В настоящее время имеется значительное число технологических схем процесса биологической очистки, каждая из которых отличается числом ступеней аэрации, наличием или отсутствием регенерации активного ила, способами ввода в сооружения сточной воды и возвратного ила, степенью очистки и др. Каждый тип сооружений характеризуется своими показателями нормальной работы и требует индивидуального подхода к проектированию системы автоматизированного управления.

Воздействия, которыми можно воспользоваться для построения системы автоматизированного управления, следующие :

Управление расходом возвратного ила с целью поддержания концентрации активного ила в аэротенке;

Управление расходом воздуха таким образом, чтобы поддержать заданную концентрацию растворённого кислорода во всем объёме аэротенка;

Управление расходом выводимого из системы активного ила для поддержания возраста ила постоянным;

Изменение соотношения объёмов аэротенка и регенератора(при сохранении постоянства их суммарного объёма) с целью оптимальной регенерации ила;

Распределение расхода поступающих сточных вод между параллельно работающими аэротенками;

Поддержание оптимального значения рН воды, поступающей в аэротенк

Управление расходом ила, выпускаемого из отстойников, чтобы поддержать в них оптимальный уровень ила и изменять его в зависимости от концентрации и расхода иловой смеси, мутности очищенной отстоянной воды, а также илового индекса.

В традиционных АСУ применяются алгоритмические модели, связывающие управляющее воздействие с входными данными (или их изменением). Недостатком традиционных методов управления применительно к процессу биологической очистки сточных вод является многомерность и сложность создаваемых математических моделей при низкой точности и неполноте исходной информации и неоднозначности критерия управления . С другой стороны, ситуации, возникающие при функционировании блока биологической очистки сточных вод, зачастую позволяют использование для управления методов формальных рассуждений, близких к естественному ходу рассуждений человека-эксперта. Для решения задач управления биологической очисткой они могут быть значительно более эффективны, чем традиционные АСУ, особенно с точки зрения сроков и стоимости разработки и модификации при изменении требований к системе и внешних условий, что является крайне важным фактором в свете непрерывного совершенствования технологии и повышения производительности блока биологической очистки. Характерной особенностью управляемого объекта является присущая очистной станции возможность корректировки технологической схемы и изменения состава оборудования. Данное обстоятельство повышает требования к открытости, перспективности и стандартизации создаваемой системы. Изменения в нормах качества очистки сточных вод, наращивание мощности очистных сооружений или добавление новых параметров контроля потребуют полной переработки математических моделей традиционной АСУ, в то время как в экспертной системе достаточно будет лишь скорректировать правила или добавить новые.

Кроме того, в процессе управления биологической очисткой часто возникают проблемные ситуации, для преодоления которых необходимо использовать опыт многих экспертов, нормативно-техническую, справочную и регламентирующую информацию, которая не всегда может быть доступна оператору. Управление работой очистных сооружений является сложной задачей, связанной с особенностями состояния и функционирования очистных сооружений. На практике, технолог очистных сооружений, осуществляющий принятие решений по управлению очисткой сточных вод, сталкивается со следующими проблемами:

Недостаток параметров для принятия решений, вследствие ограниченного резерва времени и высокой стоимости проведения специализированных лабораторных анализов;

Неполнота, неточность естественно-языковых инструкций для принятия решений;

Недостаточность теоретических знаний о процессе управления очисткой сточных вод и отсутствие учета особенностей функционирования конкретного очистного сооружения.

Процесс очистки сточных вод осуществляется в режиме запаздывания реакции системы и зависит от многих входных сигналов. Сигналы эти являются разнородными, поступают с разной периодичностью, на обработку части из них необходимо время, а также специальные лабораторные условия и дорогостоящие реактивы. Очистные сооружения функционируют частично за счет деятельности разнообразных живых организмов, чьи реакции на воздействие входных параметров специфичны и взаимозависимы. Оптимальные условия для существования комплексов организмов, осуществляющих очистку сточных вод, весьма сложно подбирать вследствие изменчивости этих комплексов в зависимости от состава сточных вод. Регулирование концентрации биогенных элементов, поддержание рН среды и температуры в нужном диапазоне положительно отражаются не только на развитии микроорганизмов, но и на биохимической активности последних по очищению воды. Для подбора оптимальных условий функционирования микроорганизмов в аэротенках используются автоматизированные системы управления, которые основываются на математических моделях (таблица 1.2) . Такие системы имеют ряд недостатков. Они хорошо работают, когда очистные сооружения находятся в нормальном режиме работы и плохо применимы в случае внештатного режима.

