В чём особенности климата Арктики?

Две основные особенности определяют климат арктической пустыни - избыточное увлажнение и очень низкие температуры воздуха. Под избыточным увлажнением в климатологии подразумевается малая испаряемость по отношению к выпадающим осадкам, когда за год осадков выпадает в два с лишним раза больше, чем за тот же период испаряется влаги с земной поверхности. Температура воздуха здесь в течение всего года не бывает больше 19° С.

Вопреки широко распространённому мнению, в северном полушарии самые жестокие морозы бывают зимой не в Центральной Арктике, а далеко к югу от Северного полюса, у самого полярного круга, в глубине континента Азии. Но в Арктике очень холодное лето, здесь весь год сохраняются льды, так как они не успевают растаять за лето. Таяние льдов под лучами солнца во время длинного полярного дня поглощает почти все солнечное тепло, которого, таким образом, оказывается недостаточно для нагревания воздуха. Средняя температура воздуха в середине зимы в Центральной Арктике около - 36° С, а в самые тёплые летние месяцы - около 0° С. Морозы с температурой воздуха ниже - 40° С в Арктике не так уж часты - сказывается приток тепла через морские льды от воды океана. Только над плотными толстыми льдами и на отдельных станциях в Американском секторе Арктики минимальные температуры воздуха иногда бывают ниже - 50° С, (Моулд-Бей и Юрика: - 52,8° С, Исаксен: - 53,9° С). Максимальная температура воздуха в Центральной Арктике не превышает 5° С, тогда как на побережье арктических морей в Азиатской части континента она в отдельные дни может доходить до 30° С.

Ещё интересные статьи.

Географическое положение территории Черноземного центра между 50 и 54 0 с.ш. обеспечивает получение значительной суммы солнечной радиации. Месячные и годовые суммы прямой солнечной радиации в ЦЧО при безоблачном небе составляют (МДж/м 2):

Особенно сильное влияние на поступление солнечной радиации оказывают периоды длительной циклонической и антициклонической циркуляции в весенние и летние месяцы. При сильно развитой циклонической деятельности отношение фактической солнечной радиации к возможной составляет до 25-30 %, а при антициклонической - повышается до 75 - 80 %. Под влиянием циркуляции атмосферы соотношение между прямой и рассеянной радиациями может существенно изменяться, в том числе нарушаться широтная зональность в распределении прямой и суммарной радиации.

Месячные и годовые суммы суммарной солнечной радиации в ЦЧО при безоблачном небе (МДж/м 2)

Основное климатообразующее значение имеют суммы радиации летнего полугодия, когда они велики, а альбедо мало.

Практический интерес представляет так называемая поглощенная радиация. Около 80 - 85 % суммы солнечного тепла, поступающего в почву в течение года, приходится на весну и лето. Зимой, когда мал приход солнечной радиации и почти на всей территории лежит устойчивый снежный покров, роль поглощенной радиации несущественна.

Черноземный Центр в целом характеризуется как район умеренно-континентального климата. Благодаря тому, что его территория лежит в зоне распространения в теплое время континентального тропического воздуха из юго-восточного районов, здесь преобладает относительно жаркое лето со средней температурой июля от 19 до 22 °С. В то же время в силу удаленности от морских бассейнов поступающий сюда в зимнее время влажный атлантический воздух теряет в значительной степени свои свойства. Поэтому зима здесь довольно холодная со средними температурами января от -8,5 °С до -11,5 °С.

Черноземный Центр принадлежит к районам среднего увлажнения. За год выпадает от 450 до 575 мм осадков. Наблюдаются существенные различия в климатических условиях внутри региона: степень континентальности климата в западной части меньше, чем в восточной.

Характер подстилающей поверхности в Черноземном Центре неодинаков. Его сильно пересеченная западная часть задерживает больше осадков, чем низменная восточная (Тамбовская область). Поэтому степень увлажнения отдельных частей района также различна - достаточная в Курской области, а на юго-востоке Воронежской области проявляется недостаток атмосферных осадков. На северо-западе и западе района испаряемость составляет около 600 мм, то есть почти равны годовому количеству осадков. На востоке и юго-востоке района испаряемость возрастает до 800 мм, то есть почти в полтора раза превышает сумму осадков за год.

Существенной чертой климата центрально-черноземных областей является его неустойчивость. Зимой в юго-западных районах бывают сильные оттепели, уничтожающие иногда снежный покров. Последующий за ними возврат холодов часто приводит к вымерзанию озимых. Годы хорошего увлажнения периодически сменяются годами с острым дефицитом атмосферных осадков, особенно в юго-восточных районах. В такие засушливые годы устойчивость сельскохозяйственных культур снижается.

Различие климатических условий лучше всего проследить по сезонам года. Переход от зимы к весне в ЦЧО проходит довольно быстро. Со второй декады марта начинается таяние снежного покрова. В южной части района поля полностью освобождаются от снега в конце марта, а в северной, особенно в северо-восточной части, несколько позднее, примерно в первой декаде апреля. Период со среднесуточной температурой выше +5 °С устанавливается на юге района в начале, а на севере - во второй декаде апреля.

Весной число дней с дождливой и пасмурной погодой достигает 14-15. Больше половины числа дождливых дней приходится на вторую и третью декады апреля. Число дней с малооблачной погодой в среднем весной не превышает 11-12. Наибольшее количество таких дней типично для юго-восточной части района. Здесь с последней декады апреля или с начала мая устанавливается преимущественно сухая погода и происходит довольно интенсивный расход почвенной влаги.

Весной (за апрель-май) на северо-западе и западе района выпадает до 90-95 мм атмосферных осадков. На востоке и юго-востоке количество их снижается до 70 мм и менее. Для этой части района, близко к расположенной к засушливому Юго-Востоку, характерны весенние суховеи. Число дней с суховеями достигает в мае семи. На западе района оно снижается до трех.

К отрицательным явлениям весеннего периода относятся также и заморозки. Они бывают в отдельные годы не только в апреле, но и на протяжении всего мая. Вероятность появления заморозков исключена только с первой декады июня.

Таким образом, в ходе весны в Черноземном Центре можно проследить следующие особенности: в западной части района весна более продолжительна и повышение температур происходит в основном постепенно, в восточной части района весна «запаздывает» на 10-11 дней и ход ее совершается значительно быстрее.

С прекращением ночных заморозков в Черноземном Центре начинается лето. Оно продолжается обычно до середины сентября. Среднемесячные температуры воздуха летних месяцев редко бывают ниже 19-20 °С. За этот период выпадает наибольшее количество атмосферных осадков. На Средне-Русской возвышенности количество их за июнь-сентябрь достигает 250 мм. Число дней с пасмурной и дождливой погодой составляет здесь от 12 до 25 % всех дней лета. Количество засушливых дней невелико (до 16).

Несколько иной режим лета в восточной части Черноземного Центра. В этот период преобладает малооблачная погода. Среднемесячные температуры достигают 22 ° С. Почти половина всех малооблачных дней является засушливой. Суховеи возможны в течение всего лета, захватывая даже большую часть сентября. Наибольшее число дней с суховеями бывает в июле и августе (от 5 до 7). Общее число засушливых дней достигает за лето 22-30.

Количество осадков за июль-сентябрь составляет до 230 мм. Осадки выпадают преимущественно в виде кратковременных ливней.

Теплый период отличается в Черноземном Центре большей продолжительностью. На северо-западе и западе района он составляет примерно 175 дней (со средними суточными температурами выше 5 ° С). Общая же сумма температур за вегетационный период здесь достигает 2700 °. На юго-востоке района продолжительность вегетационного периода увеличивается до 185 дней, а сумма температур - до 3000 °. На северо-востоке продолжительность вегетационного периода и сумма его температур примерно те же, что и на северо-западе. Различие состоит лишь в том, что равная северо-западу общая сумма температур складывается здесь из более высоких средних суточных температур летних месяцев.

Теплый период здесь захватывает значительную часть осени и продолжается фактически до первой декады октября на юго-востоке района и до последних чисел сентября в его северо-западной и северо-восточной частях.

Начало осеннего периода характеризуется не только преобладанием ясной погоды и высоких дневных температур, но и значительной засушливо-стью. В первой половине октября обычно начинаются затяжные моросящие дожди. Падение среднесуточных температур ниже +5 ° С почти на всей территории района происходит после 20 октября. Таким образом, осень, в обычном понимании этого слова, охватывает в Черноземном Центре только часть октября и ноябрь. В конце ноября на севере и в начале декабря на юге района устанавливается слабоморозная погода. В это время происходит постепенный переход к зиме.

Зимний период в Центрально-Черноземных областях длинный. В связи с частыми вторжениями холодных воздушных масс из северо-восточных и восточных районов страны здесь имеют место значительные понижения температуры (до -30 ° С и ниже) сильные морозы не бывают продолжительными. Столь же частое вторжение атлантического воздуха вызывает резкий переход к оттепелям. В связи с этим зима в Черноземном Центре неустойчивая, что отражается на толщине снежного покрова. Накопление его идет на протяжении всей зимы, и наибольшую мощность снежный покров приобретает в конце феврале-начале марта. Высота снежного покрова в южной части района равна в это время 20 30 см, а в северной 50-60 см. В западной части Черноземного Центра зима несколько мягче, чем в восточной, и менее продолжительна.

При изучении изменений климата мы сделали акцент на двух основных элементах: температурном режиме и количестве осадков. Эти параметры подсчитывались и осреднялись за периоды 1961- 1990 гг., 1971-2000 гг., 1991-2000 гг., затем средние показатели сравнивались с многолетней климатической «нормой-80».

Территория Центрального Черноземья, по мнению Л.В. Клименко, является областью относительно наибольшей стабильности атмосферных процессов, а, следовательно, и наибольшей в пределах ЕТР устойчивости аномалий температуры, однозначная характеристика которой обычно распространяется на весь этот регион, до некоторой степени соразмерный с масштабом синоптического процесса. Крупные аномалии среднемесячной температуры и месячных сумм осадков, формирующиеся над Русской равниной, чаще распространяются или над восточной, или над западной частями лесостепной зоны. Центральная часть лесостепи в пределах Курской области чаще других находится под влиянием этих крупных аномалий месячных характеристик климата. Поэтому нами была выбрана метеостанция Курск в качестве репрезентативной для исследования аномалий метеорологических параметров.

Таблица 1 Отклонение в о С среднемесячной температуры воздуха за периоды 1961-1990гг., 1971-2000гг., 1991-2000гг от климатической «нормы-80» по метеостанции Курск

Тенденция к потеплению выражена более заметно. Наибольшие положительные аномалии температуры воздуха отмечены в холодный период года - с января по апрель. Так, в январе среднемесячная температура повысилась по сравнению с «нормой-80» на 3,6 о С, в феврале - на 2,2 о С, в марте - на 1,9 о С, в апреле - на 1,2 о С.

