Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Химический состав клетки и её строение

Общие сведения Химический состав клеток растений и животных сходен, что говорит о единстве их происхождения. В клетках обнаружено более 80 химических элементов. Макроэлементы: O, C, N, H. - 98% Микроэлементы: K, P, S, Ca, Mg, Cl, Na . - 1, 9 % Ультрамикроэлементы: Cu, I, Zn, Co, Br. - 0 ,01 %

Неорганические соединения Самое распространенное неорганическое соединение в клетках живых организмов – вода. Он а поступает в организм из внешней среды; у животных может образовываться при расщеплении жиров, белков, углеводов. Вода находится в цитоплазме и её органеллах, вакуолях, ядре, межклетниках. Функции: 1. Растворитель 2. Транспорт веществ 3. Создание среды для химических реакций 4. Участие в образовании клеточных структур (цитоплазма)

Неорганические соединения Минеральные соли необходимы для нормальной жизнедеятельности клеток. Например, н ерастворимые соли кальция и фосфора обеспечивают прочность костной ткани.

Углеводы Э то органические соединения, в состав которых входят водород (Н), углерод (С) и кислород (О) . Углеводы образуются из воды (Н 2 О) и углекислого газа (СО 2) в процессе фотосинтеза. Ф руктоза и глюкоза постоянно присутствуют в клетках плодов растений, придавая им сладкий вкус. Функции: 1. Энергетическая (при распаде 1 г глюкозы освобождается 17,6 кДж энергии) 2. Структурная (хитин в скелете насекомых и в стенке клеток грибов) 3. Запасающая (крахмал в растительных клетках, гликоген – в животных)

Липиды Г руппа жироподобных органических соединений, нерастворимых в воде, но хорошо растворимых в бензоле, бензине и т.д. Жиры – один из классов липидов, сложные эфиры глицерина и жирных кислот. В клетках содержится от 1 до 5% жиров. Функции: 1. Э нергетическая (при окислении 1 г жира выделяется 38,9 кДж энергии) 2. С труктурная (фосфолипиды – основный элементы мембран клетки) 3. З ащитная (термоизоляция)

Белки Э то биополимеры, мономерами которых являются аминокислоты. В строении молекулы белка различают первичную структуру – последовательность аминокислотных остатков; вторичную – это спиральная структура, которая удерживается множеством водородных связей. Третичная структура белковой молекулы – это пространственная конфигурация, напоминающая компактную глобулу. Она поддерживается ионными, водородными и дисульфидными связями Четвертичная структура образуется при взаимодействии нескольких глобул (например, молекула гемоглобина состоит из четырех таких субъединиц). Утрата белковой молекулой своей природной структуры называется денатурацией.

Нуклеиновые кислоты Нуклеиновые кислоты обеспечивают хранение и передачу наследственной (генетической) информации. ДНК (дезоксирибонуклеиновая кислота) – это молекула, состоит из двух закрученных цепей. ДНК РНК Состоит из азотистого основ-ия (аденина (А) А-Т А-У цитозина (Ц), тимина (Т) или гуанина (Г)), Ц-Г Ц-Г пентозы (дезоксирибозы) и фосфата. РНК (рибонуклеиновая кислота) – это молекула, состоящая из одной цепи нуклеотидов. Состоит из четырех азотистых оснований, но вместо тимина (Т) в РНК урацил (У), а вместо дезоксирибозы – рибоза.

АТФ АТФ (аденозинтрифосфорная кислота) – это нуклеотид, относящийся к группе нуклеиновых кислот. Молекула АТФ состоит из азотистого основания аденина, рибозы и трех остатков фосфорной кислоты. Отщепление одной молекулы фосфорной кислоты происходит с помощью ферментов и сопровождается выделением 40 кДж энергии. Энергию АТФ клетка использует в процессах синтеза белка, при движении, при производстве тепла, при проведении нервных импульсов, в процессе фотосинтеза и т.д. АТФ является универсальным аккумулятором энергии в живых организмах.

Клеточная теория В 1665 году английский естествоиспытатель Роберт Гук, наблюдая под микроскопом срез пробки дерева, обнаружил пустые ячейки, которые он назвал «клетками». Современная клеточная теория включает следующие положения: * все живые организмы состоят из клеток; клетка – наименьшая единица живого; * клетки всех одноклеточных и многоклеточных организмов сходны по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ; * размножение клеток происходит путем их деления, и каждая новая клетка образуется в результате деления исходной (материнской) клетки; все многоклеточные организмы развиваются из одной клетки * в сложных многоклеточных организмах клетки специализированы по выполняемой ими функции и образуют ткани; из тканей состоят органы, которые тесно взаимосвязаны и подчинены нервным и гуморальным системам регуляции.

Органоиды клетки Цитоплазма - п олужидкая среда, в которой находятся ядро клетки и все органоиды. Цитоплазма на 85% состоит из воды и на 10% - из белков. Биологическая мембрана Биологическая мембрана: 1)отграничивает содержимое клетки от внешней среды, 2)образует стенки органоидов и оболочку ядра, 3)разделяет содержимое цитоплазмы на отдельные отсеки. Наружный и внутренний слои мембраны (тёмные) образованы молекулами белков, а средний (светлый) – двумя слоями молекул липидов. Биологическая мембрана обладает избирательной проницаемостью.

Эндоплазматическая сеть (ЭПС) Э то сеть каналов, трубочек, пузырьков, цистерн, расположенных внутри цитоплазмы. Различают гладкую ЭПС и шероховатую (гранулярную) , несущую на себе рибосомы. Мембраны гладкой ЭПС участвуют в жировом и углеводном обмене. Рибосомы прикрепляются к мембране шероховатой ЭПС.

Рибосомы М елкие сферические органоиды размером от 15 до 35 нм. Б ольшая часть рибосом синтезируются в ядрышках и через поры ядерной мембраны поступают в цитоплазму, где располагаются либо на мембранах ЭПС, либо свободно.

Комплекс Гольджи Комплекс Гольджи представляет собой стопку из 5-10 плоских цистерн, по краям которых отходят ветвящиеся трубочки и мелкие пузырьки. Комплекс Гольджи – наружная клеточная мембрана. К омплекс Гольджи принимает участие в образовании лизосом, вакуолей, в накоплении углеводов, в построении клеточной стенки.

Лизосомы Лизосомы -ш аровидные тельца, покрыты е мембраной и содержа щие около 30 ферментов, способных расщеплять белки, нуклеиновые кислоты, жиры и углеводы. Образование лизосом происходит в комплексе Гольджи. При повреждении мембран лизосом, содержащиеся в них ферменты, разрушают клетку и временные органы эмбрионов и личинок, например хвост и жабры в процессе развития головастиков лягушек.

