Природное сообщество - совокупность растений, животных, микроорганизмов, приспособленных к условиям жизни на определенной территории, влияющих друг на друга и на окружающую среду. В нем осуществляется и поддерживается круговорот веществ.

Можно выделить разномасштабные природные сообщества, например материки, океаны, лес, луг, тайгу, степь, пустыню, пруд, озеро. Более мелкие природные сообщества входят в состав более крупных. Человек создает искусственные сообщества, например поля, сады, аквариумы, космические корабли.

Каждому природному сообществу свойственны разнообразные взаимосвязи - пищевые, по месту обитания и др.

Основная форма связей организмов в природном сообществе - это пищевые связи. Начальным, основным звеном в любом природном сообществе, создающим в нем запас энергии, являются растения. Лишь растения, используя солнечную энергию, могут из находящихся в почве или воде минеральных веществ и углекислого газа создавать органические вещества. Растениями питаются растительноядные беспозвоночные и позвоночные животные. Ими, в свою очередь, питаются плотоядные животные - хищники. Так в природных сообществах возникают пищевые связи, цепь питания: растения - растительноядные животные - плотоядные животные (хищники - прим. сайт). Иногда эта цепь усложняется: первыми хищниками могут питаться другие, а ими, в свою очередь, - третьи. Например, гусеницы поедают растения, а гусениц поедают хищные насекомые, которые, в свою очередь, служат пищей насекомоядным птицам, а теми питаются хищные птицы.

Наконец, в состав природного сообщества входят еще различные организмы, которые питаются отходами: отмершими растениями или их частями (ветками, листьями), а также трупами погибших животных или их экскрементами. Ими могут быть некоторые животные - жуки-могильщики, дождевые черви. Но основную роль в процессе разложения органических веществ играют плесневые грибы и бактерии. Именно они доводят разложение органических веществ до минеральных, которые опять могут быть использованы растениями. В общей сложности в природных сообществах происходит круговорот веществ.

Смена природных сообществ может проходить под влиянием биотических, абиотических факторов и человека. Смена сообществ под влиянием жизнедеятельности организмов длится сотни и тысячи лет. Главную роль в этих процессах играют растения. Примером смены сообщества под влиянием жизнедеятельности организмов может служить процесс зарастания водоемов. Большинство озер постепенно мелеет и уменьшается в размерах. На дне водоема со временем накапливаются остатки водных и прибрежных растений и животных, частички почвы, смываемые со склонов. Постепенно на дне образуется толстый слой ила. По мере того, как озеро мелеет, его берега зарастают камышом и тростником, затем осоками. Органические остатки накапливаются еще быстрее, образуют торфянистые отложения. Многие растения и животные замещаются видами, чьи представители более приспособлены для жизни в новых условиях. Со временем на месте озера образуется иное сообщество - болото. Но на этом смена сообществ не прекращается. На болоте могут появляться неприхотливые к почве кустарники и деревья, а в конечном итоге болото может смениться лесом.

Таким образом, смена сообществ происходит потому, что в результате изменения видового состава сообществ растений, животных, грибов, микроорганизмов постепенно изменяется среда обитания и создаются условия, благоприятные для обитания других видов.

Смена сообществ под влиянием деятельности человека. Если смена сообществ под влиянием жизнедеятельности самих организмов - постепенный и длительный процесс, охватывающий период в десятки, сотни и даже тысячи лет, то смена сообществ, вызванная деятельностью человека, происходит быстро, в течение нескольких лет.

Так если в водоемы попадают сточные воды, удобрения с полей, бытовые отходы, то кислород, растворенный в воде, тратится на их окисление. В результате снижается видовое разнообразие, различные водные растения (сальвиния плавающая, горец земноводный) заменяются ряской, водоросли - синезелеными, возникает "цветение воды". Ценные промысловые рыбы сменяются малоценными, исчезают моллюски, многие виды насекомых. Богатая водная экосистема превращается в экосистему загнивающего водоема.

Если воздействие человека, вызвавшее смену сообществ, прекращается, то, как правило, начинается естественный процесс самовосстановления. Ведущую роль в нём продолжают играть растения. Так, на пастбищах после прекращения выпаса появляются высокорослые травы, в лесу - типичные лесные растения, озеро очищается от засилия одноклеточных водорослей и синезеленых, в нем вновь появляются рыбы, моллюски, ракообразные.

Если же видовая и трофическая структуры упрощены настолько, что процесс самовосстановления уже не может происходить, то человек вновь вынужден вмешиваться в это природное сообщество, но теперь с благими целями: на пастбищах высевают травы, в лесу сажают новые деревья, водоемы очищают и запускают туда молодь рыб.

Сообщество способно к самовосстановлению лишь при частичных нарушениях. Поэтому влияние хозяйственной деятельности человека не должно превышать того порога, после которого не может осуществляться процессы саморегуляции.

