юнайтед", я должен реагировать по-разному на все, что происходит вокруг меня. Если я увижу, что один из наших вингеров – Роналду или Гиггзи, допустим, – простреливает с фланга, инстинкт велит мне бежать к дальней штанге. Я знаю, что мяч может уйти в сторону и у меня будет возможность добить его. Если я вижу удар Скоулзи или Алана Смита, я всегда рассчитываю на отскок. Он может отлететь в мою сторону, а может и не отлететь. Но даже если он окажется у меня всего раз из 20 попыток, этого может оказаться достаточно для дополнительных двух-трех голов в сезоне.

Дело не только в том, чтобы предугадывать полет мяча после удара или паса – тут еще и чтение положения тела. Перед решающим действием на фланге или в центре я внимательно слежу за тем, какую позицию выберет мой одноклубник перед передачей. Из его движения я могу приблизительно оценить, куда он собирается отдавать пас, и бегу в эту точку.

Если мне повезет и я оценил все правильно, я оказываюсь перед воротами с мячом. Вот тогда я должен быть готов к следующему действию: контроль, движение, удар. Вот где приходит очередь тренировки.

Работая над техникой постоянно, я развиваю мышечную память. Инстинктивно знаю, что делать, когда передача идет в мою сторону. Если мяч попадает мне на грудь в районе одиннадцатиметровой отметки, я без лишних размышлений знаю, как опустить его вниз и ударить, потому что я тренирую свой мозг. Не только я. Все лучшие бомбардиры в мире делают то же самое.

Я тренирую все: дальние удары, удары с лета, с отскока, стандарты. Мое движение в штрафной значительно улучшилось на протяжении многих лет благодаря опыту, плюс мне действительно помогают отличные навесы от партнеров, таких как Гиггзи и Роналду – но только когда он быстро расстается с мячом. Не поймите меня неправильно: Ронни превращается в великого футболиста, но если мы играем в связке, я никогда не знаю, что он собирается делать дальше.

Он уходит на фланг. Я бегу.

Он смещается в центр. Я останавливаюсь и делаю рывок в другую сторону.

Он отходит назад. Я снова останавливаюсь, а потом выхожу из положения "вне игры".

Он закручивает мяч в штрафную, а я стою разочарованный. Иногда это действительно раздражает.

Мы заканчиваем сразу после полудня. В конце каждой сессии мы расслабляемся. Кто-то прыгает в ледяные ванны, другие идут в бассейн. После этого тренажерный зал. Он немного похож на центр досуга старой школы: маты, штанги, велосипеды, одна из тех зеленых драпировок, которая разделяет две половины спортивного зала. Райан иногда занимается йогой после тренировки. Я пробовал один или два раза, но это не мое – слишком скучно. В течение 45 минут инструктор заставляет меня растягиваться и удерживать определенную позицию. Когда я спрашиваю Гиггзи, почему он это делает, особенно когда это так скучно, он говорит мне, что это укрепляет его мышцы.

– Я думаю, это продлевает карьеру игрока, увеличивая их гибкость, – надеется он.

Может быть, через несколько лет я смогу вникнуть в йогу лучше. Прямо сейчас я не чувствую, что мне это нужно.

Иногда я занимаюсь в тренажерном зале, но только если травмирован и не могу участвовать в тренировках или нормально бегать. Если у нас свободная неделя – это когда игра в субботу, а потом в следующую субботу без матчей между ними, – вся команда занимается со штангами. Некоторые игроки работают по программе, другие делают все по-своему. Я хожу туда время от времени, но на самом деле, если нет мяча, мне неинтересно.

Я просто хочу играть в футбол.