Общую тенденцию к росту температуры воздуха в холодный период нельзя считать однозначной. Все метеостанции ЦЧО в последнем десятилетии XX века отметили резкие похолодания, связанные с затоком холодных арктических воздушных масс, в ноябре-декабре. За последние десять лет в ноябре и декабре температура воздуха оказалась ниже «нормы-80» на 0,5-1,3 о С. Данный факт следует иметь в виду при оценке условий перезимовки растений.

В теплый период года температурный режим изменился незначительно по сравнению с нормой. Обращает на себя внимание тот факт, что в мае статистически значимо отмечаются отрицательные отклонения среднемесячной температуры воздуха от нормы. На практике это означает длительные возвраты холодов, заморозки в начале вегетационного периода, отрицательно сказывающиеся на состоянии посевов.

Рассмотрев ряд средних месячных температур воздуха и рассеяние средних месячных значений температур воздуха в отдельные годы по отношению с средней многолетней температуре за данный месяц, мы получили близкие значения средних квадратических отклонений (в о С) за периоды 1991-2000 гг. и 1891-1980 гг. (табл.2). Сравнения проводились для станции Курск, имеющей длительный ряд наблюдений и стабильное место расположения с 1891 года.

Таблица 2 Среднеквадратическое отклонение среднемесячной температуры воздуха

«норма-80»

Относительная стабильность и даже уменьшение величин среднеквадратического отклонения от нормы температуры воздуха при однозначных аномалиях величины указывает на то, что абсолютные величины отклонений температуры воздуха от средних многолетних значений в последнем десятилетии XX века несколько уменьшились.

Важной характеристикой условий произрастания растений является изменчивость средних максимальных и средних минимальных температур воздуха. В течение XX столетия средняя максимальная температура увеличилась на 0,8 о С, в то время как средняя минимальная температура выросла на 1,2С (рис.2).


Рис. 1.

Вследствие повышения приземной температуры воздуха в XX веке является увеличение продолжительности и теплообеспеченности вегетационного периода.

Анализ средних значений сроков прекращения и начала заморозков и продолжительности безморозного периода вегетации показал, что данные, полученные за 1891-1980 гг., 1961-90 гг., 1991-2000 гг. периоды, различаются в пределах не более 3 суток. Межгодовая изменчивость временных границ безморозного периода дат окончания и возобновления заморозков составила 13 суток. Изменчивость продолжительности безморозного периода вегетации примерно в 1,3-1,6 раза больше изменчивости сроков начала и окончания, что косвенно свидетельствует об их некоррелированности.

На рис. 3 приведен график временного хода продолжительности безморозного периода. На фоне устойчивого увеличения вегетационного периода наблюдается статистически незначимое увеличение продолжительности безморозного периода вегетации.


Рис. 2.

Существенное влияние климатические изменения оказывают на осадки (табл. 3).

Таблица 3 Отклонения количества осадков (%) по месяцам и за год за периоды 1961-90,1971-2000,1991-2000гг от «нормы-80» по данным метеостанции Курск

В течение последних 10 лет сумма осадков, выпадающих в течение года, существенно не изменилась. Заметно уменьшилось количество осадков в декабре и составило 68% от «нормы-80», в августе 85% от «нормы-80». Больше осадков стало выпадать в сентябре, октябре 148 - 175% от нормы. В остальные месяцы количество осадков за исследуемый период близко к климатической норме. Наблюдаемые изменения влагообеспеченности вегетационного периода в целом нельзя считать неблагоприятными для сельскохозяйственного производства.

Анализируя изменчивость атмосферных осадков (коэффициент вариации) для станции Курск за различные временные интервалы, мы отмечаем, что для осадков величина коэффициента вариации в последнем десятилетии существенно отличается от данной характеристики для столетнего ряда наблюдений (табл.4).

Таблица 4 Коэффициент вариации месячного количества осадков

«Норма-80»

Относительное уменьшение коэффициента вариации атмосферных осадков фиксируется в месяцы (декабрь - мае). В переходные периоды года (осенью) изменчивость атмосферных осадков относительно возрастает в последнем десятилетии по сравнению со столетним рядом наблюдений. Данная тенденция отражает изменения в атмосферной циркуляции, происходящие в конце столетия. Аналогичные результаты по изменчивости атмосферных осадков отмечены и для других метеостанций Центрально-Черноземного района. Распределение температуры воздуха в зимний период, когда приход солнечного тепла незначителен, определяется влиянием выноса тех или иных воздушных масс и их радиационным охлаждением. В теплый период года повторяемость перемещений воздушных масс из различных географических районов определяет термический режим и влагообеспеченность территории.

Исследования многолетних изменений климата и их долгосрочная оценка в первую очередь основывается на анализе одного из климатообразующих факторов - циркуляции атмосферы. Оценить причастность крупномасштабных атмосферных процессов Северного полушария (ЭЦМ) к формированию аномалий климатических параметров пытались специалисты и ранее. Нами рассмотрены тенденции изменения отдельных климатических параметров, выявлены связи типов атмосферной циркуляции с аномалиями климатических характеристик в регионе и оценены статистически значимые тренды типов циркуляции атмосферы. Зависимость аномалий климата от ЭЦМ оценивалась с помощью корреляционного метода сравнения временных геофизических рядов с крупномасштабной атмосферной циркуляцией. В расчетах использованы среднесуточные значения температуры воздуха и количества осадков в январе и июле 1971-1995 гг. По этим данным для каждого дня вычислялись средние многолетние значения указанных характеристик, а затем определялись их аномалии. Метод сравнения временных геофизических рядов с календарями смены ЭЦМ содержит определенные вычислительные процедуры. Ежедневный календарь смены ЭЦМ преобразуется во временной ряд геофизического показателя циркуляции, в котором наблюдаемые номера ЭЦМ заменяются на средние значения геофизического параметра за время существования каждого ЭЦМ (температуры воздуха, суточной суммы осадков и др.). Затем вычисляются коэффициенты корреляции между временными рядами геофизического показателя циркуляции и геофизического параметра не только в совпадающие моменты, но и при сдвигах во времени между этими рядами. Максимальное или минимальное значения коэффициента корреляции в зависимости от знака временного сдвига характеризуют отклик геофизического параметра на циркуляцию при отрицательных сдвигах или отклик циркуляции на геофизический параметр при положительных сдвигах. Для принятия решения о существовании связи между коррелируемыми рядами строится распределение вероятностей коэффициента корреляции при заведомом отсутствии связи между геофизическим показателем циркуляции и геофизическим параметром. Ряд геофизического параметра моделируется шумовым рядом, модуль спектра которого в среднем по ансамблю реализаций совпадает с модулем спектра ряда геофизического параметра. Все перечисленные операции проделываются и для шумового ряда геофизического параметра. Они повторяются для разных исходных реализаций шумового ряда, что позволяет построить выборочное интегральное распределение вероятностей шумового коэффициента корреляции. Доверительной вероятностью для принятия решения о существовании связи между рядом геофизического параметра и показателем циркуляции является вероятность того, что шумовые коэффициенты корреляции не превысят значений нешумовых. Далее аналогичным образом вычисляется вероятность того, какие ЭЦМ вносят статистически значимый вклад в создание этой связи.

В табл. 1 представлен список ЭЦМ, которые имеют значимую статистическую связь с аномалиями геофизических параметров при доверительной вероятности более 0,75. Следует отметить, что в настоящей работе сохранены условные обозначения ЭЦМ, указанные в первоисточнике.

Таблица 1 Статистические характеристики ЭЦМ и метеорологические характеристики, соответствующие им в Курске в январе за 1971-1995 гг.

Метеорологическая характеристика

Общая продолжительность ЭЦМ, дни

Среднее значение метеорологической характеристики при данном ЭЦМ

Средняя аномалия характеристики при данном ЭЦМ

Ср. суточная температура воздуха, оС

Среднесуточные суммы осадков, мм

Обобщенные сведения об ЭЦМ, определяющих аномалии климатических параметров представлены в табл. 2.

Таблица 2 Статистические характеристики суммарной продолжительности ЭЦМ, имеющих статистически значимую связь с аномалиями климатических параметров

Климатическая характеристика

ЭЦМ, вызывающие положительные аномалии климатических характеристик

ЭЦМ, вызывающие отрицательные аномалии климатических характеристик

b(tr) дни/10 лет

b(tr) дни/10 лет

Среднесуточная температура воздуха

Суточные суммы осадков

Среднесуточная температура воздуха

Суточные суммы осадков

Примечание: в табл.2 приведены статистические характеристики, рассчитанные по данным периода с 1899 по 1995 гг., где mean - среднее, std - стандартное отклонение, b(tr) - коэффициент линейного тренда, d(tr) - объясненная трендом доля дисперсии ряда (в %), которая используется в качестве меры значимости линейного тренда.

Зимний период. Средняя продолжительность ЭЦМ, связанных с положительными аномалиями температуры воздуха, составила 18 дней. В изменении продолжительности этих ЭЦМ отмечен положительный статистически значимый тренд. Продолжительность ЭЦМ, связанных с отрицательными аномалиями температуры воздуха, составила 7 дней и характеризовалась отрицательным статистически незначимым трендом. Обе тенденции способствуют увеличению температуры воздуха в холодном полугодии.

Отрицательные аномалии среднесуточной температуры воздуха связаны с действием ЭЦМ 4в, 12г и 12бз, которые относятся к группам «Нарушение зональности» и «Меридиональная северная циркуляция». Наибольшее понижение температуры воздуха происходит при ЭЦМ 4в и 12г. При этом воздушный перенос над Русской равниной становится широтным западным, а исследуемая территория находится под воздействием западных циклонов.

Положительные аномалии осадков над исследуемой территорией обусловлены развитием ЭЦМ 11 г и 12 бз, относящихся к «Меридиональной северной циркуляции». При ЭЦМ 11г осуществляется широтный западный перенос, при ЭЦМ 12бз воздушный перенос над Русской равниной становится долготным южным с выходом на территорию южных циклонов.

Средняя суммарная продолжительность ЭЦМ, связанных с отрицательными аномалиями суточных сумм осадков в холодный период, составляет 9 дней. Изменение суммарной продолжительности этих ЭЦМ характеризуется отрицательным статистически значимым трендом. После 1999 года отмечен рост суммарной продолжительности ЭЦМ, связанных с отрицательными аномалиями суточных сумм осадков в холодный период.