Пластиды Содержатся только в растительных клетках. Хлоропласты по форме напоминают двояковыпуклую линзу и содержат зеленый пигмент хлорофилл. Хлоропласты обладают способностью улавливать солнечный свет и синтезировать с его помощью органические вещества при участии АТФ. Хромопласты – пластиды, содержащие растительные пигменты (кроме зеленого), придающие окраску цветкам, плодам, стеблям и другим частям растений. Лейкопласты – бесцветные пластиды, содержащиеся чаще всего в неокрашенных частях растений – корнях, луковицах и т.п. В них могут синтезироваться и накапливаться белки, жиры и полисахариды (крахмал).

Митохондрии В идны в световой микроскоп в виде гранул, палочек, нитей величиной от 0,5 до 7 мкм. Стенка митохондрий состоит из двух мембран – наружной, гладкой и внутренней, образующей выросты – кристы. Основными функциями митохондрий являются: - окисление органических соединений до диоксида углерода и воды; - - накопление химической энергии в макроэргических связях АТФ.

Органоиды движения Включения К клеточным органоидам движения относят реснички и жгутики Функция этих органоидов заключается или в обеспечении движения (например, у простейших) или для продвижения жидкости вдоль поверхности клеток (например, в дыхательном эпителии для продвижения слизи) Включения – это непостоянные компоненты цитоплазмы, содержание которых меняется в зависимости от функционального состояния клетки. .

Ядро По химическому составу ядро отличается от остальных компонентов клетки высоким содержанием ДНК (15-30 %) и РНК (12 %). 99 % ДНК клетки сосредоточено в ядре. Ядро выполняет две главные функции: 1) хранение и воспроизведение наследственной информации; 2) регуляция процессов обмена веществ, протекающих в клетке. В состав ядра входят ядрышко, состоящее из белка и р-РНК; хроматин (хромосомы) и ядерный сок, представляющий собой раствор белков, нуклеиновых кислот, углеводов и ферментов, минеральных солей.

Прокариоты и эукариоты Не имеют оформленного ядра Наследственная информация передается через молекулу ДНК, которая образует нуклеотид. Функции эукариотических органоидов выполняют ограниченные мембранами полости Б актерии и С ине – зеленые водоросли Е сть четко оформленные ядра, имеющие собственную оболочку. Ядерная ДНК у них заключена в хромосомы. В цитоплазме имеются различные органоиды, выполняющие специфические функции Ц арство Г рибов, Р астений и Ж ивотных.


Клетки живых организмов отличаются друг от друга не только по строению и выполняемым функциям, но и по химическому составу. В состав разных клеток входят практически одни и те же химические элементы.

В клетке встречается около 80 химических элементов Периодической системы Дмитрия Ивановича Менделеева. Это практически все элементы, которые присутствуют на нашей планете и известны на сегодняшний день. Выполняемая функция данных элементов мало изучена, так как из 80 элементов только у 24 определена функция, которую они выполняют в клетке.

Химические элементы, которые встречаются в клетке, делят на три большие группы: макроэлементы , микроэлементы и ультрамикроэлементы .

Распределение химических элементов в клетке неравномерно. Большую часть, примерно 98% от массы любой клетки, составляют макроэлементы . В первую очередь, это кислород (75%), углерод (15%), водород (8%), азот (3%). Из этих элементов состоят молекулы органических веществ, а кислород и водород входят в состав воды, которая является основным неорганическим веществом клетки. Так же к макроэлементам относят фосфор, калий, серу, железо, магний, натрий и кальций. Массовая доля любого макроэлемента в клетке составляет не менее 0,001%.


Химические элементы, на долю которых в клетке приходится от 0,001% до 0,000001% (читать: от 1 тысячной до 1 миллионной процента) называются микроэлементами . Это цинк, йод, медь, марганец, фтор, кобальт, бром и другие.

Процентное содержание в организме того или иного элемента никоим образом не характеризует степень его важности и необходимости в организме.

Например, кобальт входит в состав витамина В 12 , йод - в состав гормонов тироксина и тиронИна, а медь - в состав ферментов, катализирующих окислительно-восстановительные процессы. Кроме того, медь участвует в переносе кислорода в тканях моллюсков. Значительное число ферментов с разнообразным механизмом действия содержат ионы цинка, марганца, кобальта и молибдена.

Кремний встречается у диатомовых водорослей, хвощей, губок и моллюсков. В хрящах и связках позвоночных животных его содержание может достигать нескольких сотых долей процента.

Бор влияет на рост растений, фтор входит в состав эмали зубов и костей.

На долю ультрамикроэлементов приходится менее 0,000001% от массы клетки. К этой группе относятся радий, цезий, ртуть, уран, золото и другие.

Все вещества клетки делят на две группы: неорганические и органические .

Основным неорганическим веществом клетки является вода. Благодаря своим физико-химическим свойствам вода – это хороший растворитель, следовательно, является средой для протекания химических реакций в клетке. Благодаря полярности молекул вода легко растворяет ионные соединения (соли, кислоты, основания). Вещества, хорошо растворимые в воде, называют гидрофильными . Жиры, нуклеиновые кислоты и некоторые белки плохо растворяются в воде или не растворяются вообще. Такие вещества называют гидрофобными .

Вода играет важную роль в жизнедеятельности организмов благодаря своим свойствам:

    Благодаря высокой теплоёмкости , вода способна поглощать тепловую энергию при минимальном повышении собственной температуры. Выделение воды (транспирация у растений, потоотделение у животных) предохраняет организм от перегревания.

    Обладая высокой теплопроводностью , вода способствует равномерному распределению тепла по организму.

    Практически не сжимаясь , вода создаёт тУргорное давление, определяющее объём и упругость клеток.

    Благодаря образованию водородных связей между молекулами воды и молекулами других веществ, вода обладает оптимальным для биологических систем значением силы поверхностного натяжения, благодаря которойосуществляется капиллярный кровоток и движение растворов в растениях.

Минеральные соли в клетке могут находиться в растворённом или не растворённом состояниях. Растворимые соли диссоциируют на ионы. Наиболее важными катионами являются:

калий и натрий , которые отвечают за перенос веществ через клеточную мембрану и участвуют в возникновении и проведении нервного импульса;

кальций принимает участие в процессах сокращения мышечных волокон и свертывании крови. Нерастворимые соли кальция участвуют в формировании костей и зубов, карбонат кальция - в образовании раковин моллюсков, укреплении оболочек клеток некоторых видов растений;

магний входит в состав хлорофилла;

железо входит в состав ряда белков, в том числе гемоглобина.

Цинк входит в состав молекулы гормона поджелудочной железы - инсулина, медь участвует в процессах фотосинтеза и дыхания.

Важнейшими анионами являются фосфат-анион , входящий в состав АТФ и нуклеиновых кислот, и остаток угольной кислоты , регулирующий колебания рН среды.

Органические вещества клетки представлены углеводами, липидами, белками, нуклеиновыми кислотами, АТФ, витаминами и гормонами.