Естественно, что при возникновении проблемных ситуаций, необходимы знания и опыт экспертов, и разработки имитационных моделей и программ для решения уравнений явно недостаточно. Возникает необходимость использовать субъективную информацию, накопленную за годы, а также неполные данные и объективную информацию, накопленную за период работы очистных сооружений.

Применение методов и средств искусственного интеллекта предоставляет новые возможности для решения проблемы управления очистными сооружениями. Экспертные системы на основе искусственного интеллекта в идеальном случае должны обладать уровнем эффективности решений неформализованных задач, сравнимым с человеческим или превосходящим его. В любом случае, экспертная система «знает» меньше, чем человек-эксперт, но тщательность, с которой применяются эти знания, компенсирует их ограниченность. На данный момент за рубежом существует ряд экспертных систем (ЭС), применяемых для очистки сточных вод (таблица 1.3) .

Анализируя примеры из таблицы 1.3, следует отметить, что для управления блоком биологической очистки, являющимся элементом комплексной системы очистки бытовых сточных вод наиболее целесообразно использование системы, основанной на правилах.

Таблица 1.2 - Модели классического управления на биологических очистных сооружениях

Название

Пример применения

Оборудование

Недостатки моделей

Достоинства моделей

Корреляционная

Установление взаимо-связей и взаимо-зависимостей между характеристиками воды

Очистные сооружения

Наличие большого числа внешних факторов, взаимовлияние микроорганизмов взаимодействие с субстратом приводит сложности выбора адекватной модели описания системы.

Модели сложно разрабатывать, они часто неточны и чрезмерно упрощают действительность.

Имитационное моделирование не работает с неизвестными или не смоделированными ситуациями.

Качественные данные не могут быть использованы для модели числового управления.

Данные неточны или отсутствуют, датчики выдают ошибочную информацию или отсутствуют, не все характеристики, необходимые для моделирования анализируются каждый день, что влияет на точность моделей.

Характеристики втекающей воды сильно изменчивы и неуправляемы.

Задержка в получении данных из-за длительных лабораторных анализов и аналитических расчетов.

Оценка поведения очистных сооружений в ответ на определенный сценарий развития (операционные условия и характеристика втекающей воды) и прогноз на средний и длительный период возможных исходов при определенных действиях по процессу очистки

Повышение эффективности удаления загрязнителей

Сокращение расхода электроэнергии, химических реагентов и затрат на обслуживание очистных сооружений

Разработка альтернатив для модифицирования существующих очистных сооружений

Адаптивный алгоритм

Для поддержания необходимого уровня кислорода в аэротенке

Аэротенк

Прагматические модели

Фундаментальные модели

Рост бактерий и потребление субстрата

Аэротенк

Имитационные модели

Статистический синтез

Моделирование эволюции состояний очистных сооружений

Очистные сооружения

Кластеризация

Классификация данных с датчиков

Очистные сооружения

Закон Стокса

Моделирование осаждения

Песколовка

Кривая Гусмана

Моделирование осажде-ния твердых веществ

Метод оптимизации

Оптимизация обработки осадка

Первичный, вторичный отстойники

Детерминистические, прогнозные модели

Осаждение

Первичный, вторичный отстойники

Кривые функционирования и стохастические модели

Прогноз поведения отстойников

Первичный, вторичный отстойники

Таблица 1.3 - Средства искусственного интеллекта, разработанные для очистных сооружений

Название. Разработчик

Представле-ние знаний

Основные функции и характеристики

Недостатки

ЭС реального времени. (Baeza,J)

Регулирование работы очистных сооружений. Управление процессом очистки сточных вод через Интернет.

Системы на основе правил:

Не обучаются в процессе работы

Сложности с процессом извлечения знаний и опыта исходных данных

Неспособны к предви-дению, их область ограничена прошлыми предопределёнными ситуациями.