Проведенный анализ показал, что в январе наибольшее число связей с аномалиями метеорологических параметров характерно для ЭЦМ 13з, 1б и 7аз, относящихся к группам «Отрог Сибирского антициклона» и «Южные циклоны».

Летний период. В изменении продолжительности ЭЦМ, связанных с положительными аномалиями температуры воздуха летом, выявлен отрицательный статистически незначимый тренд. В летний период положительные аномалии температуры воздуха на исследуемой территории связаны с ЭЦМ 4в и 7бл (нарушение зональности). ЭЦМ 4в формирует над Русской равниной широтный западный и долготный южный воздушный перенос с выходом на территорию юго-западных циклонов. При ЭЦМ 7бл территория оказывается под действием стационарного антициклона.

Отрицательные аномалии температуры воздуха обусловлены ЭЦМ 2б (зональная циркуляция), 3, 4б (нарушение зональности), 8бл, 9б (меридиональная северная циркуляция). При ЭЦМ 3, 8бл, 9б над Русской равниной осуществляется широтный западный и долготный южный воздушный перенос с выходами на территорию юго-западных циклонов. ЭЦМ 2б соответствует широтный западный перенос и воздействие гребня Азорского антициклона на исследуемую территорию. При ЭЦМ 4б над Русской равниной преобладает долготный северный воздушный перенос, а территория ЦЧР находится под влиянием арктических антициклонов. В изменении продолжительности ЭЦМ, связанных с отрицательными аномалиями температуры воздуха летом выявлен отрицательный статистически значимый тренд.

За этот же период в изменениях продолжительности процессов, связанных с положительными аномалиями суточных сумм осадков, отмечен отрицательный статистически незначимый тренд, а в изменениях продолжительности процессов, связанных с отрицательными аномалиями осадков, наблюдается положительный статистически значимый тренд. Обе тенденции направлены на уменьшение среднемесячного количества осадков летом. За этот же период наблюдается отрицательный статистически незначимый тренд в изменении среднемесячного количества осадков в летний период.

Вышеперечисленные закономерности получены на основании анализа продолжительности ЭЦМ в зимний и летний периоды с 1971 по 1995 год. Увеличив период исследования с 1899 по 1995 гг., провели аналогичный анализ изменений крупномасштабной циркуляции для холодного и теплого полугодий в целом. Получены близкие результаты (рис. 1 и 2). Подтверждается тенденция существования положительного линейного тренда в изменении температуры воздуха для столетнего периода наблюдений. Для Центрально-Черноземного региона положительный линейный тренд составил 2,9 0 /100 лет при вкладе в дисперсию 46, 3 % - для зимнего периода и -0,9 0 /100 лет при вкладе в дисперсию 13,3 % - для летнего периода. Продолжительность процессов, связанных с положительными аномалиями температуры воздуха в холодном периоде, постоянно увеличивалась. Период более быстрого роста продолжительности этих процессов наступил с середины 60-х годов XX века.

В теплом полугодии отмечен рост продолжительности ЭЦМ, связанных с отрицательными аномалиями суточных сумм осадков. Коэффициент линейного тренда составил 1,8 мм /сут/100 лет при вкладе в дисперсию 14,2 %. Положительные аномалии суточных сумм осадков за столетний ряд наблюдений не имеют статистически значимого линейного тренда.

Наиболее значительные положительные аномалии температуры наблюдались в период действия на территории стационарных антициклонов и атлантических циклонов, при ведущей роли последних, так как суммарная продолжительность их была почти в 2,5 раза больше, чем у стационарных антициклонов

Отрицательные аномалии температуры воздуха формировались при ультраполярных антициклонических вхождениях на ЕТР (УП-1зап., УП-3с.-в., УП-1вост., УП-2вост.) и одном из циклонических типов - Цн-4. Все указанные процессы относятся к меридиональной форме циркуляции.

Положительные аномалии осадков в январе связаны с циклоническим типом Цн-1 (меридиональная форма циркуляции) и стационарным антициклоном. Средние суточные осадки выше среднемноголетнего значения - отличительная их черта.

В июле положительные аномалии температуры воздуха над исследуемой территорией формируются при северных (Ацн-1-3), западных (Зап-1,Зап-2) и северо-западных (СЗ-2) антициклонических вхождениях на территорию ЕТР. Северные и северо-западные антициклонические вхождения характеризуются меридиональной составляющей циркуляции, а западные - ее зональной составляющей.

Отрицательные аномалии температуры воздуха летом связаны с циклоническими (Цн-1 и Цн-2) и северо-западными антициклоническими (СЗ-1) вхождениями на исследуемую территорию. Все указанные типовые процессы характеризуются меридиональной составляющей циркуляции.

На рис. 5 и 6 показано, как изменяется суммарная продолжительность в днях типов атмосферной циркуляции, вызывающей как похолодание, так и повышение температуры воздуха в июле.


Рис. 5.


Рис.6.

Анализ типов атмосферной циркуляции и их связей с аномалиями метеорологических параметров в период 1991-2002 гг., проведенный нами, показывает, что в последнем десятилетии XX века отмечается определенная стабилизация в циркуляционных процессах: резких аномалий в количестве осадков зимой не отмечено. Аномалии температуры воздуха в январе за счет изменения циркуляционного фактора достаточно устойчивы по знаку и величине. В летний период выявились статистически значимые тренды в изменении продолжительности синоптических процессов, вызывающих как отрицательные, так и положительные аномалии температуры воздуха.

Часто смешивают понятия «погода» и «климат». Между тем это разные понятия. Если погода представляет с собой физическое состояние атмосферы над данной территории и на данное время, то климат - это многолетний режим погоды, который с небольшими колебаниями удерживается в данной местности на протяжении веков.

Климат - (греч. klima наклон (земной поверхности к солнечным лучам)), статистический многолетний режим погоды, одна из основных географических характеристик той или иной местности. Н.С. Ратобыльский, П.А. Лярский. Общее землеведение и краеведение.- Минск, 1976.- с.249. Основные особенности климата определяются:

  • - поступлением солнечной радиации;
  • - процессами циркуляции воздушных масс;
  • - характером подстилающей поверхности.

Из географических факторов, влияющих на климат отдельного региона, наиболее существенны:

  • - широта и высота местности;
  • - близость его к морскому побережью;
  • - особенности орографии и растительного покрова;
  • - наличие снега и льда;
  • - степень загрязненности атмосферы.

Эти факторы осложняют широтную зональность климата и способствуют формированию местных его вариантов.

Понятие «климат» гораздо сложнее определения погоды. Ведь погоду можно все время непосредственно видеть и ощущать, можно сразу описать словами или цифрами метеорологических наблюдений. Чтобы составить себе даже самое приблизительное представление о климате местности, в ней нужно прожить, по крайней мере, несколько лет. Конечно, не обязательно ехать туда, можно взять за много лет данные наблюдений метеорологической станции этой местности. Однако такой материал - это многие и многие тысячи различных цифр. Как же разобраться в этом изобилии цифр, как найти среди них те, что отражают свойства климата данной местности?

Древние греки думали, что климат зависит только от наклона падающих на Землю солнечных лучей. По-гречески слово «климат» означает наклон. Греки знали, что чем выше солнце над горизонтом, чем круче солнечные лучи падают на земную поверхность, тем должно быть теплее.

Плавая на север, греки попадали в места с более холодным климатом. Они видели, что солнце в полдень здесь стоит ниже, чем в то же время года в Греции. А в жарком Египте оно, наоборот поднимается выше. Теперь нам известно, что атмосфера пропускает в среднем три четверти тепла солнечных лучей до земной поверхности и только одну четверть задерживает. Поэтому сначала земная поверхность нагревается солнечными лучами, и только потом уже от нее начинает нагреваться воздух.

Когда солнце стоит высоко над горизонтом (А1), участок земной поверхности получает шесть лучей; когда более низко, то лишь четыре луча и шести (А2). Значит, греки были правы, что тепло и холод зависят от высоты солнца над горизонтом. Этим определяется разница в климате между вечно жаркими тропическими странами, где солнце в полдень круглый год поднимается высоко, а дважды или один раз в год стоит прямо над головой, и ледяными пустынями Арктики и Антарктики, где несколько месяцев солнце вообще не показывается.

Однако не одной и той же географической широте даже по одной степени тепла климаты могут очень резко отличаться друг от друга. Так, например, в Исландии в январе средняя температура воздуха равна почти

0 ° , а на той же широте в Якутии она ниже -48 ° . По другим свойствам (количеству осадков, облачности и т.д.) климаты на одной широте могут отличаться друг от друга даже сильнее, чем климаты экваториальных и полярных стран. Эти различия климатов зависят от свойств земной поверхности, воспринимающей солнечные лучи. Белый снег отражает почти все падающие на него лучи и поглощает только 0,1-0,2 части приносимого тепла, а черная мокрая пашня, наоборот, почти ничего не отражает. Еще важнее для климата разная теплоемкость воды и суши, т.е. разная их способность запасать тепло. Днем и летом вода значительно медленнее нагревается, чем суша, и оказывается холоднее ее. Ночью и зимой вода остывает гораздо медленнее, чем суша, и оказывается, таким образом, теплее ее.

Кроме того, на испарение воды в морях, озерах и на влажных участках суши затрачивается очень большое количество солнечного тепла. За счет охлаждающего действия испарения в орошаемом оазисе бывает не так жарко, как в окружающей его пустыне.

Значит две местности могут получать совершенно одинаковое количество солнечного тепла, но по-разному его использовать. Из-за этого температура земной поверхности даже на двух соседних участках может отличаться на много градусов. Поверхность песка в пустыне летним днем нагревается до 80 ° , а температура почвы и растений в соседнем оазисе оказывается на несколько десятков градусов холоднее.

Соприкасающийся с почвой, растительным покровом или водной поверхностью воздух либо нагревается, либо охлаждается в зависимости от того, что теплее - воздух или земная поверхность. Так как именно земная поверхность в первую очередь получает солнечное тепло, то она в основном передает его воздуху. Нагревшийся самый нижний слой воздуха быстро перемешивается с лежащим над ним слоем, и таким путем тепло от земли все выше распространяется в атмосферу.

Однако так бывает далеко не всегда. Например, ночью земная поверхность охлаждается быстрее воздуха, и он отдает ей свое тепло: поток тепла направляется вниз. А зимой над заснеженными просторами материков в наших умеренных широтах и над полярными льдами такой процесс идет непрерывно. Земная поверхность здесь или совсем не получает солнечного тепла, или получает его слишком мало и поэтому непрерывно отбирает тепло у воздуха.