Смена сообществ под влиянием абиотических факторов. На развитие и смену сообществ большое влияние оказывали и оказывают резкие изменения климата, колебания солнечной активности, горообразовательные процессы, извержения вулканов. Эти факторы называют абиотическими - факторами неживой природы. Они нарушают стабильность среды обитания живых организмов.

К сожалению, способности природных сообществ к самовосстановлению не безграничны: если внешнее воздействие превысит определённый предел, то экосистема разрушится, а территория, где она находилась, сама станет источником экологического дисбаланса. Даже если восстановление экосистемы будет возможно, то обойдётся оно гораздо дороже своевременных мер по её сохранению.

Способность природных сообществ к саморегуляции достигается благодаря естественному разнообразию живых существ, приспособившихся друг к другу в результате длительной совместной эволюции. При снижении численности одного из видов его частично освободившуюся экологическую нишу временно занимает экологически близкий к нему вид того же сообщества, не позволяя развиться тем или иным дестабилизирующим процессам.

Совсем по-другому обстоит дело, если какой-либо вид выпал из сообщества. В этом случае система "взаимной подстраховки" экологически близких видов нарушается, и часть потребляемых ими ресурсов не используется, то есть возникает экологический дисбаланс. По мере дальнейшего обеднения естественного видового состава сообщества создаются условия для чрезмерного накопления органики, вспышек численности насекомых, вселения чужеродных видов и т. п.
Обычно первыми выпадают из природного сообщества так называемые редкие виды, поскольку их редкость обусловлена тем, что они наиболее требовательны к условиям обитания и чувствительны к их изменению. В стабильном сообществе редкие виды должны быть среди всех групп живых организмов. Поэтому присутствие разнообразных редких видов служит показателем сохранности природного биоразнообразия в целом и, таким образом, экологической полноценности природного сообщества.

Как известно, биотический круговорот веществ обеспечивают виды, занимающие различные трофические уровни:

Продуценты, производящие органическое вещество из неорганического - это, прежде всего, зелёные растения;
консументы первого порядка, потребляющие фитомассу - это травоядные животные, как позвоночные, так и беспозвоночные;
консументы второго и высших порядков, питающиеся другими консументами, например, хищные насекомые и пауки, хищные рыбы, земноводные и пресмыкающиеся, насекомоядные и хищные птицы и млекопитающие;
редуценты, разлагающие отмершую органику - этот процесс обеспечивают, прежде всего, разнообразные микроорганизмы, грибы, а также дождевые кольчатые черви и некоторые другие почвенные беспозвоночные.

Изучение полноценных природных сообществ показывает, что редкие виды присутствуют в них на всех трофических уровнях. Наиболее показательно наличие в сообществе жизнеспособных популяций консументов высших порядков: они находятся на вершине трофической пирамиды и, таким образом, их состояние в наибольшей степени зависит от состояния трофической пирамиды в целом.

Важной характеристикой любого вида служит размер территории, минимально необходимой для существования его жизнеспособной популяции. Для природоохранных целей можно выделить несколько размерных классов территорий, необходимых для существования жизнеспособной популяции вида.

В размерном интервале от отдельной растительной ассоциации до биогеоценоза включительно целесообразно выделить участки следующих размерных классов:

1 - микробиотопы, отдельные участки растительных ассоциаций, необходимые, например, для грибов, многих растений и беспозвоночных животных;
2 - сочетание определённых микробиотопов и растительных ассоциаций, необходимое, например, для некоторых растений, для земноводных, пресмыкающихся, стрекоз, многих бабочек;
3 - биогеоценоз в целом, необходимый для мелких птиц и млекопитающих, наиболее крупных и подвижных насекомых, а из растений - для лесообразующих видов деревьев.

Для существования популяций средних и крупных птиц и млекопитающих обычно необходимы территории, существенно превышающие площадь, занимаемую одним биогеоценозом. Для таких территорий мы выделяем следующие размерные классы:

4 - группа сходных биоценозов или их сочетаний;
5 - природные массивы, состоящие из разнообразных биотопов;
6 - природные массивы и их комплексы регионального уровня.

В условиях преобразования природных территорий наиболее уязвимы виды, которым необходимы территории высших (IV-VI) размерных классов, тем более что большинство этих видов относится к консументам высших порядков.

Таким образом, показателем качественной полноценности экосистемы служит всех наличие трофических уровней, причём в пределах каждого трофического уровня присутствуют виды, популяции которых занимают существенно различные экологические ниши и территории различных размерных классов.

Условием сохранения средообразующих функций природных сообществ являются межэкосистемные связи, делающие возможным естественное восстановление нарушенных участков за счёт миграции живых организмов с соседних участков, сохранившихся лучше. Тогда они подстраховывают друг друга так же, как и популяции сходных видов в пределах одного сообщества. Будучи функционально взаимосвязанными в пределах региона, природные сообщества образуют природный каркас, на котором держится региональная экологическая стабильность. Поэтому сохранение системы взаимосвязанных природных сообществ, способной к самовосстановлению - это единственный реальный способ поддержания среды обитания людей.