Тема: « Химический состав клетки. Основные биополимерные молекулы живой материи ». 11 класс. Учителя биологии I категории: Коваленко В. В. МОУ СОШ 149 Тема: « Химический состав клетки. Основные биополимерные молекулы живой материи ». 11 класс. Учителя биологии I категории: Коваленко В. В. МОУ СОШ 149


Цели: закрепить знания: по основным свойствам молекулярного уровня; по особенностям химического состава живых клеток; об особенностях строения биологических молекул и их функциях в живых клетках; о необходимости полноценного питания для восполнения организма и его клеток всеми необходимыми веществами.


Отличия живой и не живой природы Скорость движения до 70 км / час Скорость 60 км / час Энергия за счет распада органических веществ. Потребляет кислород Выделяет углекислый газ Основные химические элементы: углерод, кислород, азот, водород Основные химические элементы: железо, алюминий, медь, углерод Гепард Малолитражный автомобиль


Ответе на вопросы Каково значение молекулярного уровня живой материи? Кратко охарактеризуйте физико - химические и биологические особенности биологических молекул? Каковы основные процессы молекулярного уровня жизни? Так в чем же отличия химического состава живых клеток? Элементарный? Молекулярный?




Изучение элементного состава клетки подтверждает единство живой и неживой природы. В состав живых организмов входят те же химические элементы, которые составляют и тела неживой природы. В клетках обнаружено от 70 до 90 из 107 (110) элементов, составляющих периодическую систему Д.И. Менделеева. Приблизительно 40 элементов принимают участие в процессах обмена веществ и обладают выраженной биологической активностью. Эти элементы называются биогенными. Биогенные элементы – химические элементы, которые, входя в состав клеток, выполняют биологические функции.


Большая часть неорганических веществ находится в клетке в виде солей – серной, соляной, фосфорной и других кислот. Минеральные соли играют важную роль в развитии живых организмов. Их недостаток или избыток может привести к гибели организма. Соли могут находиться в клетке либо в виде ионов, либо в твердом состоянии. Калиевые, магниевые, натриевые соли в комплексе с белками входят в состав цитоплазмы клеток, они определяют кислотно-щелочное состояние цитоплазмы и плазмы крови. Возбудимость нервной, мышечной тканей, активность ферментов, ряд других важных процессов, протекающих в клетке, находятся в зависимости от концентрации тех или иных ионов различных солей. Поэтому в клетке в норме поддерживается строго определенный качественный и количественный состав солей.


Около 98 % массы составляют всего четыре элемента. Это кислород, углерод, водород и азот. На долю кислорода приходится 65 %, углерода – 18 %, водорода – 10 % и азота – 3 %. Среди некоторых ученых существует уверенность, что возникновение и существование земной жизни, очевидно, стало возможно лишь благодаря уникальной способности углерода образовывать большие молекулы. в сравнительно больших количествах (десятых и сотых долях процента) находятся в клетке кальций, калий, кремний, фосфор, магний, сера, хлор, натрий, алюминий, железо. они вместе с первыми четырьмя (О, С, Н и N) составляют группу макроэлементов




В несколько меньшем количестве в клетках встречаются элементы, объединенные в группу микроэлементов. Это цинк, кобальт, йод, медь, фтор, бор, никель, серебро, литий, хром и некоторые другие. Их содержание в клетке колеблется от тысячных до стотысячных долей процента, а суммарная масса всех микроэлементов составляет 0,02 %.






От солей в значительной мере зависят поступление воды в клетку и буферные свойства клеток и тканей. Клеточные мембраны проницаемы для молекул воды и непроницаемы для крупных молекул и ионов. Если в среде содержание воды более высокое, чем в клетке, то выравнивание концентрации воды между клеткой и средой происходит путем проникновения воды из среды в клетку. На этом свойстве, например, основано всасывание воды корнями растений. Таким образом, в клетке, так же как и в организме в целом, наблюдается четкая взаимосвязь между различными неорганическими соединениями.


Вода – самое простое химическое соединение, входящее в состав живых организмов. По количественному содержанию в клетке она занимает первое место – на ее долю в среднем приходится приблизительно 75–80%. В различных клетках содержание воды может сильно варьироваться. Вода находится в клетках в двух состояниях – связанном и свободном. связанном свободном


4–5% воды находится в связанном с молекулами белка состоянии. Это так называемая сольватная вода, которая образует оболочки вокруг белковых молекул, изолируя их друг от друга и препятствуя их агрегации. Сольватная вода по своим химическим и физическим свойствам отличается от свободной воды. Так, например, она не растворяет солей, а замерзает при температуре, близкой к –40°С.


Играет роль растворителя химических веществ; является средой, в которой протекают жизненно важные химические реакции; включается в качестве активного компонента в некоторые ферментативные реакции; осуществляет приток веществ в клетку и удаление продуктов жизнедеятельности из нее; определяет тургорное давление клетки; обеспечивает незначительные колебания температуры внутри клетки и равномерное распределение тепла по клетке и во всем организме. межтканевые жидкости, состоящие преимущественно из воды, смачивают покровы там, где происходит трение одного органа о поверхность другого. О большой роли воды свидетельствует четкая связь между интенсивностью обмена веществ и содержанием воды в органах и тканях. 95% воды находится в свободном состоянии. Эта вода выполняет следующие функции:


Два свойства воды – способность образовывать водородные связи и обратимая ионизация – оказываются весьма существенными для протекания внутриклеточных процессов. Атомы кислорода и водорода обладают разным сродством к электрону (электроотрицательностью), и, хотя молекула воды в целом электрически нейтральна, на кислороде локализуется частичный отрицательный, а на атомах водорода – частично положительный заряды. Благодаря такому пространственному разделению зарядов соседние молекулы могут электростатически притягиваться друг к другу. Такой тип притяжения между частичными зарядами электронейтральных молекул называется водородной связью,.


На долю органических веществ приходится от 20 до 30 % массы клетки. В основном органические вещества представлены биополимерами, молекулы которых имеют большие размеры и состоят из многократно повторяющихся элементарных единиц – мономеров. Наиболее важная биологическая роль принадлежит таким веществам как белки, нуклеиновые кислоты, углеводы, липиды, гормоны, АТФ, витамины и др. Практически все процессы в живых организмах связаны с функционированием белков и нуклеиновых кислот. Это самые крупные и сложные молекулы в клетке, являющиеся нерегулярными полимерами, т.е. молекулами, функции которых существенно определяются числом, составом и порядком расположения входящих в них мономеров.


На долю белков приходится не менее половины сухой массы животной клетки. В живых организмах они выполняют самые разнообразные функции (строительную, каталитическую, запасающую, транспортную, двигательную, энергетическую, регуляторную, защитную) и служат теми молекулярными инструментами, с помощью которых реализуется генетическая информация.