Если бы воздух был неподвижен и не существовало ветра, то над соседними различно нагретыми участками земной поверхности покопились бы массы воздуха с разными температурами. Их границы можно было бы проследить до верхних пределов атмосферы. Но воздух непрерывно движется, и его течения стремятся уничтожить эти различия.

Представим себе, что воздух движется над морем с температурой воды 10 ° и на своем пути проходит над теплым островом с температурой поверхности 20 ° . Над морем температура воздуха такая же, как воды, но, как только поток переходит через береговую линию и начинает продвигаться в глубь суши, температура его самого нижнего тонкого слоя начинает повышаться, и приближается к температуре суши. Сплошные линии одинаковых температур - изотермы - показывают, как нагревание распространяется все выше и выше в атмосфере. Но вот поток доходит до противоположного берега острова, вступает снова на море и начинает охлаждаться - тоже снизу вверх. Сплошные линии очерчивают наклонную и сдвинутую относительно острова «шапку» теплого воздуха. Эта «шапки» теплого воздуха напоминает форму, которую принимает дым при сильном ветре. Будыко М.И. Климат в прошлом и будущем.- Ленинград: Гидрометеоиздат, 1980.- с. 86.

Различают три основных вида климатов - большой, средний и малый.

Большой климат складывается под влиянием только географической широты и самых больших участков земной поверхности - материков, океанов. Именно этот климат изображают на мировых климатических картах. Большой климат изменяется плавно и постепенно на больших расстояниях, не менее тысяч или многих сотен километров

Особенности климатов отдельных участков протяженностью в несколько десятков километров (большое озеро, лесной массив, большой город и т.д.) относят к среднему (местному) климату, а более мелких участков (холмы, низины, болота, рощи и т.д.) - к малому климату.

Без такого разделения нельзя было бы разобраться, какие различия климата главные, какие второстепенные.

Иногда говорят, что создание Московского моря на канале имени Москвы изменило климат Москвы. Это неверно. Площадь Московского моря для этого слишком мала.

Различный приток солнечного тепла на разных широтах и неодинаковое использование этого тепла земной поверхности. Не могут полностью объяснить нам все особенности климатов, если не учесть значение характера циркуляции атмосферы.

Воздушные течения все время переносят тепло и холод из разных областей земного шара, влагу с океанов на сушу, а это приводит к возникновению циклонов и антициклонов.

Хотя циркуляция атмосферы все время меняется, и мы ощущаем эти изменения в сменах погоды, все же сравнение разных местностей показывает некоторые постоянные местные свойства циркуляции. В одних местах чаще дуют северные ветры, в других - южные. Циклоны имеют свои излюбленные пути движения, антициклоны - свои, хотя, конечно, в любом месте бывают любые ветры, и циклоны всюду сменяются антициклонами. В циклонах выпадают дожди. Будыко М.И. Климат в прошлом и будущем.- Ленинград: Гидрометеоиздат, 1980.- с. 90.

Климат — это многолетний режим погоды, характерный для той или иной местности. Он проявляется в закономерной смене всех наблюдаемых в этой местности типов погоды.

Климат оказывает влияние на живую и неживую природу. В тесной зависимости от климата находятся водные объекты, почва, растительность, животные. Отдельные отрасли экономики, прежде всего сельское хозяйство, также очень сильно зависят от климата.

Климат формируется в результате взаимодействия многих факторов: количества солнечной радиации, поступающей на земную поверхность; циркуляции атмосферы; характера подстилающей поверхности. При этом климатообразующие факторы сами зависят от географических условий данной местности, прежде всего от географической широты.

Географическая широта местности определяет угол падения солнечных лучей, получение определенного количества тепла. Однако получение тепла от Солнца зависит еше и от близости океана. В местах, находящихся вдали от океанов, осадков выпадает немного, да и режим их выпадения отличается неравномерностью (в теплый период больше, чем в холодный), облачность невысокая, зима холодная, лето теплое, годовая амплитуда температуры большая. Такой климат называется континентальным, так как он типичен для мест, расположенных в глубине континентов. Над водной поверхностью формируется морской климат, для которого характерны: плавный ход температуры воздуха, с небольшими суточными и годовыми амплитудами температур, большая облачность, равномерное и достаточно большое количество атмосферных осадков.

Большое влияние на климат оказывают и морские течения. Теплые течения согревают атмосферу в тех районах, где они протекают. Так, например, теплое Северо-Атлантическое течение создает благоприятные условия для произрастания лесов в южной части Скандинавского полуострова, при этом большая часть острова Гренландия, лежащего примерно на тех же широтах, что и Скандинавский полуостров, но находящегося вне зоны влияния теплого течения, круглый год покрыта толстым слоем льда.

Большая роль в формировании климата принадлежит рельефу. Вы уже знаете, что с подъемом местности на каждый километр температура воздуха понижается на 5-6 °С. Поэтому на высокогорных склонах Памира средняя годовая температура — 1 °С, хотя находится он чуть севернее тропика.

Большое влияние на климат оказывает расположение горных хребтов. Например, Кавказские горы задерживают влажные морские ветры, и на их наветренных склонах, обращенных к Черному морю, выпадает значительно больше осадков, чем на подветренных. При этом горы служат препятствием для холодных северных ветров.

Проявляется зависимость климата и от господствующих ветров. На территории Восточно-Европейской равнины в течение почти всего года преобладают западные ветры, приходящие с Атлантического океана, поэтому зимы на этой территории сравнительно мягкие.

Районы Дальнего Востока находятся под действием муссонов. Зимой здесь постоянно дуют ветры из глубины материка. Они холодные и очень сухие, поэтому осадков выпадает мало. Летом, наоборот, ветры приносят с Тихого океана много влаги. Осенью, когда ветер с океана утихает, погода обычно стоит солнечная, тихая. Это лучшее время года в данном районе.

Климатические характеристики представляют собой статистические выводы из многолетних рядов наблюдений за погодой (в умеренных широтах используются 25-50-летние ряды; в тропиках их длительность может быть меньше), прежде всего над следующими основными метеорологическими элементами: атмосферным давлением, скоростью и направлением ветра, температурой и влажностью воздуха, облачностью и атмосферными осадками. Учитывают также продолжительность солнечной радиации, дальность видимости, температуру верхних слоев почвы и водоемов, испарение воды с земной поверхности в атмосферу, высоту и состояние снежного покрова, различные атмосферные явления и наземные гидрометеоры (росу, гололед, туманы, грозы, метели и пр.). В XX в. в число климатических показателей вошли характеристики элементов теплового баланса земной поверхности, таких как суммарная солнечная радиация, радиационный баланс, величины теплообмена между земной поверхностью и атмосферой, затраты тепла на испарение. Применяются также комплексные показатели, т. е. функции нескольких элементов: различные коэффициенты, факторы, индексы (например, континентальности, засушливости, увлажнения) и пр.

Климатические пояса

Многолетние средние значения метеорологических элементов (годовые, сезонные, месячные, суточные и т. д.), их суммы, повторяемости и пр. носят название климатических норм: соответствующие величины для отдельных дней, месяцев, лет и пр. рассматриваются как отклонение от этих норм.

Карты с показателями климата называют климатическими (карта распределения температуры, карта распределения давления и др.).

В зависимости от температурных условий, преобладающих воздушных масс и ветров выделяют климатические пояса.

Основными климатическими поясами являются:

  • экваториальный;
  • два тропических;
  • два умеренных;
  • арктический и антарктический.

Между основными поясами расположены переходные климатические пояса: субэкваториальный, субтропический, субарктический, субантарктический. В переходных поясах воздушные массы меняются по сезонам. Они поступают сюда из соседних поясов, поэтому климат субэкваториального пояса летом сходен с климатом экваториального пояса, а зимой — с климатом тропического; климат субтропических поясов летом сходен с климатом тропических, а зимой — с климатом умеренных поясов. Это связано с сезонным перемещением над земным шаром поясов атмосферного давления вслед за Солнцем: летом — к северу, зимой — к югу.

Климатические пояса подразделяются на климатические области. Так, например, в тропическом поясе Африки выделяют области тропического сухого и тропического влажного климата, а в Евразии субтропический пояс подразделяется на области средиземноморского, континентального и муссонного климата. В горных областях формируется высотная поясность вследствие того, что с высотой температура воздуха понижается.

Разнообразие климатов Земли

Классификация климатов дает упорядоченную систему для характеристики типов климата, их районирования и картографирования. Приведем примеры типов климата, преобладающих на обширных территориях (табл. 1).

Арктический и антарктический климатические пояса

Антарктический и арктический климат господствует в Гренландии и Антарктиде, где средние месячные температуры ниже О °С. В темное зимнее время года эти регионы совершенно не получают солнечной радиации, хотя там бывают сумерки и полярные сияния. Даже летом солнечные лучи падают на земную поверхность под небольшим углом, что снижает эффективность прогрева. Большая часть приходящей солнечной радиации отражается льдом. Как летом, так и зимой в возвышенных районах Антарктического ледникового покрова преобладают низкие температуры. Климат внутренних районов Антарктиды гораздо холоднее климата Арктики, поскольку южный материк отличается большими размерами и высотами, а Северный Ледовитый океан смягчает климат, несмотря на широкое распространение паковых льдов. Летом во время коротких потеплений дрейфующий лед иногда тает. Осадки на ледниковых покровах выпадают в виде снега или мелких частичек ледяного тумана. Внутренние районы ежегодно получают всего 50-125 мм осадков, но на побережье может выпадать и более 500 мм. Иногда циклоны приносят в эти районы облачность и снег. Снегопады часто сопровождаются сильными ветрами, которые переносят значительные массы снега, сдувая его со скат. Сильные стоковые ветры с метелями дуют с холодного ледникового шита, вынося снег на побережье.