Системы на прецедентах:

Проблема индексации прецедентов в базе знаний;

Организация эффективной процедуры поиска ближайших прецедентов;

Обучение, формирования правил адаптации;

Удаление прецедентов, потерявших актуальность.

Прецеденты и правила:

Отсутствует синтаксическая и семантическая интеграция модулей системы

ЭС для определения состояния очистных сооружений. (Riano) 4]

Система автоматического построения правил, используемых для идентификации состояния очистных сооружений.

ЭС для управления очистными соору-жениями.(Yang)

Экспертная система для определения последовательности стадий очистки воды на очистных сооружениях

ЭС для управления ОС.(Wiese, J., Stahl, A., Hansen,J.)

Преце-денты

Экспертная система для определения вредных микроорганизмов в системе активного ила

ЭС по сокращению ущерба от загрязнения водных ресурсов. (Университет Сев. Каролины)

прецеденты

Оценка потенциальных воздействий для управления рассеянными источниками загрязнения в бассейне рек, основанная на информации и решениях, поступающих от пользователя.

ЭС реального времени для управления очистными сооружениями, (Sanchez-Marre)

прецеденты

ППР при наблюдении, комплексном контроле и управлении работой очистных сооружений. Комбинирует во фреймовую структуру: обучение, рассуждение, приобретение знаний, распределенное принятие решений. Правила вывода частично моделируют данные и экспертные знания. Система на прецедентах моделирует эмпирические знания.

Управление системой активного ила. (Comas ,J.)

прецеденты

Система контроля и управления системой активного ила на биологических очистных сооружениях. Ядро и основные модули разработаны на основе объектно-ориентированной оболочки, реализующей механизм логического вывода. Управляет получением данных, БД, системой правил и прецедентов.

Наиболее характерной формой для решения задач управления непосредственно блоком биологической очистки, являются экспертные системы, построенные на основе продукционной модели, где знания представлены совокупностью правил вида “если – то”. Основные преимущества такой экспертной системы - это простота пополнения, модификации и аннулирования информации и простота механизма логического вывода. Для организации структуры экспертной системы, представленной на рис.1.1 , требуется преобразовать технологическую информацию в структуру принятия решений, которая описывает работу базы знаний, а затем, на основе выбранной программной оболочки, составить программу работы экспертной системы.

Это и будет являться целью данной дипломной работы: адаптировать опыт теоретических исследований и практических решений в области использования экспертных систем для управления блоком биологической очистки сточных вод к конкретному процессу очистки, с учётом конструктивных параметров и принятой при проектировании индивидуальной технологической схемы данных очистных сооружений. А также создание полноценной системы автоматизации процесса и выбор технических средств её реализации.

Рисунок 1.1 – Структура управления процессом очистки сточных вод

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Автоматизация технологических процессов и производств, на современном этапе, внедряется во все отрасли промышленности. Одним из главных преимуществ АСУ ТП является снижение, вплоть до полного исключения, влияния человеческого фактора на управляемый процесс, сокращение персонала, минимизация расходов сырья, повышение качества производимого продукта, и в конечном итоге существенное повышение эффективности производства. Основные функции, выполняемые подобными системами, включают в себя контроль и управление, обмен данными, обработку, накопление и хранение информации, формирование сигналов тревог, построение графиков и отчетов

1. Характеристика сточной воды на предприятия

Сточные воды - любые воды и атмосферные осадки, отводимые в водоёмы с территорий промышленных предприятий и населённых мест через систему канализации или самотёком, свойства которых оказались ухудшенными в результате деятельности человека.

Сточные воды бывают:

Производственные (промышленные) сточные воды (образующиеся в технологических процессах при производстве или добыче полезных ископаемых), отводятся через систему промышленной или общесплавной канализации

Бытовые (хозяйственно-фекальные) сточные воды (образующиеся в жилых помещениях, а также в бытовых помещениях на производстве, например, душевые кабины, туалеты), отводятся через систему хозяйственно-бытовой или общесплавной канализации

Поверхностные сточные воды (делятся на дождевые и талые, то есть образующиеся при таянии снега, льда, града), отводятся как правило через систему ливневой канализации.