В 1868–1870 гг. швейцарский биохимик Фридрих Мишер, изучая ядра клеток гноя, открыл новую группу химических соединений, которую назвал «нуклеины». Эти новшества обладали кислотными свойствами и содержали большое количество углерода, водорода, кислорода, азота и фосфора. Это и были нуклеиновые кислоты – самые крупные биополимеры. Несмотря на относительно невысокое по сравнению с белками содержание, нуклеиновые кислоты играют центральную роль в клетке, поскольку их функции связаны с хранением и передачей генетической информации. Нуклеиновые кислоты – это линейные нерегулярные полимеры. Существуют два типа нуклеиновых кислот, отличающихся химическим строением и биологическими свойствами. Это ДНК – дезоксирибонуклеиновые кислоты и РНК – рибонуклеиновые кислоты. 1) остатка фосфорной кислоты, 2) пяти углеродного моносахарида в циклической форме – рибозы или дезоксирибозы, 3) азотистого основания.



Углеводы (сахариды) общее название обширного класса природных органических соединений. Название происходит от слов «уголь» и «вода». Причиной этого является то, что первые из известных науке углеводов описывались брутто-формулой Cx(H2O)y, формально являясь соединениями углерода и воды.


Простые Моносахариды – в зависимости от числа атомов углерода в молекуле моносахаридов различают: триозы(3 с), тетрозы(4 с), пентозы(5 с), гексозы(6 с), гептозы(7 с). В природе наиболее широко распространены пентозы и гексозы. Важнейшие из пентоз – дезоксирибоза и рибоза входящие в состав ДНК, РНК, АТФ, из гексоз наиболее распространены глюкоза, фруктоза и галактоза (общая формула СНО). Моносахариды могут быть представлены в виде а- и в- изомеров. Молекулы крахмала состоят из остатков а- глюкозы, целлюлозы – из остатков в-глюкозы. Дезоксирибоза (СНО) отличается от рибозы (С Н О) тем, что при втором атоме углерода имеет атом водорода, а не гидроксильную группу, как у рибозы.


Сложными называются углеводы, молекулы которых, при гидролизе распадаются с образованием простых углеводов. Среди сложных различают: олигосахариды и полисахариды. Олигосахаридами – называют сложные углеводы, содержащие от 2 до 10 моносахаридных остатков. В зависимости от количества входящих остатков моносахаридов, входящих в молекулы олигосахаридов, различают дисахариды, трисахариды и т.д. Наиболее широко распространены в природе дисахариды, молекулы которых образованы двумя остатками моносахаридов: мальтоза, состоящая из двух остатков а- глюкозы, молочный сахар (лактоза) и свекловичный (или трасниковый) сахар. Полисахариды образуются в результате реакции поликонденсации. Важнейшие полисахариды – крахмал, гликоген, хитин, муреин. Крахмал – основной резервный углевод растений, гликоген у животных и человека. Целлюлоза – основной структурный углевод клеточных стенок растений, она не растворима в воде.


Молекулы простых углеводов - моноз - построены из неразветвленных углеродных цепей, содержащих различное число атомов углерода. В состав растений и животных входят главным образом монозы с 5 и 6 углеродными атомами - пентозы и гексозы. У атомов углерода расположены гидроксильные группы, а один из них окислен до альдегидной (альдозы) или кетонной (кетозы) группы. В водных растворах, в том числе в клетке, монозы из ациклческих (альдегидо- кетоно) форм переходят в циклические (фуранозные, пиранозные) и обратно. Этот процесс получил, название динамической изомерии - таутомерии. Циклы, которые входят в состав молекул моноз, могут быть построены из 5 атомов (из них 4 атома углерода и один кислорода) - они получили название фуранозных, или из 6 атомов (5 атомов углерода и один кислорода), их называют пиранозными.


Углеводы выполняют структурную функцию Углеводы выполняют защитную роль у растений Углеводы выполняют пластическую функцию Углеводы являются основным энергетическим материалом. Углеводы участвуют в обеспечении осмотического давления и осморегуляции Углеводы выполняют рецепторную функцию


Главными источниками углеводов из пищи являются: хлеб, картофель, макароны, крупы, сладости. Чистым углеводом является сахар. Мёд, в зависимости от своего происхождения, содержит 7080 % сахара. Для обозначения количества углеводов в пище используется специальная хлебная единица. К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины.


Углеводы необходимы в ежедневном рационе, чтобы белок, нужный для построения тканей, не растрачивался в качестве источника энергии, там где он нужен для восстановления. У них такая же калорийность, как и у белка. Если вы употребляете слишком много углеводов, больше, чем может преобразоваться в глюкозу или гликоген (который откладывается в печени и мышцах), то в результате, как нам всем слишком хорошо известно, образуется жир. Когда телу нужно больше топлива, жир преобразуется обратно в глюкозу, и вес тела снижается. 36




Липидами называют природные соединения, которые получают из растительных или животных тканей экстракцией неполярными растворителями (например, эфиром, бензолом или хлороформом) и которые не растворимы в воде. К ним относятся продукты взаимодействия жирных кислот со спиртами (простые липиды), аминоспиртами и другими соединениями (сложные липиды), простагландины и изопреноидные липиды (например, каротиноиды, хлорофилл, витамины Е и К). В зависимости от типа клеток содержание липидов колеблется от 5 до 90 % (в клетках жировой ткани). Это гидрофобные вещества с высокой энергоемкостью (расщепление 1 г жира дает 38,9 к Дж).

Презентации о химическом составе клетки для уроков биологии

Чтобы посмотреть содержание презентации нажмите на её эскиз. Чтобы бесплатно скачать презентацию по химическому составу клетки нажмите на её название.

Презентации о химическом составе клетки

список всех презентаций по химическому составу клетки в виде таблицы
Название презентации Автор Слайды Слова Звуки Эффекты Время Скачать
Химический состав клетки Татьяна 28 912 6 19 00:20 769 кБ
Клетки живых организмов Pimenov AV 30 2472 0 47 00:00 8 487 кБ
Химические вещества клетки 11 567 0 45 00:00 333 кБ
Химические элементы в клетке |User 16 816 0 10 00:00 304 кБ
|User 35 1625 0 57 00:00 586 кБ
Качурина 22 1745 0 42 00:00 687 кБ
Органические вещества клетки SC 12 177 0 13 00:00 1 347 кБ
Макро- и микроэлементы User 26 2799 0 123 00:00 1 707 кБ
chibiryaev 28 1045 0 167 00:01 5 585 кБ
Афанасьева Т.А. 16 481 0 93 00:00 7 213 кБ
Углеводы 9 класс User 15 875 0 35 00:00 483 кБ
Углеводы биология 26 418 0 50 00:00 2 543 кБ
Крахмал user 25 1350 0 2 00:00 2 517 кБ
Меланин PhD Daniil N. Olennikov 12 682 0 0 00:00 365 кБ
Биология нуклеиновые кислоты 1 36 2730 0 228 00:00 1 692 кБ
Всего: 15 презентаций 338 00:00 34 мБ

Чтобы посмотреть презентацию нажмите на ссылку в столбце «Название презентации».
Чтобы бесплатно скачать презентацию нажмите на ссылку в колонке «Скачать».