Первичные консументы

Первичные консументы питаются первичными продуцентами, т. е. это травоядные животные. На суше типичными травоядными являются многие насекомые, рептилии, птицы и млекопитающие. Наиболее важные группы травоядных млекопитающих - это грызуны и копытные. К последним относятся пастбищные животные, такие, как лошади, овцы, крупный рогатый скот, приспособленные к бегу на кончиках пальцев.

В водных экосистемах (пресноводных и морских) травоядные формы представлены обычно моллюсками и мелкими ракообразными. Большинство этих организмов - ветвистоусые и веслоногие раки, личинки крабов, усоногие раки и двустворчатые моллюски (например, мидии и устрицы) - питаются, отфильтровывая мельчайших первичных продуцентов из воды. Вместе с простейшими многие из них составляют основную часть зоопланктона, питающегося фитопланктоном. Жизнь в океанах и озерах практически полностью зависит от планктона, так как с него начинаются почти все пищевые цепи.

биотический экосистема солнце пищевой трофический

Консументы второго и третьего порядка

Растительный материал (например, нектар) > муха > паук >

> землеройка > сова

Экология - это биологическая наука, изучающая взаимоотношения живых организмов с окружающей их средой. Все организмы на Земле взаимодействуют между собой, так или иначе влияют друг на друга, на них воздействует неживая природа, а также человек. Это касается и животных.

Экология животных рассматривает взаимовлияния животных и окружающей их среды. При этом животные сильно зависят от окружающей их растительности. Многие могут обитать только в определенных природных сообществах, формируемых теми или иными растениями.

Взаимоотношения животных с живыми организмами

В природных сообществах животные выполняют роль консументов, так как являются гетеротрофами, т. е. потребляют готовые органические вещества.

Изначально в экосистеме органические вещества продуцируются растениями (продуцентами), которые являются автотрофами. Животные, которые питаются растительной пищей, называются растительноядными или консументами первого порядка (в экологии животных могут использовать запись «консументы I»).

Консументы второго порядка питаются животной пищей (поедают других животных), то есть являются хищниками. Некоторые животные всеядны, т. е. одновременно являются консументами нескольких порядков. Кроме того, бывают консументы третьего порядка, которые едят консументов второго. В сложных больших природных сообществах (особенно водных) можно найти и консументов пятого порядка.

По массе (говорят «биомассе») в природных сообществах всегда преобладают растения, далее идут консументы I и только затем - консументы II. Хищников всегда меньше, чем травоядных, так как не в процессе движения энергии по пищевым цепям она частично рассеивается в виде тепла. Чтобы прокормиться, одному хищнику нужно множество травоядных животных.

В экосистемах животные выступают в роли не только консументов, но и редуцентов. Редуценты - это такие организмы, которые могут разлагать органические вещества до неорганических. Кроме животных редуцентами бывают бактерии и грибы. Обычно редуценты обитают в почве. Сюда попадают отмершие части растений, испражнения животных, умершие животные. Вся эта органика разлагается редуцентами до минеральных веществ, доступных потом растениям. Таким образом, в природе осуществляется круговорот веществ (под этим следует понимать круговорот химических элементов): сначала они оказываются заключенными в продуцентах, далее переходят по цепи консументов нескольких порядков, в конце концов оказываются у редуцентов, которые, в конце концов, выводят их во внешнюю среду.

Влияние неживой природы на животных

Экология животных также рассматривает, как животные приспособлены к таким условиям среды, как температура, влажность, суточные и сезонные изменения.

Для каждой климатической зоны характерны свои животные. Так львы обитают в теплой Африке, а белые медведи - в холодной Арктике. Также важна конкретная среда обитания: одни животные обитают в реках, морях и океанах, а другие - сухопутные. Ну и даже в одной экосистеме кто-то ходит по земле, кто-то летает, а кто-то лазит по деревьями или живет под землей. Экология изучает все эти особенности жизни животных, их приспособления к конкретным условиям абиотической среды (неживой природы).

Большое значение на жизнь животных оказывает смена времен года. Так в умеренных широтах зима и лето сильно отличаются. Многие животные зимой не могут вести активный образ жизни. Поэтому укрываются и впадают в оцепенение, спячку; птицы улетают. Теплокровные животные (птицы и млекопитающие) это делают в основном из-за недостатка пищи в зимнее время года. Те виды, которые могут добывать пищу зимой, не впадают в спячку и не улетают.

Отдельно следует оговорить, что человек оказывает на экологию животных негативное влияние, особенно в последнее столетие.

Пищевая цепь имеет определенное строение. В нее входят продуценты, консументы (первого, второго порядка и т. д.) и редуценты. Подробнее о консументах будет рассказано в статье. Чтобы основательно разобраться в том, кто такие консументы 1 порядка, 2 и далее, вначале кратко рассмотрим строение пищевой цепи.

Строение пищевой цепи

Следующее звено цепи и, соответственно, ярус пищевой пирамиды - консументы (нескольких порядков). Так называют организмы, которые потребляют в пищу продуценты. О них будет подробно рассказано далее.