Производственные сточные воды могут быть разделены:

По составу загрязнителей на:

Загрязнённые по преимуществу минеральными примесями;

Загрязнённые по преимуществу органическими примесями;

Загрязнённые как минеральными, так и органическими примесями;

По концентрации загрязняющих веществ.

В составе сточных вод выделяют две основных группы загрязнителей - консервативные, т.е. такие, которые с трудом вступают в химические реакции и практически не поддаются биологическому разложению (примеры таких загрязнителей соли тяжёлых металлов, фенолы, пестициды) и неконсервативные, т.е. такие, которые могут в т.ч. подвергаться процессам самоочищения водоёмов.

В состав сточных вод входят как неорганические (частицы грунта, руды и пустой породы, шлака, неорганические соли, кислоты, щёлочи); так и органические (нефтепродукты, органические кислоты), в т.ч. биологические объекты (грибки, бактерии, дрожжи, в т.ч. болезнетворные).

Технологический процесс объекта

Вся наружная установка оборудована бетонным покрытием с уклоном к сливным лоткам, для сбора атмосферных осадков и возможных проливов продуктов переработки.

Сбор от сливных лотков направляется в заглубленные емкости Е-314/1,2, расположенные по разным концам установки (технологическая схема). Собранная в емкостях вода откачивается насосами Н-314/1,2 в химзагрязненную канализацию (ХЗК) на КОС, при удовлетворительных результатах анализа собранной воды и получения разрешения на откачку у сменного мастера КОС. При откачке ведется контроль за наличием масляного слоя, и при его обнаружении откачка прекращается.

При значительном загрязнении воды, она по возможности разбавляется оборотной водой или вывозится шламовозкой в шламонакопитель КОС.

При обнаружении масляного слоя, его направляют на повторную переработку, через емкость О-23, используя бензовоз. Уровень в емкости Е-314/1 контролируется прибором LIA - 540.

Схема технологического процесса

Недостатки существующей системы:

- нет возможности отслеживать и анализировать уровень масляного слоя, снимаемую с датчика, что в свою очередь не позволяет нам контролировать весь технологический процесс.

- нет автоматизированной системы контроля и управления процессом.

- одними из главных преимуществ АСУ ТП, что не наблюдается в данной системе, является снижение влияния так называемого человеческого фактора на управляемый процесс, сокращение персонала, минимизация расходов сырья, повышение качества конечного продукта, и в конечном итоге существенное повышение эффективности производства.

- существующие устройства, внедренные в систему подвержены влиянию окружающей среды.

Общие принципы построения автоматизированных систем контроля и управления технологическими процессами

Существуют различные принципы построения систем контроля технологическими процессами, которые определяются: 1) местом в цепи управления оператора и 2) территориальным размещением технологических объектов.

Исходя из первого принципа, возможны следующие варианты построения систем.

Информационная система позволяет управляющему персоналу следить за ходом, протекающего процесса по вторичным измерительным приборам, в зависимости от показаний принимать то, или иное решении о регулировании хода процесса и, при необходимости, производить регулирование с помощью устройств с ручным управлением.

В зависимости от технической базы средств измерения возможны следующие способы реализации измерительных систем:

В первом случае в качестве вторичных измерительных устройств используются показывающие приборы. Данный способ позволяет оператору контролировать ход протекания процесса по показаниям стрелочных или цифровых приборов, заносить данные в учетный журнал, принимать решение о регулировании хода процесса и проводить его. При всей архаичности данного способа он до сих пор широко применяется, тем более что возможно дополнение средств измерения различными средствами сигнализации и дистанционного управления;

Во втором случае в качестве вторичных средств измерения используются регистрирующие приборы: автоматические самописцы, потенциометры и другие подобные приборы, осуществляющие запись на диаграммную бумагу. Данный способ также требует постоянного наблюдения оператора за ходом процесса, но избавляет его от рутинной процедуры записи показаний. Для приведенных выше случаев характерна сложность поиска необходимых значений, зарегистрированных в различные промежутки времени, определенная сложность статистической обработки данных, т.к. требуется их ручная обработка или ручной ввод в ЭВМ, сложность создания замкнутой системы управления;

В третьем случае реализация информационной системы подразумевает сочетание средств измерения, обработки и хранения информации на базе электронно-вычислительной машины. Использование средств вычислительной техники позволяет создать автоматическую систему комплексной обработки информации о технологическом процессе. Такая система позволяет гибко подходить к обработке данных в зависимости от их содержания, кроме того, обеспечивается требуемая статистическая обработка полученных данных, хранение и представление их в необходимой форме на экране дисплея и твердом носителе, а также легко осуществляется передача сведений на значительные расстояния. Это обеспечивает возможность организации автоматизированной системы сбора, обработки, хранения, передачи и представления информации.