Презентации про химический состав клетки

Химический состав клетки

Слайдов: 28 Слов: 912 Звуков: 6 Эффектов: 19

Химический. Состав. Клетки. Химический состав клетки. Органические и неорганические вещества. Цель: познакомиться с химическими веществами клетки. План: 1.Химические элементы. 2.Органические вещества клетки 3.Неорганические вещества клетка. Таблица Менделеева. 1. Химические элементы. Наиболее распространенные химические элементы: кислород (О2), углерод (С), азот(N2), водород (Н2). Элемент. Неорганическое вещество. Органическое вещество. Химическое соединение. Органические вещества. Белки Жиры Углеводы Нуклеиновые кислоты. Схема. Неорганические вещества. Вода Минеральные соли. - Состав клетки.ppt

Клетки живых организмов

Слайдов: 30 Слов: 2472 Звуков: 0 Эффектов: 47

Тема: «Химический состав клетки. Неорганические вещества клетки». Глава I. Химический состав клетки. Империя Клеточные объединяет организмы, имеющие клеточное строение. К неклеточным организмам относится вирусы, объединенные в царство Вирусы. Свойства живых организмов. Возбудимость - важнейшее свойство организма. Клеточный. Организменный. Популяционно-видовой. Экосистемный. Биосферный. Уровни организации живой материи. На организменном уровне – строение тканей, органов и систем органов целостного организма. На популяционно-видовом уровне изучаются структура вида, характеристика популяций. - Клетки живых организмов.ppt

Химические вещества клетки

Слайдов: 11 Слов: 567 Звуков: 0 Эффектов: 45

Тема: «Химический состав клетки. Неорганические вещества клетки». Химический состав клетки. Неорганические вещества. Органические вещества. Вода и соли. Белки, жиры, углеводы, нукл.Кислоты, гормоны, атф, витамины. Содержатся в телах неживой и живой природы. Образуются только в живых организмах. Химические соединения клетки. Соотношение химических соединений в клетке. Макроэлементы. Йод Медь Марганец Молибден Кобальт. Содержание в клетках: эмали зубов – 10% в костях - до 20%. клетках зародыша –более 98%. Гидрофильные хорошо растворимы в воде. Гидрофобные не растворимы в воде: - Химические вещества клетки.ppt

Химические элементы в клетке

Слайдов: 16 Слов: 816 Звуков: 0 Эффектов: 10

Химический состав клетки. Неорганические вещества клетки. Актуализация знаний. Классификация и содержание химических элементов в клетке. Строение, свойства и биологическая роль воды в клетке. Значение минеральных солей в жизнедеятельности клетки. Проверка знаний. Рефлексия. Ответьте на вопросы. Что такое химический элемент? Какие химические элементы преобладают в земной коре? Что вы знаете о химическом составе клеток? Что вам известно о роли химических элементов в жизни клеток? Используя п. 2.2. составьте схему «Классификация химических элементов, водящих в состав клетки». - Химические элементы в клетке.ppt

Каков химический состав клетки

Слайдов: 35 Слов: 1625 Звуков: 0 Эффектов: 57

Химический состав клетки. Определение понятия «органические вещества». Расширение знаний. Закончите предложения. Нейтральные жиры. Классификация липидов. Разнообразие липидов. Растворимы о органических растворителях. Функции липидов. Какие соединения называются углеводами. Углеводы. Моносахариды. Дисахариды. Пектин. Функции. Функции углеводов. Какое строение имеют белки. Состав белков. Аминокислоты. Белки, содержащие весь набор аминокислот. Классификация белков. Структура молекулы белка. Вторичная структура. Третичная структура. Структура белковой молекулы. Гемоглобин. - Каков химический состав клетки.ppt

Химический состав клетки и её строение

Слайдов: 22 Слов: 1745 Звуков: 0 Эффектов: 42

Химический состав клетки и её строение. Химический состав клетки. Химический состав клеток растений и животных. Неорганические соединения. Минеральные соли. Углеводы. Липиды. Белки. Нуклеиновые кислоты. АТФ. Клеточная теория. Цитоплазма. Эндоплазматическая сеть (ЭПС). Мелкие сферические органоиды. Комплекс Гольджи. Лизосомы. Пластиды. Митохондрии. Органоиды движения. Ядро. Прокариоты и эукариоты. - Химический состав клетки и её строение.ppt

Органические вещества клетки

Слайдов: 12 Слов: 177 Звуков: 0 Эффектов: 13

Органические вещества, входящие в состав клетки. План. Познакомить учащихся с целью урока. Повторить домашнее задание Изучить новую тему. Сделать вывод. Закрепить полученные знания. Подвести итоги урока. Записать домашнее задание. Органические соединения клетки: белки, жиры, углеводы. Растительные и животные белки. Углеводы состоят из атомов углерода и молекул воды. Липиды. Нуклеиновые кислоты: ДНК и РНК. Вывод. Закрепление. Какие органические вещества входят в состав клеток? Перечислите функции белков. Каковы функции углеводов и липидов? Работаю над темой: Развитие мышления на уроках биологии. - Органические вещества клетки.pps

Макро- и микроэлементы

Слайдов: 26 Слов: 2799 Звуков: 0 Эффектов: 123

Значение макро- и микроэлементов в организме человека. Макро- и микроэлементы. Абсолютно необходимые вещества. Кислород. Кислород входит в состав белков. Кислород - самый распостаненный химический элемент на Земле. Преимущества косметических средств на основе кислорода. Вода. Вода для человеческого организма. Макроэлементы. Значения кальция для организма человека. Значения натрия для организма человека. Значение серы для организма человека. Значения хлора для организма человека. Значение магния для организма человека. Микроэлементы. Значение железа для организма человека. - Макро- и микроэлементы.ppt

Биологически активные соединения

Слайдов: 28 Слов: 1045 Звуков: 0 Эффектов: 167

Биологически активные соединения живых организмов. А.М. Чибиряев "Биологически активные соединения живых организмов", 2009. Липиды. Подразделяются на простые и сложные. Иногда сложные липиды дополнительно подразделяют на нейтральные, полярные и оксилипины. Составные части липидов - жирные кислоты. Состав жирных кислот некоторых растительных жиров и масел. Состав жирных кислот некоторых животных жиров и масел. Мировое производство важнейших жиров и масел. Масло растений с необычным составом жирных кислот. Масло календулы – 55% календовой кислоты 8t,10t,12c-18:3; - Соединения.ppt