И наконец, редуценты - завершающий ярус пищевой пирамиды, последнее звено цепи, - организмы-«санитары». Это неотъемлемый и очень важный компонент экосистемы. Они перерабатывают и разлагают высокомолекулярные органические соединения до неорганических, которые затем вновь используются автотрофами. Большая часть из них - это организмы достаточно мелких размеров: насекомые, черви, микроорганизмы и т. д.

Кто такие консументы

Как упоминалось выше, консументы располагаются на втором ярусе пищевой пирамиды. Эти организмы, в отличие от продуцентов, не обладают способностью к фото- и хемосинтезу (под последним понимают процесс получения археями и бактериями необходимой для синтеза органических веществ энергии из углекислого газа). Поэтому они должны питаться другими организмами - теми, кто имеет такую способность, либо себе подобными - другими консументами.

Животные - консументы 1 порядка

К этому звену пищевой цепи относятся гетеротрофы, которые, в отличие от редуцентов, не способны разлагать органические вещества до неорганических. Так называемые первичные консументы (1 порядка) - те, которые непосредственно питаются самими производителями биомассы, то есть продуцентами. Это прежде всего травоядные животные - так называемые фитофаги.

В эту группу входят как гигантские млекопитающие, например слоны, так и маленькие насекомые - саранча, тля и т. д. Примеры консументов 1 порядка привести нетрудно. Это практически все животные, разводимые человеком в сельском хозяйстве: крупный рогатый скот, лошади, кролики, овцы.

Из диких животных к фитофагам относится бобр. Как известно, он использует стволы деревьев для постройки плотин, а их ветви употребляет в пищу. К растительноядным относятся и некоторые виды рыб, например белый амур.

Растения - консументы первого порядка

Подводя итог, можно сделать следующий вывод: консументы - это организмы, питающиеся растениями.

Консументы второго порядка и далее

В свою очередь, консументы 3-го порядка - те, кто поедают консументов предыдущего порядка, то есть более крупные хищники, 4-го - те, кто поедают консументов третьего. Выше четвертого уровня пищевая пирамида, как правило, не существует, так как потери энергии от организма-производителя к потребителю на предыдущих уровнях достаточно велики. Ведь они неизбежны на каждом ее ярусе.

Четкую границу между консументами определенных порядков провести тоже часто нелегко, а иногда и невозможно. Ведь некоторые животные являются одновременно консументами разных уровней.

Также многие из них являются всеядными, например медведь, то есть консументами первого и второго порядка одновременно. Это же касается и человека, который всеяден, хотя в силу различных взглядов, традиций или условий проживания может, например, употреблять пищу только растительного происхождения.

Тема № 4 БИОЦЕНОЗЫ

    Понятие биоценоза

    Трофическая структура биоценоза

    Пространственная структура биоценоза

    Понятие биоценоза

В природе популяции разных видов интегрируются в макросистемы более высокого ранга - в так называемые сообщества, или биоценозы.

Биоценоз (от греч. bios - жизнь, koinos - общий) - это организованная группа взаимосвязанных популяций растений, живот­ных, грибов и микроорганизмов, живущих совместно в одних и тех же условиях среды.

Понятие «биоценоз» было предложено в 1877 г. немецким зоологом К. Мебиусом. Мебиус, изучая устричные банки, пришел к выводу, что каждая из них представляет собой сообщество живых существ, все члены которого находятся в тесной взаимосвязи. Био­ценоз является продуктом естественного отбора. Выживание его, устойчивое существование во времени и пространстве зависит от характера взаимодействия составляющих популяций и возможно лишь при обязательном поступлении извне лучистой энергии Солнца.

Каждый биоценоз имеет определенную структуру, видовой состав и территорию; ему свойственны определенная организация пищевых связей и определенный тип обмена веществ

Но никакой биоценоз не может развиваться сам по себе, вне и независимо от среды. В результате в природе складываются определенные комплексы, совокупности живых и неживых компонентов. Сложные взаимодейст­вия отдельных частей их поддерживаются на основе разносторонней взаимной приспособ­ленности.

Пространство с более или менее однород­ными условиями, заселенное тем или иным сообществом организмов (биоценозом), назы­вается биотопом.

Иначе говоря, биотоп - это место сущест­вования, местообитание, биоценоза. Поэтому биоценоз можно рассматривать как историче­ски сложившийся комплекс организмов, харак­терный для какого-то конкретного биотопа.