Таблица 1. Климаты Земли

Тип климата

Клима-тический пояс

Сред-няя темпе-ратура, °С

Режим и коли-чество атмо-сферных осадков, мм

Циркуляция атмосферы

Территория

Экваториальный

Эквато-риальный

В течение года. 2000

В области пониженного атмосферного давления формируются теплые и влажные экваториальные воздушные массы

Экваториальные области Африки, Южной Америки и Океании

Тропический муссонный

Субэква-ториальный

Преиму-щественно во время летнего муссона, 2000

Южная и Юго-Восточная Азия, Западная и Центральная Африка, Северная Австралия

Тропический сухой

Тропи-ческий

В течение года, 200

Северная Африка, Центральная Австралия

Средиземноморский

Субтро-пический

Преиму-щественно зимой, 500

Летом — антициклоны при высоком атмосферном давлении; зимой — циклоническая деятельность

Средиземноморье, Южный берег Крыма, Южная Африка, Юго-Западная Австралия, Западная Калифорния

Субтропический сухой

Субтро-пический

В течение года. 120

Сухие континентальные воздушные массы

Внутренние части материков

Умеренный морской

Умеренный

В течение года. 1000

Западные ветры

Западные части Евразии и Северной Америки

Умеренный континентальный

Умеренный

В течение года. 400

Западные ветры

Внутренние части материков

Умеренный муссонный

Умеренный

Преиму-щественно во время летнего муссона, 560

Восточная окраина Евразии

Субарктический

Субарк-тический

В течение года, 200

Преобладают циклоны

Северные окраины Евразии и Северной Америки

Арктический (антарктический)

Аркти-ческий (антарк-тический)

В течение года, 100

Преобладают антициклоны

Акватория Северного Ледовитого океана и материк Австралия

Субарктический континентальный климат формируется на севере материков (см. климатическую карту атласа). Зимой здесь преобладает арктический воздух, который образуется в областях высокого давления. На восточные районы Канады арктический воздух распространяется из Арктики.

Континентальный субрктический климат в Азии характеризуется самой большой на земном шаре годовой амплитудой температуры воздуха (60-65 °С). Континентальность климата достигает здесь предельной величины.

Средняя температура в январе изменяется по территории от -28 до -50 °С, а в низинах и котловинах вследствие застаивания воздуха его температура еше ниже. В Оймяконе (Якутия) зарегистрирована рекордная для Северного полушария отрицательная температура воздуха (-71 °С). Воздух очень сухой.

Лето в субарктическом поясе хотя и короткое, но довольно теплое. Средняя месячная температура в июле составляет от 12 до 18 °С (дневной максимум — 20-25 °С). За лето выпадает больше половины годовой суммы осадков, составляющей на равнинной территории 200-300 мм, а на наветренных склонах возвышенностей — до 500 мм в год.

Климат субарктического пояса Северной Америки менее континентален по сравнению с соответствующим климатом Азии. Здесь менее холодная зима и более холодное лето.

Умеренный климатический пояс

Умеренный климат западных побережий материков имеет ярко выраженные черты морского климата и характеризуется преобладанием морских воздушных масс в течение всего года. Он наблюдается на Атлантическом побережье Европы и Тихоокеанском побережье Северной Америки. Кордильеры являются естественной границей, отделяющей побережье с морским типом климата от внутриконтинентальных районов. Европейское побережье, кроме Скандинавии, открыто для свободного доступа морского умеренного воздуха.

Постоянный перенос морского воздуха сопровождается большой облачностью и обусловливает затяжные весны, в отличие от внутри континентальных районов Евразии.

Зима в умеренном поясе на западных побережьях теплая. Отепляющее влияние океанов усиливается теплыми морскими течениями, омывающими западные берега материков. Средняя температура в январе — положительная и изменяется по территории с севера на юг от 0 до 6 °С. При вторжениях арктического воздуха она может понижаться (на Скандинавском побережье до -25 °С, а на французском — до -17 °С). При распространении тропического воздуха к северу температура резко повышается (например, она нередко доходит до 10 °С). Зимой на западном побережье Скандинавии отмечаются большие положительные отклонения температуры от средней широтной (на 20 °С). Аномалия температуры на Тихоокеанском побережье Северной Америки меньше и составляет не более 12 °С.

Лето редко бывает жарким. Средняя температура в июле составляет 15-16 °С.

Даже днем температура воздуха редко превышает 30 °С. Из-за частых циклонов для всех сезонов характерна пасмурная и дождливая погода. Особенно много пасмурных дней бывает на западном побережье Северной Америки, где перед горными системами Кордильер циклоны вынуждены замедлять свое движение. В связи с этим большим однообразием характеризуется режим погоды на юге Аляски, где нет времен года в нашем понимании. Там царствует вечная осень, и о наступлении зимы или лета напоминают лишь растения. Годовое количество осадков составляет от 600 до 1000 мм, а на склонах горных хребтов — от 2000 до 6000 мм.

В условиях достаточного увлажнения на побережьях развиты широколиственные леса, а в условиях избыточного — хвойные. Недостаток летнего тепла снижает верхнюю границу леса в горах до 500-700 м над уровнем моря.

Умеренный климат восточных побережий материков имеет муссонные черты и сопровождается сезонной сменой ветров: зимой преобладают северо-западные потоки, летом — юго-восточные. Он хорошо выражен на восточном побережье Евразии.

Зимой с северо-западным ветром на побережье материка распространяется холодный континентальный умеренный воздух, что является причиной низкой средней температуры зимних месяцев (от -20 до -25 °С). Преобладает ясная, сухая, ветреная погода. В южных районах побережья осадков мало. Север Приамурья, Сахалин и Камчатка нередко попадают под влияние циклонов, перемещающихся над Тихим океаном. Поэтому зимой там мощный снежный покров, особенно на Камчатке, где его максимальная высота достигает 2 м.

Летом с юго-восточным ветром на побережье Евразии распространяется морской умеренный воздух. Лето теплое, со средней температурой июля от 14 до 18 °С. Часты осадки, которые обусловлены циклонической деятельностью. Годовое их количество составляет 600-1000 мм, причем большая часть выпадает летом. В это время года часты туманы.

В отличие от Евразии, восточное побережье Северной Америки характеризуется морскими чертами климата, которые выражаются в преобладании зимних осадков и морском типе годового хода температуры воздуха: минимум наступает в феврале, а максимум — в августе, когда океан наиболее теплый.

Канадский антициклон, в отличие от Азиатского, неустойчив. Он образуется вдали от побережья и часто прерывается циклонами. Зима здесь мягкая, многоснежная, сырая и ветреная. В снежные зимы высота сугробов достигает 2,5 м. При южном ветре часто бывает гололедица. Поэтому некоторые улицы отдельных городов на востоке Канады имеют железные перила для пешеходов. Лето прохладное и дождливое. Годовое количество осадков — 1000 мм.

Умеренный континентальный климат наиболее отчетливо выражен на Евроазиатском материке, особенно в районах Сибири, Забайкалья, севера Монголии, а также на территории Великих равнин в Северной Америке.

Особенностью умеренного континентального климата является большая годовая амплитуда температуры воздуха, которая может достигать 50-60 °С. В зимние месяцы при отрицательном радиационном балансе происходит выхолаживание земной поверхности. Особенно велико охлаждающее влияние поверхности суши на приземные слои воздуха в Азии, где зимой образуется мощный Азиатский антициклон и преобладает малооблачная, безветренная погода. Формирующийся в области антициклона умеренный континентальный воздух имеет низкую температуру (-0°...-40 °С). В долинах и котловинах вследствие радиационного выхолаживания температура воздуха может понижаться до -60 °С.

В середине зимы континентальный воздух в нижних слоях становится даже холоднее арктического. Этот очень холодный воздух Азиатского антициклона распространяется на Западную Сибирь, Казахстан, юго-восточные районы Европы.

Зимний Канадский антициклон по сравнению с Азиатским антициклоном менее устойчив из-за меньших размеров Североамериканского материка. Зимы здесь менее суровы, и их суровость не возрастает к центру материка, как в Азии, а, наоборот, несколько уменьшается в связи с частым прохождением циклонов. Континентальный умеренный воздух в Северной Америке имеет более высокую температуру, чем континентальный умеренный воздух в Азии.

На формирование континентального умеренного климата существенное влияние оказывают географические особенности территории материков. В Северной Америке горные хребты Кордильер являются естественной границей, отделяющей побережье с морским климатом от внутри материковых районов с континентальным климатом. В Евразии умеренный континентальный климат формируется на огромном пространстве суши, примерно от 20 до 120° в. д. В отличие от Северной Америки Европа открыта для свободного проникновения морского воздуха с Атлантики глубоко во внутренние районы. Этому способствует не только западный перенос воздушных масс, господствующий в умеренных широтах, но и равнинный характер рельефа, сильная изрезан- ность побережий и глубокое проникновение в сушу Балтийского и Северного морей. Поэтому над Европой формируется умеренный климат меньшей степени континентальности по сравнению с Азией.

Зимой морской атлантический воздух, перемещающийся над холодной поверхностью суши умеренных широт Европы, долго сохраняет свои физические свойства, и его влияние распространяется на всю Европу. Зимой по мере ослабления атлантического влияния температура воздуха с запада на восток понижается. В Берлине она составляет в январе 0 °С, в Варшаве -3 °С, в Москве -11 °С. При этом изотермы над Европой имеют меридиональную направленность.

Обращенность Евразии и Северной Америки широким фронтом к Арктическому бассейну способствует глубокому проникновению на материки холодных воздушных масс в течение всего года. Интенсивный меридиональный перенос воздушных масс особенно характерен для Северной Америки, где часто арктический и тропический воздух сменяют друг друга.

Тропический воздух, поступающий на равнины Северной Америки с южными циклонами, также медленно трансформируется из-за большой скорости его перемещения, большого влагосодержания и сплошной низкой облачности.

Зимой следствием интенсивной меридиональной циркуляции воздушных масс являются так называемые «скачки» температур, их большая межсуточная амплитуда, особенно в районах, где часты циклоны: на севере Европы и Западной Сибири, Великих равнинах Северной Америки.

В холодный период выпадают в виде снега, формируется снежный покров, который предохраняет почву от глубокого промерзания и создает запас влаги весной. Высота снежного покрова зависит от продолжительности его залегания и количества выпадающих осадков. В Европе устойчивый снежный покров на равнинной территории образуется к востоку от Варшавы, максимальная высота его достигает 90 см в северо-восточных районах Европы и Западной Сибири. В центре Русской равнины высота снежного покрова составляет 30-35 см, а в Забайкалье — менее 20 см. На равнинах Монголии, в центре антициклонической области снежный покров образуется лишь в отдельные годы. Отсутствие снега наряду с низкой зимней температурой воздуха обусловливает наличие многолетней мерзлоты, чего больше не наблюдается нигде на земном шаре под этими широтами.

В Северной Америке на Великих равнинах снежный покров незначителен. К востоку от равнин во фронтальных процессах все чаше начинает принимать участие тропический воздух, он обостряет фронтальные процессы, что и вызывает обильные снегопады. В районе Монреаля снежный покров удерживается до четырех месяцев, а высота его достигает 90 см.

Лето в континентальных областях Евразии теплое. Средняя температура июля составляет 18-22 °С. В засушливых районах юго-востока Европы и Средней Азии средняя температура воздуха в июле достигает 24-28 °С.