Неорганические соединения клетки

Слайдов: 16 Слов: 481 Звуков: 0 Эффектов: 93

Химический состав клетки. Макроэлементы. Химические элементы клетки. Входит в состав воды. Компонент белков. Состав плазмы крови. Полярность мембран живых клеток. Химические вещества. Задание. Свойства воды. Диполь-структура. Выделите характерные свойства. Вещества. Функции воды. Отметьте свойства воды. - Неорганические соединения клетки.ppt

Углеводы 9 класс

Слайдов: 15 Слов: 875 Звуков: 0 Эффектов: 35

Углеводы. Презентация подготовлена учителем химии Рощепкиной Н. А. для параллели 9-х классов. Оглавление. Углеводы – главные поставщики энергии организму человека. Мы получаем углеводы из зерновых, бобовых культур, картофеля, фруктов и овощей. В день человек должен получать не менее 500 г углеводов. Глюкоза. Фруктоза. Сахароза. Лактоза. Гликоген. Крахмал. Целлюлоза. ЦЕЛЛЮЛОЗА (С6Н10О5)n Растительный полисахарид. Клетчатка поступает к нам в организм с растительной пищей. Моносахарид. Глюкоза легко проникает в кровь и транспортируется внутри организма. Глюкоза легко усваивается организмом, поддерживает ослабленный организм, нормализует пищеварение. - Углеводы 9 класс.ppt

Углеводы биология

Слайдов: 26 Слов: 418 Звуков: 0 Эффектов: 50

Интегрированный урок химии-биологии по теме «Углеводы». Углеводы. Функции углеводов: 1. Строительная. Функции углеводов: 2. Энергетическая. Общая формула углеводов. Cn (H2O)m. Классификация углеводов. Задание для самостоятельной работы: заполните таблицу Представители класса «Углеводы». Глюкоза с6н12о6. Содержание углеводов на 100 г. продуктов. Шкала сладости. Реакция c гидроксидом меди (II). Признак реакции – изменение цвета осадка с голубого на кирпично-красный. Реакция серебряного зеркала. (Получение аммиачного раствора оксида серебра). Сахароза с12н22о11. КРАХМАЛ (с6н10о5)n. - Углеводы биология.ppt

Крахмал

Слайдов: 25 Слов: 1350 Звуков: 0 Эффектов: 2

Крахмал – основной углевод пищи человека. Крахмал как питательное вещество. Крахмал является основным углеводом нашей пищи, выполняющим энергетическую функцию. Строение крахмала. Строение амилопектина. Строение амилозы. К. А. Тимирязев – русский ученый, физиолог растений. Хлоропласты – природные «фабрики» фотосинтеза. Главное вещество фотосинтеза - зеленый пигмент хлорофилл. Хлорофилл находится в мембранах гран, из-за чего хлоропласты приобретают зеленый цвет. Фотосинтез – главный биохимический процесс на Земле. Н2О с минеральными веществами. Е солнца. Со2. Хлорофилл. Обнаружение крахмала в листьях растений как конечного продукта фотосинтеза. - Крахмал.ppt

Меланин

Слайдов: 12 Слов: 682 Звуков: 0 Эффектов: 0

Биополимеры грибного происхождения Авторы: к.б.н. Пензина Т.А., д.б.н., проф. Сибирский институт физиологии и биохимии растений СО РАН. Биополимеры грибного происхождения. Промышленность. Полисахариды Хитин и хитозан Меланин. Вещества. Фармакология. Научный задел. Базидиальные меланины. (1) окислительно-восстановительные буферы (2) антимутагены (3) антибиотики. Физиологические функции в грибах. Обусловлено. Фармакологическая активность. Результаты исследований. Меланин Laetiporus sulphureus (МLS). Присутствие меланина данного типа в базидиальном виде установлено впервые. Laetiporus sulphureus (Bull.: Fr.) Murr. - Биополимеры.ppt

Биология нуклеиновые кислоты

Слайдов: 36 Слов: 2730 Звуков: 0 Эффектов: 228

Изучение нуклеиновых кислот в школьном курсе биологии и химии. План изучения нуклеиновых кислот. Строение. История открытия и изучения. Виды. Биологическая роль. Итоговое тестирование. Биологическое значение нуклеиновых кислот. По мере изучения материала учащиеся заполняют таблицу: Химическое строение азотистых оснований и углеводов. Химическое строение нуклеиновых кислот. Нуклеиновые кислоты являются биополимерами, мономеры которых – нуклеотиды. Данное строение подтверждается продуктами ступенчатого гидролиза нуклеиновых кислот. Первичная структура нуклеиновых кислот. -

краткое содержание презентаций

Состав клетки

Слайдов: 28 Слов: 912 Звуков: 6 Эффектов: 19

Химический. Состав. Клетки. Химический состав клетки. Органические и неорганические вещества. Цель: познакомиться с химическими веществами клетки. План: 1.Химические элементы. 2.Органические вещества клетки 3.Неорганические вещества клетка. Таблица Менделеева. 1. Химические элементы. Наиболее распространенные химические элементы: кислород (О2), углерод (С), азот(N2), водород (Н2). Элемент. Неорганическое вещество. Органическое вещество. Химическое соединение. Органические вещества. Белки Жиры Углеводы Нуклеиновые кислоты. Схема. Неорганические вещества. Вода Минеральные соли. Проверь свои знания. - Состав клетки.ppt

Клетки живых организмов

Слайдов: 30 Слов: 2472 Звуков: 0 Эффектов: 47

Тема: «Химический состав клетки. Неорганические вещества клетки». Глава I. Химический состав клетки. Империя Клеточные объединяет организмы, имеющие клеточное строение. К неклеточным организмам относится вирусы, объединенные в царство Вирусы. Свойства живых организмов. Возбудимость - важнейшее свойство организма. Клеточный. Организменный. Популяционно-видовой. Экосистемный. Биосферный. Уровни организации живой материи. На организменном уровне – строение тканей, органов и систем органов целостного организма. На популяционно-видовом уровне изучаются структура вида, характеристика популяций. - Клетки живых организмов.ppt

Химический состав клетки

Слайдов: 25 Слов: 615 Звуков: 0 Эффектов: 23

Химический состав клетки. Макроэлементы. Микроэлементы. Гомеостаз. Тела живой природы. Функции воды в клетке. Кристаллы щавелевокислого кальция. Функции минеральных веществ. Углерод. Мономер. Углеводы. Функции углеводов. Липиды. Функции липидов. Воск предохраняет растительную клетку от механических повреждений. Работа с терминами. Аммиак. Укажите лишнее химическое соединение. Вода играет важную роль в жизни клетки. В клетках каких организмов содержится в десятки раз больше углеводов. Способность верблюдов хорошо переносить жару. Домашнее задание. Часть. Состояние. Полимер. - Химический состав клетки.ppt