Любой биоценоз образует с биотопом диа­лектическое единство, биологическую макроси­стему еще более высокого ранга - биогеоценоз. Термин «биогеоценоз» предложил в 1940 г. В. Н. Сукачев. Он практически тождест­вен широко распространенному за рубежом термину «экосистема», который был предло­жен в 1935 г. А. Тенсли. Существует мнение, будто термин «биогеоценоз» в значительно большей степени отражает структурные харак­теристики изучаемой макросистемы, тогда как в понятие «экосистема» вкладывается прежде всего ее функциональная сущность. Фактически между этими терминами различий нет. Несом­ненно, В. Н. Сукачев, формулируя понятие «биогеоценоз», объединял в нем не только структурную, но и функциональную значимость макросистемы. По В. Н. Сукачеву, биогео­ценоз - это совокупность на известном про­тяжении земной поверхности однородных природных явлений - атмосферы, горной породы, гидрологических условий, расти­тельности, животного мира, мира микроорга­низмов и почвы. Эта совокупность отличается спецификой взаимодействий слагающих ее ком­понентов, их особой структурой и определен­ным типом обмена веществ и энергии между собой и с другими явлениями природы.

Биогеоценозы могут быть самых различных размеров. Кроме того, они отличаются боль­шой сложностью - в них подчас трудно учесть все элементы, все звенья. Это, к примеру, такие естественные группировки, как лес, озе­ро, луг и т. д. Примером сравнительно простого и четкого биогеоценоза может служить неболь­шой водоем, пруд. К неживым компонентам его относятся вода, растворенные в ней веще­ства (кислород, углекислый газ, соли, органиче­ские соединения) и грунт - дно водоема, где также содержится большое количество разно­образных веществ. Живые компоненты водо­ема разделяются на производителей первичной продукции - продуценты (зеленые растения), потребителей - консументы (первичные - рас­тительноядные животные, вторичные - плото­ядные животные и т. д.) и разрушителей - деструкторы (микроорганизмы), которые раз­лагают органические соединения до неорганических. Любой биогеоценоз, независимо от его размеров и сложности, состоит из этих основ­ных звеньев: производителей, потребителей, разрушителей и компонентов неживой приро­ды, а также из множества других звеньев. Между ними возникают связи самых различных порядков - параллельные и перекрещивающи­еся, запутанные и переплетенные и т. д.

В целом биогеоценоз представляет внутрен­нее противоречивое диалектическое единство, находящееся в постоянном движении и измене­нии. «Биогеоценоз - не сумма биоценоза и среды, - указывает Н. В. Дылис, - а целостное и качественно обособленное явление природы, действующее и развивающееся по своим соб­ственным закономерностям, основу которых составляет метаболизм его компонентов».

Живые компоненты биогеоценоза, т. е. сба­лансированные животно-растительные сообще­ства (биоценозы), являются высшей формой существования организмов. Они характеризу­ются относительно устойчивым составом фауны и флоры и обладают типичным набором живых организмов, сохраняющих свои основные при­знаки во времени и пространстве. Устойчивость биогеоценозов поддерживается саморегуляцией, т. е. все элементы системы существуют совместно, никогда полностью не уничтожая друг друга, а только ограничивая численность особей каждого вида до какого-то предела. Именно поэтому между видами животных, рас­тений и микроорганизмов исторически сложи­лись такие взаимоотношения, которые обеспе­чивают развитие и удерживают размножение их на определенном уровне. Перенаселенность одного из них может возникнуть по какой-то причине как вспышка массового размножения, и тогда сложившееся соотношение между вида­ми временно нарушается.

Чтобы упростить изучение биоценоза, его условно можно расчленить на отдельные ком­поненты: фитоценоз - растительность, зооце­ноз - животный мир, микробоценоз - микро­организмы. Но такое дробление приводит к искусственному и фактически неправильному выделению из единого природного комплекса группировок, которые самостоятельно сущест­вовать не могут. Ни в одном местообитании не может быть динамической системы, которая состояла бы только из растений или только из животных. Биоценоз, фитоценоз и зооценоз необходимо рассматривать как биологические единства разных типов и ступеней. Такой взгляд объективно отражает реальное положение в современной экологии.

В условиях научно-технического прогресса деятельность человека преобразует природные биогеоценозы (леса, степи). На смену им при­ходят посевы и посадки культурных растений. Так формируются особые вторичные агробиогеоценозы, или агроценозы, количество кото­рых на Земле постоянно увеличивается. Агроценозами являются не только сельскохозяйственные поля, но и полезащитные лесные поло­сы, пастбища, искусственно возобновляемые леса на вырубках и пожарищах, пруды и водо­хранилища, каналы и осушенные болота. Агробиоценозы по своей структуре характеризуют­ся незначительным количеством видов, но вы­сокой их численностью. Хотя в структуре и энергетике естественных и искусственных био­ценозов есть много специфичных черт, резких различий между ними не существует. В естест­венном биогеоценозе количественное соотно­шение особей разных видов взаимно обуслов­лено, поскольку в нем действуют механизмы, регулирующие это соотношение. В результате в таких биогеоценозах устанавливается стабиль­ное состояние, поддерживающее наиболее выгодные количественные пропорции составля­ющих его компонентов. В искусственных агроценозах нет подобных механизмов, там человек полностью взял на себя заботу об упорядочи­вании взаимоотношений между видами. Изу­чению структуры и динамики агроценозов уделяется большое внимание, так как уже в обозримом будущем первичных, естественных, биогеоценозов практически не останется.