В Северной Америке континентальный воздух летом несколько холоднее, чем в Азии и Европе. Это связано с меньшей протяженностью материка по широте, большой изрезанностью его северной части заливами и фьордами, обилием крупных озер и более интенсивным по сравнению с внутренними районами Евразии развитием циклонической деятельности.

В умеренном поясе годовое количество осадков на равнинной территории материков изменяется от 300 до 800 мм, на наветренных склонах Альп выпадает более 2000 мм. Большая часть осадков выпадает летом, что связано в первую очередь с увеличением влагосодержания воздуха. В Евразии отмечается уменьшение осадков по территории с запада на восток. Кроме того, количество осадков уменьшается и с севера на юг в связи с уменьшением повторяемости циклонов и увеличением сухости воздуха в этом направлении. В Северной Америке уменьшение осадков по территории отмечается, наоборот, в направлении к западу. Как вы думаете почему?

Большая часть суши в зоне континентального умеренного климата занята горными системами. Это — Альпы, Карпаты, Алтай, Саяны, Кордильеры, Скалистые горы и др. В горных районах климатические условия существенно отличаются от климата равнин. Летом температура воздуха в горах быстро падает с высотой. Зимой при вторжении холодных воздушных масс температура воздуха на равнинах нередко оказывается ниже, чем в горах.

Велико влияние гор на осадки. Осадки увеличиваются на наветренных склонах и на некотором расстоянии перед ними, а на подветренных — ослабевают. Например, различия в годовом количестве осадков между западными и восточными склонами Уральских гор местами достигают 300 мм. В горах с высотой осадки увеличиваются до определенного критического уровня. В Альпах уровень наибольшего количества осадков приходится на высоты около 2000 м, на Кавказе — 2500 м.

Субтропический климатический пояс

Континентальный субтропический климат определяется сезонной сменой умеренного и тропического воздуха. Средняя температура самого холодного месяца в Средней Азии местами ниже нуля, на северо-востоке Китая -5...-10°С. Средняя температура самого теплого месяца лежит в пределах 25-30 °С, при этом дневные максимумы могут превышать 40-45 °С.

Наиболее сильно континентальность климата в режиме температуры воздуха проявляется в южных районах Монголии и на севере Китая, где в зимнее время года расположен центр Азиатского антициклона. Здесь годовая амплитуда температуры воздуха составляет 35-40 °С.

Резко континентальный климат в субтропическом поясе для высокогорных областей Памира и Тибета, высота которых составляет 3,5-4 км. Климат Памира и Тибета характеризуется холодной зимой, прохладным летом и малым количеством осадков.

В Северной Америке континентальный засушливый субтропический климат формируется в замкнутых плато и в межгорных котловинах, расположенных между Береговым и Скалистыми хребтами. Лето жаркое и сухое, особенно на юге, где средняя температура июля выше 30 °С. Абсолютный максимум температуры может достигать 50 °С и выше. В Долине Смерти была зарегистрирована температура +56,7 °С!

Влажный субтропический климат характерен для восточных побережий материков к северу и югу от тропиков. Основные области распространения — юго-восток США, некоторые юго-восточные районы Европы, север Индии и Мьянмы, восточный Китай и южная Япония, северо-восточная Аргентина, Уругвай и юг Бразилии, побережье провинции Натал в ЮАР и восточное побережье Австралии. Лето во влажных субтропиках продолжительное и жаркое, с такими же температурами, как и в тропиках. Средняя температура самого теплого месяца превышает +27 °С, а максимальная +38 °С. Зимы мягкие, со средними месячными температурами выше 0 °С, но случайные заморозки оказывают губительное влияние на плантации овошей и цитрусовых. Во влажных субтропиках средние годовые суммы осадков колеблются от 750 до 2000 мм, распределение осадков по сезонам довольно равномерное. Зимой дожди и редкие снегопады приносятся главным образом циклонами. Летом осадки выпадают в основном в виде грозовых ливней, связанных с мощными затоками теплого и влажного океанического воздуха, характерными для муссонной циркуляции Восточной Азии. Ураганы (или тайфуны) проявляются в конце лета и осенью, особенно в Северном полушарии.

Субтропический климат с сухим летом типичен для западных побережий материков к северу и югу от тропиков. В Южной Европе и Северной Африке такие климатические условия характерны для побережий Средиземного моря, что послужило поводом называть этот климат также средиземноморским. Аналогичный климат в южной Калифорнии, центральных районах Чили, на крайнем юге Африки и в ряде районов на юге Австралии. Во всех этих районах жаркое лето и мягкая зима. Как и во влажных субтропиках, зимой изредка бывают морозы. Во внутренних районах летом температуры значительно выше, чем на побережьях, и часто такие же, как в тропических пустынях. В целом преобладает ясная погода. Летом на побережьях, близ которых проходят океанические течения, нередко бывают туманы. Например, в Сан-Франциско лето прохладное, туманное, а самый теплый месяц — сентябрь. Максимум осадков связан с прохождением циклонов зимой, когда преобладающие воздушные потоки смешаются по направлению к экватору. Влияние антициклонов и нисходящие потоки воздуха над океанами обусловливают сухость летнего сезона. Среднее годовое количество осадков в условиях субтропического климата колеблется от 380 до 900 мм и достигает максимальных величин на побережьях и склонах гор. Летом обычно осадков не хватает для нормального роста деревьев, и поэтому там развивается специфический тип вечнозеленой кустарниковой растительности, известный под названиями маквис, чапараль, мал и, маккия и финбош.

Экваториальный климатический пояс

Экваториальный тип климата распространен в экваториальных широтах в бассейнах Амазонки в Южной Америке и Конго в Африке, на п-ве Малакка и на островах Юго-Восточной Азии. Обычно среднегодовая температура около +26 °С. Из-за высокого полуденного стояния Солнца над горизонтом и одинаковой продолжительности дня в течение всего года сезонные колебания температуры невелики. Влажный воздух, облачность и густой растительный покров препятствуют ночному охлаждению и поддерживают максимальные дневные температуры ниже +37 °С, более низкие, чем в более высоких широтах. Среднее годовое количество осадков во влажных тропиках колеблется от 1500 до 3000 мм и распределяются они по сезонам обычно равномерно. Осадки в основном связаны с внутритропической зоной конвергенции, которая располагается немного севернее экватора. Сезонные смещения этой зоны к северу и югу в некоторых районах приводят к формированию двух максимумов осадков в течение года, разделенных более сухими периодами. Ежедневно тысячи гроз прокатываются над влажными тропиками. В промежутках между ними солнце светит в полную силу.

ОСОБЕННОСТИ КЛИМАТА РОССИИ.........2

    Влияние океанов на климат России .............2

    Влияние рельефа на климат России.............3

    Осадки и давление..........................................5

ТЕПЛОВОЙ РЕЖИМ ЗДАНИЙ И СООРУЖЕНИЙ.......8

МЕХАНИЧЕСКИЕ ВОЗДЕЙСТВИЯ НА ЗДАНИЯ И СООРУЖЕНИЯ.....9

СОСТОЯНИЕ ЗДАНИЙ И СООРУЖЕНИЙ В РАЙОНАХ МНОГОЛЕТНЕЙ МЕРЗЛОТЫ.........................12

ОСОБЕННОСТИ КЛИМАТА РОССИИ

Основные особенности климата России определяются рядом географических факторов. К числу важнейших из них относится солнечная радиация, зависящая от географической широты. В целом Россия находится преимущественно в высоких и средних широтах. Поэтому климат у нас на большей части территории страны суровый, с четкой сменой времен года и с большой продолжительностью зимы.

Значительная протяженность страны с севера на юг приводит к изменению климата в зависимости от широты места поступления солнечного тепла - суммарной солнечной радиации. В Арктике годовое количество суммарной солнечной радиации составляет 251,2 кДж/см 2 в год, в субарктике - около 293 кДж/см 2 в год. В умеренном поясе в связи с большой его протяженностью с севера на юг суммарная солнечная радиация изменяется от 293 кДж/см 2 в год в северной части до 544 кДж/см 2 в год в южной части. В субтропиках величина суммарной солнечной радиации увеличивается от 544 до 670 кДж/см 2 в год. По всей территории России очень велика разница в сезонном поступлении солнечного тепла. Это зависит как от изменения угла падения солнечных лучей по сезонам, так и от продолжительности времени солнечного сияния. С различиями в поступлении солнечного тепла связана сезонность всех явлений природы. Влияние океанов на климат России

Огромное влияние на климат России оказывают океаны. Наиболее велика роль Атлантического океана, несмотря на то, что его воды нигде непосредственно не омывают территорию страны. В умеренных широтах, в которых располагается большая часть нашей страны, как известно, господствует западный перенос воздушных масс. К тому же на западе России нет высоких гор, препятствующих переносу воздуха. Вследствие этого влияние Атлантики распространяется очень далеко, вплоть до Верхоянского и Забайкальского хребтов. С западным переносом распространяются морские воздушные массы умеренных широт. Зимой они вызывают смягчение морозов вплоть до оттепелей в западных районах, приносят снегопады. Летом приход атлантических масс сопровождается похолоданием и выпадением осадков.

Очень велико климатообразующее влияние Северного Ледовитого океана. Над арктическим холодным бассейном в течение всего года существует область повышенного атмосферного давления. Отсюда арктический воздух, постепенно трансформируясь, летом распространяется на всю территорию России. Наклон крупнейших равнин страны на север способствует проникновению арктического воздуха далеко на юг. Воздействие арктического воздуха особенно ярко проявляется на территории Восточно-Европейской равнины. Зимой арктический воздух вызывает здесь резкое похолодание. Двигаясь на юг, он относительно нагревается и иссушается. Устанавливаются морозные солнечные дни без снегопадов. Летом арктический воздух первоначально вызывает похолодание, а затем он нагревается и формирует безоблачную или малооблачную погоду. Приход арктического воздуха на территорию европейской части России ранней весной сопровождается возвратом холодов и опасен для многих культурных растений, так как вызывает заморозки. Чаще всего они бывают в мае. С вторжением арктического воздуха связаны засухи в Поволжье и на юге Западной Сибири.

Некоторое влияние на климат России оказывает Тихий океан. Несмотря на огромные размеры, воздействие его ограничивается сравнительно узкой полосой суши вдоль дальневосточных морей. Это обусловлено тем, что океан находится к востоку от нашей страны, над которой в умеренных широтах господствует западный перенос воздушных масс. Высокие горы вдоль побережий также препятствуют проникновению в глубь страны тихоокеанских воздушных масс. Зимой над холодной поверхностью континента образуется область повышенного атмосферного давления (Азиатский максимум), откуда воздух устремляется в сторону относительно нагретого океана (зимний муссон). Влияние воздушных масс Тихого океана отчетливо сказывается лишь летом. В это время над океаном область высокого давления, а над сушей давление пониженное. В результате возникает перемещение морских воздушных масс на сушу в виде летнего муссона.