Химические вещества клетки

Слайдов: 11 Слов: 567 Звуков: 0 Эффектов: 45

Тема: «Химический состав клетки. Неорганические вещества клетки». Химический состав клетки. Неорганические вещества. Органические вещества. Вода и соли. Белки, жиры, углеводы, нукл.Кислоты, гормоны, атф, витамины. Содержатся в телах неживой и живой природы. Образуются только в живых организмах. Химические соединения клетки. Соотношение химических соединений в клетке. Макроэлементы. Йод Медь Марганец Молибден Кобальт. Содержание в клетках: эмали зубов – 10% в костях - до 20%. клетках зародыша –более 98%. Гидрофильные хорошо растворимы в воде. Гидрофобные не растворимы в воде: - Химические вещества клетки.ppt

Химические элементы в клетке

Слайдов: 16 Слов: 816 Звуков: 0 Эффектов: 10

Химический состав клетки. Неорганические вещества клетки. Актуализация знаний. Классификация и содержание химических элементов в клетке. Строение, свойства и биологическая роль воды в клетке. Значение минеральных солей в жизнедеятельности клетки. Проверка знаний. Рефлексия. Ответьте на вопросы. Что такое химический элемент? Какие химические элементы преобладают в земной коре? Что вы знаете о химическом составе клеток? Что вам известно о роли химических элементов в жизни клеток? Используя п. 2.2. составьте схему «Классификация химических элементов, водящих в состав клетки». - Химические элементы в клетке.ppt

Каков химический состав клетки

Слайдов: 35 Слов: 1625 Звуков: 0 Эффектов: 57

Химический состав клетки. Определение понятия «органические вещества». Расширение знаний. Закончите предложения. Нейтральные жиры. Классификация липидов. Разнообразие липидов. Растворимы о органических растворителях. Функции липидов. Какие соединения называются углеводами. Углеводы. Моносахариды. Дисахариды. Пектин. Функции. Функции углеводов. Какое строение имеют белки. Состав белков. Аминокислоты. Белки, содержащие весь набор аминокислот. Классификация белков. Структура молекулы белка. Вторичная структура. Третичная структура. Структура белковой молекулы. Гемоглобин. - Каков химический состав клетки.ppt

Урок «Химический состав клетки»

Слайдов: 24 Слов: 620 Звуков: 0 Эффектов: 0

Химический состав клетки. Урок «Химический состав клетки». Элементарный состав клетки. Урок «Химический состав клетки». Молекулярный уровень. Неорганические вещества. РН буферность. Урок «Химический состав клетки». Белки. Структура белка. Свойства белковой молекулы. Ферменты. Углеводы. Липиды. Нуклеиновые кислоты. ДНК – двойная спираль. Урок «Химический состав клетки». Принцип комплементарности. Репликация. РНК – одиночная цепочка. Виды РНК. Нуклеотид. Живое = Неживое. Молекула водорода. - Урок «Химический состав клетки».ppt

Биология «Химический состав клетки»

Слайдов: 14 Слов: 736 Звуков: 0 Эффектов: 51

Химический состав клетки. План урока. Ответить на вопросы. Признаки реакции. Различия живой и неживой природы. Макроэлементы. Биогенные элементы. Кислород. C -основа всех органических веществ. Состав человеческого тела. Микроэлементы. Цинк. Cu -ферменты гемоцианины, синтез гемоглобина, фотосинтез. Ультрамикроэлементы. - Биология «Химический состав клетки».pptx

Химический состав и строение клетки

Слайдов: 19 Слов: 1622 Звуков: 1 Эффектов: 92

Особенности химического состава клетки

Слайдов: 20 Слов: 1028 Звуков: 0 Эффектов: 63

Особенности химического состава клетки. Клетки. Тезисы. Химические элементы клетки. Группы химических элементов. Кислород. Ионы металлов. Соотношение органических и неорганических веществ в клетке. Углерод. Химические компоненты клетки. Вода. Водородные связи. Виды воды. Вода в организме распределена неравномерно. Минеральные вещества в клетке. Раствор. Собаки. Записи в тетради. Дополнительное домашнее задание. Спасибо за внимание. - Особенности химического состава клетки.ppt

Химический состав клетки и её строение

Слайдов: 22 Слов: 1745 Звуков: 0 Эффектов: 42

Химический состав клетки и её строение. Химический состав клетки. Химический состав клеток растений и животных. Неорганические соединения. Минеральные соли. Углеводы. Липиды. Белки. Нуклеиновые кислоты. АТФ. Клеточная теория. Цитоплазма. Эндоплазматическая сеть (ЭПС). Мелкие сферические органоиды. Комплекс Гольджи. Лизосомы. Пластиды. Митохондрии. Органоиды движения. Ядро. Прокариоты и эукариоты. Спасибо за внимание. - Химический состав клетки и её строение.ppt

Вещества клетки

Слайдов: 20 Слов: 2319 Звуков: 0 Эффектов: 43

АТФ и другие органические вещества клетки. АТФ. Функция АТФ. Как и где образуется АТФ. Витамины в жизнедеятельности клетки. История открытия витаминов. Нарушения, связанные с недостатком или избытком витаминов. Витамины и витаминоподобные вещества. Витамин. Современная классификация витаминов. Роль витаминов в жизни человека. Интересные факты. Вирусы и бактериофаги. Открытие вирусов. ВТМ имеет палочковидную форму. Строение вирусов. Микрофотографии вирусов. Жизнь вирусов. Жизненный цикл бактериофага. Значение вирусов. - Вещества клетки.pptx

Органические вещества клетки

Слайдов: 12 Слов: 177 Звуков: 0 Эффектов: 13

Органические вещества, входящие в состав клетки. План. Познакомить учащихся с целью урока. Повторить домашнее задание Изучить новую тему. Сделать вывод. Закрепить полученные знания. Подвести итоги урока. Записать домашнее задание. Органические соединения клетки: белки, жиры, углеводы. Растительные и животные белки. Углеводы состоят из атомов углерода и молекул воды. Липиды. Нуклеиновые кислоты: ДНК и РНК. Вывод. Закрепление. Какие органические вещества входят в состав клеток? Перечислите функции белков. Каковы функции углеводов и липидов? Работаю над темой: Развитие мышления на уроках биологии. - Органические вещества клетки.pps

Макро- и микроэлементы

Слайдов: 26 Слов: 2799 Звуков: 0 Эффектов: 123

Значение макро- и микроэлементов в организме человека. Макро- и микроэлементы. Цели и задачи. Абсолютно необходимые вещества. Кислород. Кислород входит в состав белков. Макро- и микроэлементы. Макро- и микроэлементы. Макро- и микроэлементы. Кислород - самый распостаненный химический элемент на Земле. Преимущества косметических средств на основе кислорода. Вода. Вода для человеческого организма. Макроэлементы. Значения кальция для организма человека. Значения натрия для организма человека. Значение серы для организма человека. Значения хлора для организма человека. Значение магния для организма человека. - Макро- и микроэлементы.ppt