    Трофическая структура биоценоза

Основная функция биоценозов - поддержание круговорота ве­ществ в биосфере - базируется на пищевых взаимоотношениях видов. Именно на этой основе органические вещества, синтезированные автотрофными организмами, претерпевают многократные химические трансформации и в конечном итоге возвращаются в среду в виде неорганических продуктов жизнедеятельности, вновь вовлекаемых в круговорот. Поэтому при всем многообразии видов, входящих в состав различных сообществ, каждый биоценоз с необходимостью включает представителей всех трех принципиальных экологических групп орга­низмов - продуцентов, консументов и редуцентов . Полночленность трофической структуры биоценозов - аксиома биоценологии.

Группы организмов и их взаимосвязи в биоценозах

По участию в биогенном круговороте веществ в биоценозах различают три группы организмов:

1) Продуценты (производители) - автотрофные организмы, создающие органические вещества из неорганических. Основными продуцентами во всех биоценозах являются зеленые растения. Деятельность продуцентов определяет исходное накопление органических веществ в биоценозе;

Консументы I порядка .

Этот трофический уровень составлен непосредственными потребителями первичной продукции. В наиболее типичных случаях, когда последняя создается фотоавтотрофами, это растительноядные животные (фитофаги). Виды и эколо­гические формы, представляющие этот уровень, весьма разнообразны и приспособлены к питанию разными видами растительного корма. В связи с тем, что растения обычно прикреплены к субстрату, а ткани их часто очень прочны, у многих фитофагов эволюционно сформиро­вался грызущий тип ротового аппарата и различного рода приспособ­ления к измельчению, перетиранию пищи. Это зубные системы грызущего и перетирающего типа у различных растительноядных млекопитающих, мускульный желудок птиц, особенно хорошо выра­женный у зерноядных, и.т. п. Сочетание этих структур определяет возможность перемалыва­ния твердой пищи. Грызущий ротовой аппарат свойствен многим насекомым и др.

Некоторые животные приспособлены к питанию соком растений или нектаром цветков. Эта пища богата высококалорийными, легко­усвояемыми веществами. Ротовой аппарат у питающихся таким обра­зом видов устроен в виде трубочки, с помощью которой всасывается жидкая пища.

Приспособления к питанию растениями обнаруживаются и на физиологическом уровне. Особенно выражены они у животных, пита­ющихся грубыми тканями вегетативных частей растений, содержащи­ми большое количество клетчатки. В организме большинства животных не продуцируются целлюлозолитические ферменты, а расщепление клетчатки осуществляется симбиотическими бактериями (и некоторы­ми простейшими кишечного тракта).

Консументы частично используют пищу для обеспечения жизнен­ных процессов («затраты на дыхание»), а частично строят на ее основе собственное тело, осуществляя таким образом первый, принципиаль­ный этап трансформации органического вещества, синтезированного продуцентами. Процесс создания и накопления биомассы на уровне консументов обозначается как, вторичная продукция.

Консументы II порядка .

Этот уровень объединяет животных с плотоядным типом питания (зоофаги). Обычно в этой группе рассматривают всех хищников, поскольку их специфические черты практически не зависят от того, является ли жертва фитофагом, или плотоядна. Но строго говоря, консументами II порядка следует считать только хищников, питающихся растительноядными животны­ми и соответственно представляющих второй этап трансформации органического вещества в цепях питания. Химические вещества, из которых строятся ткани животного организма, довольно однородны, поэтому трансформация при переходе с одного уровня консументов на другой не имеет столь принципиального характера, как преобразо­вание растительных тканей в животные.

При более тщательном подходе уровень консументов II порядка следует разделять на подуровни соответственно направлению потока вещества и энергии. Например, в трофической цепи «злаки - кузне­чики - лягушки - змеи - орлы» лягушки, змеи и орлы составляют последовательные подуровни консументов II порядка.

Зоофаги характеризуются своими специфическими приспособле­ниями к характеру питания. Например, их ротовой аппарат часто приспособлен к схватыванию и удержанию живой добычи. При пита­нии животными, имеющими плотные защитные покровы, развиваются приспособления для их разрушения.

На физиологическом уровне адаптации зоофагов выражаются прежде всего в специфичности действия ферментов, «настроенных» на переваривание пищи животного происхождения.

Консументы III порядка.

Наиболее важное значение в биоценозах имеют трофические связи. На основе этих связей организмов в каждом биоценозе выделяют так называемые цепи питания, возникающие как результат сложных пищевых вза­имоотношений между растительными и животными организмами. Цепи питания объединяют прямо или косвенно большую группу организмов в единый комплекс, связанных друг с другом отношениями: пища - потре­битель. Цепь питания обычно состоит из нескольких звеньев. Организмы последующего звена поедают организмы предыдущего звена, и таким образом осуществляется цепной перенос энергии и вещества, лежащий в ос­нове круговорота веществ в природе. При каждом переносе от звена к звену теряется большая часть (до 80 - 90 %) потенциальной энергии, рас­сеивающейся в виде тепла. По этой причине число звеньев (видов) в цепи питания ограничено и не превышает обычно 4-5.