К числу климатообразующих факторов относится характер подстилающей поверхности. В условиях нашей страны это прежде всего особенности рельефа. Зимой другие различия в характере подстилающей поверхности нивелируются снежным покровом. Рельеф же влияет на климат в течение всего года. Влияние рельефа на климат России

К важнейшим климатообразующим свойствам рельефа относится равнинность территории. По равнинам европейской части и Западной Сибири воздух Атлантики проникает далеко на восток. Удалясь от океана, воздух постепенно трансформируется и превращается в континентальный. Таким образом, континентальность климата постепенно нарастает с запада на восток. Невысокие Уральские горы не являются препятствием для распространения атлантического воздуха с запада. Примыкающие друг к другу равнины Западной Сибири способствуют проникновению далеко на юг арктических воздушных масс. Высокие горы юга нашей страны - Кавказ, Копетдаг, Тянь-Шань и Памир препятствуют дальнейшему движению на юг воздушных масс с севера. Благодаря их защите вдоль южных границ Каспия находятся территории с субтропическим климатом.

В умеренном поясе, в пределах которого располагается большая часть территории России, отчетливо выражены времена года. Наиболее суровым сезоном на большей части нашей страны является зима. В умеренных и высоких широтах радиационный баланс в это время года отрицательный. Только на самом крайнем юге он имеет положительное значение.

Земная поверхность зимой сильно выхолаживается и охлаждает нижние слои воздуха. Особенно интенсивно этот процесс протекает над районами Восточной Сибири, удаленными от океанов. На северо-востоке Сибири в межгорных котловинах среднеянварские температуры опускаются ниже?40° С, в районе Оймякона до -48 -50°С. Здесь формируется область повышенного давления, которая распространяется на всю Сибирь и дает два отрога. Один отрог разрастается на северо-восток до Чукотки, а второй - на юго-запад через юг Западной Сибири и Приволжской возвышенности к низовьям Днестра.

Во внутренних районах Сибири в пределах области повышенного давления зимой господствуют нисходящие токи воздуха. Поэтому устанавливается безветренная малооблачная морозная погода. Безветрие и большая сухость воздуха позволяют легче переносить морозы и приспосабливаться к ним.

Зимой давление воздуха над Россией повышенное, а над окружающими морями и океанами пониженное. Поэтому господствует растекание воздуха с территории страны в сторону океанов, за исключением европейской части страны. На побережьях тихоокеанских морей зимой господствуют северо-западные ветры (зимний муссон), которые несут холодный сухой воздух из континентальной Сибири. В связи с этим почти во всех районах Дальнего Востока зима малоснежная и холодная. Во Владивостоке, который находится на широте Сочи, средняя температура января -12°С, а в Сочи +6°С. Над побережьями Камчатки и острова Сахалин, где сталкиваются континентальные и морские воздушные массы, возникают фронтальные процессы, которые нередко сопровождаются шквальными ветрами и обильными снегопадами.

На побережьях морей Северного Ледовитого океана зимой господствуют юго-западные и южные ветры, которые несут на север континентальный воздух умеренных широт, оттекающий от Азиатского максимума. По окраинам северных морей он встречается с арктическим воздухом, вследствие чего возникает арктический фронт. Наиболее хорошо этот фронт выражен над Охотским и Баренцевым морями, где он вызывает частые и сильные штормы и туманы.

Над равнинами Средней Азии и юга европейской части страны господствуют северо-восточные ветры. Они вызваны оттеканием воздушных масс на юг от отрога области повышенного давления. Поскольку воздух движется с северо-востока, он приносит в южные районы страны похолодание и относительную сухость, поэтому здесь выпадает мало снега, а в суровые зимы замерзает Азовское море и северные части Каспийского и Черного морей.

В центральных и северных частях Восточно-Европейской равнины к северу от отрога повышенного давления господствуют западные потоки воздуха со стороны Атлантического океана. Эти воздушные массы всегда приносят влагу в виде снега или дождя. Но их температуры бывают разными. Если юго-западные ветры приносят зимой оттепели, то северо-западные - относительно холодный воздух из районов Северной Атлантики и Скандинавии.

Над большей частью Европейской равнины в течение зимы перемещается большое количество циклонов. Они возникают вдоль полярного фронта, проходящего к западу от нашей страны над Северным морем. Отсюда циклоны движутся на восток, проходя над Западной и Восточной Европой. Космический и наземный контроль за их движением позволяет прогнозировать погоду на территории европейской части страны.

При взаимодействии континентальных и морских воздушных масс умеренных широт в центральной части Восточно-Европейской равнины часто формируется полярный фронт. В тылу циклонов, пересекающих равнину с запада на восток, оттекают к югу холодные арктические воздушные массы. Таким образом, над территорией Восточно-Европейской равнины происходит интенсивное взаимодействие атлантических и арктических воздушных масс, морского и континентального воздуха умеренных широт. Поэтому погода здесь чаще всего бывает неустойчивой и очень контрастной, с частой сменой холодов и оттепелей. В течение нескольких часов температура воздуха зимой может измениться от нескольких градусов тепла до 21-24 градусов мороза, а дождь смениться снегом. Такая смена сопровождается оттепелями и гололедом, крайне неблагоприятно сказывающимися на хозяйственной деятельности людей. От гололеда страдает транспорт; оттепели могут привести к гибели озимых культур. Чередование морозов и оттепелей ведет к разрушению дорог и различных сооружений. Интенсивная циклоническая деятельность приводит также к несхожести зимних погод разных лет. Например, в Москве в январе 1988 и 1990 гг. температуры поднимались до +4°С, а в 1940 г. они опускались до -42°С.

Теплые атлантические воздушные массы, перемещаясь на восток, постепенно остывают. Поэтому изотермы над европейской территорией России имеют меридиональное направление. Над Восточной Сибирью изотермы имеют замкнутый кольцеобразный характер, отражающий континентальность климата этой территории. Тихий океан оказывает меньшее отепляющее влияние на континент по сравнению с Атлантикой. Поэтому на побережье Тихого океана изотермы располагаются меридионально лишь в пределах неширокой полосы. Над южными районами страны изотермы протягиваются широтно в соответствии с направлением изменения величины суммарной солнечной радиации и радиационного баланса. Осадки и давление

На большей части России осадки выпадают зимой в виде снега. На Северном Кавказе мощность снегового покрова обычно не превышает 10 см; в Калининградской области, в Поволжье - до 10-30 см. На севере Европейской равнины, северо-востоке Западной Сибири, на Сахалине - 80-90 см, а на восточном побережье Камчатки мощность снегового покрова достигает 120-160 см. Продолжительность снегового покрова также очень различна - от нескольких дней в ряде районов Прикаспия до 260 дней на Таймыре. Снег имеет большое значение для природных процессов и хозяйственной деятельности на территории нашей страны. Он создает запасы влаги, которые используются растениями весной и в начале лета. Благодаря снегу в европейской части страны возможно выращивание озимых культур. Весной на большинстве рек бывают половодья, обусловленные таянием снега.

Летом на всей территории России радиационный баланс положительный. Континент нагревается больше, чем океаны, и над ним устанавливается область пониженного давления. Одновременно над океанами разрастаются области повышенного давления: Северо-Атлантический (Азорский) и Северо-Тихоокеанский (Гавайский) максимумы. Повышенное давление продолжает существовать и над Северным Ледовитым океаном (Арктический максимум). Со стороны этих максимумов воздушные потоки устремляются на континент. Наиболее четко поток морского воздуха выражен на Дальнем Востоке, где летом устанавливается юго-восточный перенос воздуха - летний муссон. Здесь более холодный и, следовательно, более тяжелый морской воздух взаимодействует с континентальным воздухом. В результате возникают фронтальные процессы, с прохождением которых связаны сильные ливни (муссоные дожди) на Сахалине, Камчатке, в Хабаровском и Приморском краях. Довольно часто сюда приходят и мощные циклоны в виде тайфунов, возникающих на тропических фронтах за пределами нашей страны. Муссоные дожди сопровождаются наводнением на реках. Часто наводнения носят катастрофический характер, особенно в бассейнах рек Амура и Уссури, на острове Сахалин.

На севере России арктические воздушные массы устремляются на юг в сторону нагретой суши. Над северными морями они встречаются с воздухом умеренных широт. В результате образуется арктический фронт. Особенно хорошо он выражен над Баренцевым морем, так как над этим относительно теплым бассейном взаимодействуют наиболее контрастные воздушные массы. Прохождение арктического фронта над северными морями сопровождается штормами и туманами.

Воздух с севера продвигается далеко на юг над равнинами Западной Сибири. Южнее Средней Азии над территорией Пакистана и Афганистана находится центр пониженного давления (Южно-Азиатский минимум), к которому и устремляются северные воздушные потоки. Двигаясь к югу, арктический воздух прогревается, иссушается и постепенно трансформируется в континентальный воздух умеренных широт. Над равнинами Средней Азии он очень сух и формирует климат пустынь.

К западу от России над Атлантическим океаном летом разрастается Азорский максимум, отрог которого проходит над Восточно-Европейской равниной через Южную Украину и южное Поволжье до реки Урал. К югу от него оттекающие воздушные массы прогреваются и иссушаются. Поэтому в Приазовье, и особенно в Прикаспии, летом очень жарко и сухо. Для того, чтобы получать здесь устойчивые урожаи сельскохозяйственных культур необходимо орошение.

Поток морского воздуха из Атлантики в центральных районах Европейской равнины взаимодействует с континентальным воздухом. В результате на пространстве от среднего течения Днестра до среднего течения Волги формируется полярный фронт. Все это сопровождается интенсивным прохождением циклонов. Поэтому на большей части европейской территории России погода летом, так же как и зимой, отличается от других территорий страны большой неустойчивостью. Летом часто бывают обложные дожди и похолодания. Так, среднемесячная июльская температура в Москве около +18°С, однако в некоторые годы она опускалась до +5...+10°С или поднималась до +30...+34°С. К востоку от Волги, и особенно за Уралом, влияние морских воздушных масс резко снижается, и здесь летом погода обычно бывает сухой и жаркой.

В отличие от зимнего времени года, летние изотермы почти по всей территории России протягиваются с запада на восток. Это обусловлено тем, что летом солнечная радиация очень велика и ей принадлежит главная роль в определении температурного режима.