Соединения

Слайдов: 28 Слов: 1045 Звуков: 0 Эффектов: 167

Биологически активные соединения живых организмов. А.М. Чибиряев "Биологически активные соединения живых организмов", 2009. Липиды. Подразделяются на простые и сложные. Иногда сложные липиды дополнительно подразделяют на нейтральные, полярные и оксилипины. Составные части липидов - жирные кислоты. Состав жирных кислот некоторых растительных жиров и масел. Состав жирных кислот некоторых животных жиров и масел. Мировое производство важнейших жиров и масел. Масло растений с необычным составом жирных кислот. Масло календулы – 55% календовой кислоты 8t,10t,12c-18:3; Биосинтез жирных кислот. - Соединения.ppt

Органические соединения клетки

Слайдов: 15 Слов: 594 Звуков: 0 Эффектов: 134

Органические вещества клетки. Углеводы. Задачи урока. План урока. Какие вещества называются органическими. Выигрышный путь. Лизин. Нуклеиновые кислоты. Свойства и функции жиров. Лабиринт. А. Правила оформления диаграмм. Разнообразие органических веществ. Рефлексия. Домашнее задание. - Органические соединения клетки.pptx

Неорганические вещества клетки

Слайдов: 13 Слов: 669 Звуков: 0 Эффектов: 35

Химический состав клетки. 80 химических элементов. Элементы, входящие в состав клетки. Макроэлементы. Микроэлементы. Ультрамикроэлементы. Биогенные элементы. Магний. Кислород. Содержание химических соединений в клетке. Содержание в разных клетках. Функции воды. Знаете ли вы. - Неорганические вещества клетки.ppt

Неорганические соединения клетки

Слайдов: 16 Слов: 481 Звуков: 0 Эффектов: 93

Химический состав клетки. Макроэлементы. Химические элементы клетки. Входит в состав воды. Компонент белков. Состав плазмы крови. Полярность мембран живых клеток. Химические вещества. Задание. Свойства воды. Диполь-структура. Выделите характерные свойства. Вещества. Функции воды. Отметьте свойства воды. Домашнее задание. - Неорганические соединения клетки.ppt

Неорганические вещества в составе клетки

Слайдов: 61 Слов: 3044 Звуков: 0 Эффектов: 0

Неорганические вещества клетки. Неорганические вещества. Классификация. Ядерный синтез. Земля. Химический состав живого вещества. Химический состав клетки. Микроэлементы. Элементарный состав организмов. Химические элементы. Содержание химических элементов. Вода. Вода и её роль в клетке. Молекула воды. Диполь. Диполь – Н2О. Водородные связи. Форма кластера. Неорганические вещества в составе клетки. Водородные связи. Водородные связи. Свойства воды. Формы воды. Функции воды. Жироподобные вещества. Молекулы сахара. Растворитель. Неорганические вещества в составе клетки. - Неорганические вещества в составе клетки.ppt

Углеводы 9 класс

Слайдов: 15 Слов: 875 Звуков: 0 Эффектов: 35

Углеводы. Презентация подготовлена учителем химии Рощепкиной Н. А. для параллели 9-х классов. Оглавление. Углеводы – главные поставщики энергии организму человека. Мы получаем углеводы из зерновых, бобовых культур, картофеля, фруктов и овощей. В день человек должен получать не менее 500 г углеводов. Глюкоза. Фруктоза. Сахароза. Лактоза. Гликоген. Крахмал. Целлюлоза. ЦЕЛЛЮЛОЗА (С6Н10О5)n Растительный полисахарид. Клетчатка поступает к нам в организм с растительной пищей. Моносахарид. Глюкоза легко проникает в кровь и транспортируется внутри организма. Глюкоза легко усваивается организмом, поддерживает ослабленный организм, нормализует пищеварение. - Углеводы 9 класс.ppt

Углеводы биология

Слайдов: 26 Слов: 418 Звуков: 0 Эффектов: 50

Интегрированный урок химии-биологии по теме «Углеводы». Углеводы. Функции углеводов: 1. Строительная. Функции углеводов: 2. Энергетическая. Общая формула углеводов. Cn (H2O)m. Классификация углеводов. Задание для самостоятельной работы: заполните таблицу Представители класса «Углеводы». Глюкоза с6н12о6. Содержание углеводов на 100 г. продуктов. Шкала сладости. Реакция c гидроксидом меди (II). Признак реакции – изменение цвета осадка с голубого на кирпично-красный. Реакция серебряного зеркала. (Получение аммиачного раствора оксида серебра). Сахароза с12н22о11. КРАХМАЛ (с6н10о5)n. - Углеводы биология.ppt

Крахмал

Слайдов: 25 Слов: 1350 Звуков: 0 Эффектов: 2

Крахмал – основной углевод пищи человека. Крахмал как питательное вещество. Крахмал является основным углеводом нашей пищи, выполняющим энергетическую функцию. Строение крахмала. Строение амилопектина. Строение амилозы. К. А. Тимирязев – русский ученый, физиолог растений. Хлоропласты – природные «фабрики» фотосинтеза. Главное вещество фотосинтеза - зеленый пигмент хлорофилл. Хлорофилл находится в мембранах гран, из-за чего хлоропласты приобретают зеленый цвет. Фотосинтез – главный биохимический процесс на Земле. Н2О с минеральными веществами. Е солнца. Со2. Хлорофилл. Обнаружение крахмала в листьях растений как конечного продукта фотосинтеза. - Крахмал.ppt

Биополимеры

Слайдов: 12 Слов: 682 Звуков: 0 Эффектов: 0

Биополимеры грибного происхождения Авторы: к.б.н. Пензина Т.А., д.б.н., проф. Сибирский институт физиологии и биохимии растений СО РАН. Биополимеры грибного происхождения. Промышленность. Полисахариды Хитин и хитозан Меланин. Вещества. Фармакология. Научный задел. Базидиальные меланины. (1) окислительно-восстановительные буферы (2) антимутагены (3) антибиотики. Физиологические функции в грибах. Обусловлено. Фармакологическая активность. Результаты исследований. Меланин Laetiporus sulphureus (МLS). Присутствие меланина данного типа в базидиальном виде установлено впервые. Laetiporus sulphureus (Bull.: Fr.) Murr. - Биополимеры.ppt

Биология Нуклеиновые кислоты

Слайдов: 36 Слов: 2730 Звуков: 0 Эффектов: 228

Изучение нуклеиновых кислот в школьном курсе биологии и химии. План изучения нуклеиновых кислот. Строение. История открытия и изучения. Виды. Биологическая роль. Итоговое тестирование. Биологическое значение нуклеиновых кислот. По мере изучения материала учащиеся заполняют таблицу: Химическое строение азотистых оснований и углеводов. Химическое строение нуклеиновых кислот. Нуклеиновые кислоты являются биополимерами, мономеры которых – нуклеотиды. Данное строение подтверждается продуктами ступенчатого гидролиза нуклеиновых кислот. Первичная структура нуклеиновых кислот. -