Принципиальная схема пищевой цепи приведена на рис. 2.

Здесь осно­ву пищевой цепи составляют виды - продуценты - автотрофные орга­низмы, преимущественно зеленые растения, синтезирующие органичес­кое вещество (строят свое тело из воды, неорганических солей и углекис­лоты, ассимилируя энергию солнечного излучения), а также серные, во­дородные и другие бактерии, использующие для синтеза органических ве­ществ энергию окисления химических веществ. Следующие звенья цепи питания занимают виды-консументы-гетеротрофные организмы, по­требляющие органические вещества. Первичными консументами явля­ются растительноядные животные, питающиеся травой, семенами, плодами, подземными частями растений - корнями, клубнями, луковица и даже древесиной (некоторые насекомые). Ко вторичным консументам относятся плотоядные животные. Плотоядные животные в свою очередь подразделяются на две группы: питающиеся массовой мелкой добычей и активных хищников, нападающих нередко на добычу крупнее самого хищника. Вместе с тем и растительноядные и плотоядные животные имеют смешанный характер питания. Например, даже при обилии млекопитающих и птиц куницы и соболи употребляют в пищу также плоды, семена и кедровые орешки, а растительноядные животные потребляют какое-то количество животной пищи, получая таким путем необходимые им незаменимые аминокислоты животного происхождения. Начиная со звена продуцентов, имеются два новных пути использования энергии. Во-первых, она используется травоядными животными (фитофагами), которые поедают непосредственно живые ткани растений; во-вторых потребляют сапрофаги в виде уже отмерших тканей (например, при разложении лесной подстилки). Организмы, называемые сапрофагами, преимущественно грибы и бактерии получают необходимую энергию, разлогая мертвое органическое вещество. В соответствии с этим существуют два вида пищевых цепей: цепи выедания и цепи разложения, рис. 3.

Следует подчеркнуть, что пищевые цепи разложения не менее важны, чем цепи выедания. На суше эти цепи начинаются с мертвого органического вещества (листьев, коры, ветвей), в воде - отмерших водорослей, фекальных масс и других органических остатков. Органические остатки могут полностью потребляться бактериями, грибами и мелкими животными - сапрофагами; при этом выделяются угла газ и тепло.

В каждом биоценозе обычно имеется несколько цепей питания, которые в большинстве случаев сложно переплетаются.

Экологическая пирамида

Все виды, образующие пищевую цепь, существуют за счет органичес­кого вещества, созданного зелеными растениями. При этом действует важная закономерность, связанная с эффективностью использования и превращения энергии в процессе питания. Сущность ее заключается в следующем.

Всего около 0,1% энергии, получаемой от Солнца, связывается в про­цессе фотосинтеза. Однако за счет этой энергии может синтезироваться несколько тысяч граммов сухого органического вещества на 1 м 2 в год. Более половины энергии, связанной при фотосинтезе, тут же расходуется в процессе дыхания самих растений. Другая же ее часть переносится по­средством ряда организмов по пищевым цепям. Но при поедании живот­ными растений большая часть энергии, содержащейся в пище, расходует­ся на различные процессы жизне­деятельности, превращаясь при этом в тепло и рассеиваясь. Только 5 - 20% энергии пищи переходит во вновь построенное вещество тела животного. Всегда количест­во растительного вещества, служа­щего основой цепи питания в не­сколько раз больше, чем общая масса растительноядных живот­ных, а масса каждого из последую­щих звеньев пищевой цепи также уменьшается. Эту очень важную закономерность называют прави­лом экологической пирамиды . Экологическая пирамида, пред­ставляющая собой пищевую цепь: злаки - кузнечики - лягушки - змеи - орел приведена на рис. 6.

Высота пирамиды соответствует длине пищевой цепи.

Переход биомассы с нижележащего трофического уровня на вы­шележащий связан с потерями вещества и энергии. В среднем счита­ется, что лишь порядка 10 % биомассы и связанной в ней энергии переходит с каждого уровня на следующий. В силу этого суммарная биомасса, продукция и энергия, а часто и численность особей про­грессивно уменьшаются по мере восхождения по трофическим уров­ням. Эта закономерность сформулирована Ч. Элтоном (Ch. Elton, 1927) в виде правила экологических пирамид (рис. 4) и выступает как главный ограничитель длины пищевых цепей.

Биомасса и продуктивность биоценоза

Количество живого вещества всех групп растительных и животных организмов называют биомассой. Скорость продуцирования биомассы характеризуется продуктивностью биоценоза. Различают первичную продуктивность - биомассу растений, образовавшуюся в единицу времени при фотосинтезе, и вторичную - биомассу, продуцируемую животными (консументами), потребляющими первичную продукцию. Вторичная продукция образуется в результате использования гетеротрофными организмами энергии, запасенной автотрофами.