На летний сезон приходится максимальное количество осадков. Это обусловлено высокими температурами и потому максимальной влажностью местного воздуха, из которого выпадают осадки при взаимодействии его с приходящими со стороны океанов относительно холодными воздушными массами. К ним прибавляются осадки конвективного происхождения. Наибольшее количество осадков выпадает в крайних западных и восточных районах России. С удалением от океанов во внутренние районы страны количество осадков уменьшается, достигая своего минимума (меньше 50 мм). На наветренных склонах гор количество осадков значительно возрастает. Особенно много их выпадает на западных склонах Кавказских гор (свыше 2000 мм).

Схематическое представление составляющих климатической системы, основных климатообразующих процессов и их взаимодействия

Тепловой режим зданий и сооружений

Перспективные оценки последствий потепления

в XXI веке для зданий и технических сооружений

были впервые получены с использованием

сценариев изменения климата, основанных на палеоаналогах

(Ефимова и др., 1992; Ефимова, Байкова,

1994), на прогнозах изменения температуры

воздуха на период до 2010–2015 гг. с помощью

эмпирико-статистической модели (Материалы к

стратегическому прогнозу..., 2005; Александрова,

2006) и на результатах расчетов по ряду моделей

общей циркуляции атмосферы (Анисимов, 1999;

Instanes et al., 2005). Полученные перспективные

оценки зависят от используемого сценария изменения

климата и заметно различаются между собой

региональными деталями.

Все сценарии изменения климата дают довольно

схожую картину изменений температуры воздуха

в ближайшее десятилетие. Согласно оценкам

Росгидромета (Материалы к стратегическому прогнозу...,

2005), к 2015 г. наибольшее повышение

температуры холодных суток составит от 0,7–1,2°С

на севере России и до 0,3–0,5°С на юге. На основании

этого в работе (Александрова, 2006) сделан

вывод об уменьшении продолжительности отопительного

периода в России к 2015 г. на 1–4 суток.

В этой же работе показано, что в предположении

о повышении к концу XXI столетия температуры

наиболее холодной пятидневки на северо-западе

России на 2–3°С следует ожидать сокращения отопительного

периода в этом регионе на 20–50 суток.

Перспективные оценки последствий изменения

климата на более длительный период времени

До конца первой четверти и до середины

XXI века - заметно различаются между собой,

существенно зависят от выбранного сценария антропогенного

воздействия на глобальный климат.

В работах (Ефимова и др., 1992; Ефимова,

Байкова, 1994) на основе палеоаналоговых сценариев

были построены карты, характеризующие

сокращение продолжительности отопительного

периода и дефицита тепла в Северном полушарии

для конца первой четверти и до середины XXI

века. Палеоаналоговые сценарии предполагали

повышение к середине XXI века средней годовой

глобально осредненной температуры воздуха в

приповерхностном слое атмосферы по сравнению

с 1990 г. на 2°С. Современные данные показывают,

однако, что эти изменения едва ли превзойдут

величину 1,0–1,2°С. Таким образом, упомянутые

выше оценки сокращения потребности в отоплении

помещений являются несколько завышенными.

Более точные оценки могут быть получены с

использованием современных сценариев антропогенного

воздействия на глобальный климат и расчетов

соответствующих изменений глобального

климата с помощью моделей общей циркуляции

атмосферы.

МЕХАНИЧЕСКИЕ ВОЗДЕЙСТВИЯ НА ЗДАНИЯ И СООРУЖЕНИЯ

Увеличение повторяемости оттепелей и появление

оттепелей в районах, где они ранее не наблюдались,

приведет к сокращению долговечности

зданий в северных районах в 2 раза (Кузнецов,

Кобышева, 2004).

Вследствие изменения режима осадков и температуры

воздуха в приповерхностном слое атмосферы

существенно изменится режим накопления

и таяния снега. Снеговые нагрузки должны существенно

увеличиться на северной части территории

России. Увеличение нагрузок, превышающих

предусмотренные проектом, приведет к дополнительному

риску разрушения зданий и сооружений.

Гололедные нагрузки в Северо-Западном федеральном

округе увеличатся незначительно, так

как здесь преобладает кристаллическая изморозь,

и, хотя при потеплении повторяемость более плотных

отложений увеличится, уменьшение скорости

ветра не будет благоприятствовать росту плотных

отложений. Аналогичная картина будет наблюдаться

в Центральном, Уральском и в Сибирском

федеральных округах. Гололедная нагрузка должна

значительно увеличиться в Южном, Приволжском

и Дальневосточном федеральных округах. На

Дальнем Востоке произойдет увеличение отложения

мокрого снега, и поэтому здесь возможно увеличение

гололедной нагрузки, особенно значительное

в прибрежных районах.

Ветровые нагрузки будут почти повсеместно

уменьшаться. Судя по тенденциям уменьшения

средних скоростей ветра последнего десятилетия

ХХ века, увеличение ветровых нагрузок возможно

лишь в некоторых районах Восточной Сибири

(рис. 3.2.8).

Увеличение меженных расходов и уровней

воды в реках в условиях уменьшения промерзания

почвогрунтов будет способствовать повышению

уровня грунтовых вод и подтоплению равнинных

территорий Европейского севера, северо-запада и

Верхней Волги, что приведет к серьезным негативным

последствиям, в частности к ускорению

деформации и разрушению фундаментов разного

рода зданий и технических сооружений.

Главная опасность подтоплений состоит в воздействии

на фундаменты и ослаблении несущей

способности окружающих их грунтов, что со временем

может вызывать деформацию зданий и технических

сооружений (вплоть до разрушения).

Заметим, что от подтопления серьезно страдают

ценнейшие исторические памятники и архитектурные

ансамбли Русского севера и Золотого кольца

(Государственный доклад..., 2006).

Водонасыщение грунтов негативно скажется

на их технических свойствах, что затруднит производство

строительных работ и эксплуатацию сооружений,

приведет в конечном итоге к существенному

росту эксплуатационных расходов.

Подтопление городов, расположенных на лессовых

породах, вызовет просадки. В лессах они

возникают даже при незначительном (2–5%) увеличении

влажности. Их величина может меняться

в широких пределах - от 0,1 до 2,5–3 м.

Просадки лессовых грунтов, оседание поверхности

земли вызывают деформацию зданий и технических

сооружений и последующее их разрушение.

Такие тенденции уже наметились. Так, в

Запорожье от просадок лессов уже деформировано

900 зданий.

Изменение гидрогеологических условий в

связи с подтоплением приводит к трансформации

карстовых процессов. Техногенный карст отличается

от природного меньшей глубиной и площадью

распространения, большей скоростью развития

и интенсивностью проявления карстовых

форм. Он может возникать там, где раньше не

проявлялся, но где имеются растворимые горные

породы. Формы проявления техногенного карста

самые различные - от повышенной трещиноватости

и кавернозности до возникновения провалов.

В России проложено около 50 тыс. км нефтепроводов

и около 150 тыс. км газопроводов, пересекающих

многие сотни и тысячи рек. Безаварийная

эксплуатация переходов трубопроводов

через реки во многом определяется деформациями

дна и берегов реки, которые в свою очередь

зависят от режима речного стока. Ожидаемые в

связи с изменением климата увеличение годового

и сезонного стоков, изменение ледового режима

могут интенсифицировать размыв русел и привести

к более раннему наступлению аварийных

ситуаций на подводных участках трубопроводов,

к созданию предпосылок экологических катастроф

при разрыве трубопроводов и разливе нефти

и выбросе газа. Ситуация обостряется тем, что

многие трубопроводы построены еще до 1980-х

годов, и проектный срок их эксплуатации, рассчитанный

для условий стационарного климата,

практически заканчивается.

Места наиболее проблемных подводных переходов

трубопроводов расположены в Приволжском

федеральном округе в бассейнах Верхней

и Средней Волги, на малых и средних реках (области

Нижегородская, Оренбургская, Самарская, Саратовская,

Ульяновская, Пермский край, Республики

Башкортостан, Марий Эл, Мордовия, Татарстан,

Удмуртия и Чувашия); во всех субъектах

Российской Федерации Южного федерального округа;

в Тюменской области Уральского федерального

округа; в Красноярском крае, в областях Новосибирская,

Омская, Томская, Иркутская Сибирского

федерального округа.

.

Отношение ветровой нагрузки за последнее десятилетие XX века к ее среднему многолетне_му значению в 1961–2000 гг. (Материалы к стратегическому прогнозу..., 2005).

СОСТОЯНИЕ ЗДАНИЙ И СООРУЖЕНИЙ В РАЙОНАХ МНОГОЛЕТНЕЙ МЕРЗЛОТЫ

В связи с ожидаемым потеплением на территории

России в XXI веке серьезную опасность

может представлять дальнейшее уменьшение прочности

и ослабление несущей способности фундаментов

из-за деградации многолетнемерзлых грунтов

Так, по данным работы (Weller and Lange, 1999),

их несущая способность будет заметно уменьшаться

при увеличении температуры воздуха в приповерхностном

слое атмосферы в диапазоне от 0,5

до 2,0°С по отношению к значениям конца ХХ

века. Это приведет, в частности, к уменьшению

ресурса фундаментов зданий и сооружений в некоторых

районах Крайнего Севера (табл. 3.2.1).

Оценка возможных региональных проявлений

этой тенденции выполнена с помощью индекса

геокриологической опасности I г (см. раздел 3.1.2).

При расчете индекса геокриологической опасности

были использованы данные о современных месячных

нормах температуры воздуха и осадков,

данные о процентном содержании льда в мерзлом

грунте (один из входных параметров для оценки)

в узлах регулярной сетки с шагом 0,5 × 0,5°, а также

перспективные оценки изменения температуры

и осадков для середины XXI века, полученные

по нескольким климатическим моделям. Методика

расчетов, исходные данные и результаты описаны

в ряде публикаций (Nelson et al., 2001, 2002;

Анисимов, Белолуцкая, 2002; Анисимов, Лавров,

2004). Данные о процентном содержании льда в

мерзлом грунте представляют собой электронный

вариант геокриологической карты Международной

ассоциации мерзлотоведения (Brown et al.,

1997). приведена перспективная оценка

геокриологической опасности, связанной с таянием многолетней мерзлоты и угрозой повреждения

стоящих на ней зданий и сооружений. Расчет для

середины XXI века проводился с использованием

сценария B1 и модели GFDL. При использовании

других известных сценариев антропогенного воздействия

на глобальный климат и моделей получаются

близкие результаты.

В область наибольших значений индекса геокриологического

риска попадают Чукотка, бассейны

верхнего течения Индигирки и Колымы, юговосточная

часть Якутии, значительная часть Западно-

Сибирской равнины, побережье Карского

моря, Новая Земля, а также часть островной мерзлоты

на севере европейской территории. В этих