Продуктивность обычно выражают в единицах массы за один год в пересчете на сухое вещество на единицу площади или объема, которая значительно различается в различных растительных сообществах. Например, 1 га соснового леса производит в год 6,5 т биомассы, а плантация сахарного тростника - 34-78 т. В целом первичная продуктивность лесов земного шара является наибольшей по сравнению с другими формациями. Биоценоз представляет собой исторически сложившийся комплекс организмов и является частью более общего природного комплекса - экосистемы.

    Пространственная структура биоценозов.

Определение биоценоза как системы взаимодействующих видов, осуществляющей цикл биогенного круговорота, предусматривает ми­нимальный пространственный объем этого уровня биосистем. Так, неправильно говорить о «биоценозе пня», «биоценозе норы суслика» и т. п., поскольку комплекс организмов такого уровня не обеспечивает возможность полного цикла круговорота. Но такой подход не ограни­чивает «верхний порог» понятия биоценоза: полный круговорот ве­ществ может осуществляться в пространственных границах разного масштаба. Р. Гессе (R. Hesse, 1925) дал практически первую систему деления биосферы на соподчиненные зоны жизни. В качестве наиболее крупного подразделения он выделил биоциклы: суша, морские водоемы и npecные воды. Они подразделяются на биохоры - крупные простран­ственные участки биоцикла, охватывающие серию однородных ланд­шафтных систем (пустыня, тундра и т. п.). Позднее этот термин практически полностью был вытеснен введенным Л.С. Бергом (1913, 1931) понятием «ландшафтная зона». Оба эти подразделения отвечают формальным критериям биоценоза, но не рассматриваются как тако­вой. Пространственным границам биоценоза соответствует понятие биотоп - подразделение биохора (ландшафтной зоны), характеризу­ющееся единым типом растительного покрова (фитоценоза). В этом отношении наиболее четкий подход проявляется в формулировке введенного В.Н. Сукачевым понятия «биогеоценоз»: «Биогеоценоз - это экосистема в границах фитоценоза» (Е.М. Лавренко, Н.В. Дылис,1968, с. 159). В большинстве случаев представление о биоценозе (экосистеме) связывается именно с таким пространственным масшта­бом.

Видовые популяции в составе биоценоза закономерно располага­ются не только по площади, но и по вертикали в соответствии с биологическими особенностями каждого вида. Благодаря этому эко­система всегда занимает определенное трехмерное пространство; со­ответственно и межвидовые взаимоотношения имеют не только функциональную, но и пространственную направленность.

В водных экосистемах крупномасштабная вертикальная структура задается в первую очередь внешними условиями. В пелагиали опреде­ляющими факторами оказываются градиенты освещенности, темпера­туры, концентрации биогенов и др. На больших глубинах действует фактор гидростатического давления, в донных биоценозах к этому добавляется разнородность грунтов, гидродинамика придонных слоев воды. Особенности вертикальной структуры выражаются в специфике видового состава, смене доминирующих видов, показателях биомассы и продукции. Так, в северо-западной части Тихого океана четко прослеживается вертикальная смена доминирования у видов гидроме­дуз: в поверхностном слое (50-300 м) преобладает Aglantha digitate , в слое 500-1000 м - Crossota brunea , а еще глубже - Bottynema bruceu . В пресноводных водоемах к придонным слоям тяготеют популяции личинок комаров рода Chaoborus , а к поверхностным - рода Сикх. Фотосинтезирующие водоросли приурочены к верхним, лучше осве­щенным горизонтам, что формирует вертикальные потоки вещества и энергии, связывая сообщества эуфотической зоны с глубоководными биоценозами, жизнь которых основывается на аллохтонной (привне­сенной извне) органике (А.С. Константинов, 1986).

В наземных экосистемах основной фактор, создающий вертикаль­ную структуру, имеет биологическую природу и связан с расчленением растительных сообществ по высоте. Особенно четко это выражено в лесных фитоценозах, вертикальная структура которых выражена в виде Ярусности. Верхний ярус представлен древесными породами, далее следуют ярусы кустарников, кустарничков, травянистых растений и наземный моховой покров. В разных типах леса эта схема выражена неодинаково. Так, в широколиственных лесах вычленяется несколько древесных ярусов, составленных видами с разной высотой деревьев, а также ярус подлеска (кустарники и низкорослые деревья); травянистая растительность тоже может формировать 2-3 яруса. Подрост молодых деревьев образует группировки, меняющиеся по высоте по мере роста. Подземные части растений в свою очередь образуют несколько ярусов.

С позиции биогеоценологии ярус - сложная материально-энерге­тическая система, на базе которой дифференцируется ряд элементар­ных вертикальных слагаемых (Н.В. Дылис и др., 1964).

Ярусность выражена и в травянистых фитоценозах, определяя и вертикальную дифференциацию распределения животных и микроор­ганизмов в надземной части сообщества. Уже отмечалось, что верти­кальная структура наземных экосистем тесно связана с их функциональной активностью: пастбищные цепи концентрируются преимущественно в надземной части биоценозов, а цепи разложения - в подземной их части.