На современном этапе развития техники информационные и управляющие системы, построенные на базе средств цифровой вычислительной техники, служат основой автоматизированных и автоматических систем контроля и управления технологическими процессами и производством в целом.

Одной из разновидностью автоматизированных систем контроля является информационно-советующая система, иначе называемая системой поддержки принятия решения или экспертной системой. Данный вид систем реализует автоматический сбор технологических данных с объекта, необходимую обработку, хранение и передачу информации. Обработка информации позволяет преобразовать ее в формат пригодный для хранения в базе данных, извлечение из нее требуемых данных, на которых возможен синтез рекомендательной информации.

Развитием информационно-советующих систем является система автоматического управления (САУ). Построение САУ возможно как на базе аналоговой, так и на цифровой элементной базе. Наиболее перспективной базой, на данном этапе развития техники, являются микропроцессорные блочно-модульные системы сбора информации, дальнейшая обработка информации при помощи промышленных компьютеров, синтез управляющих воздействий и передача управляющих сигналов на объект управления передающими модулями блочно-модульной системы сбора - передачи информации.

Применение современной вычислительной техники позволяет также организовать передачу информации между различными системами автоматического управления, при наличии линий связи и соответствующих протоколов передачи информации. Таким образом, система автоматического управления, построенная на подобном принципе, обеспечивает решение задачи управления и контроля технологическим объектом, возможность интеграции системы с другими уровнями иерархии.

По территориальному расположению системы контроля и управления подразделяются на централизованные и распределенные системы.

Централизованные системы характеризуются тем, что объекты управления территориально рассредоточены и управляются с центрального пункта управления, реализованного на цифровой управляющей машине. При том достоинстве, что в одном пункте управления сосредотачивается вся информация о состоянии технологического процесса и производится управление, подобная система является существенно зависимой от состояния и надежности линий связи.

Распределенные системы управления позволяют управлять рассредоточенными объектами, на которые воздействуют автономные управляющие контроллеры. Связь с центральным пунктом осуществляется так называемым супервизорным контролем над всем ходом технологического процесса, а также вырабатываются и передаются необходимые сигналы коррекции на автономные управляющие контроллеры.

Кроме анализа общих принципов построения автоматизированных систем контроля, управления и требований, предъявляемых государственными стандартами при проектировании подобных систем, учитывались требования заказчика, предъявляемые к автоматизированной системе контроля технологическим процессом.

Прежде всего, сегодня необходимо объединить АСУ технологическими процессами и центральную диспетчерскую в единую информационную систему. Не менее важно автоматизировать трубопроводы. Это позволит точно и оперативно получать важную технологическую информацию: давление, температуру, расход транспортируемого вещества.

Информация подобного рода нужна технологам для проведения профилактических и ремонтных работ, оценки стабильности протекания технологического процесса. Измерение количества транспортируемой углекислоты необходимо для технологического учета. В конечном итоге появляется оперативный доступ к информации, что повышает качество принятия управленческих решений.

В работе поставлены и решены задачи:

1) Доскональное изучение всего технологического процесса и обоснование необходимости внедрения автоматизированной системы.

2) Подбор датчиков и приборов для реализации поставленной задачи.

3) Выбор аппаратной части системы.

4) Разработка функциональной схемы с учетом внедрения элементов автоматизации технологического процесса.

5) Разработка программно-аппаратных средств автоматизированной системы контроля и управления технологическим процессом.

6) Описание функциональности и технических возможностей внедренной автоматизированной системы.

Функциональная схема объекта с внедренной автоматизированной с и стемой

Описание функциональной схемы автоматизированной системы

Функциональная схема автоматизации технологического объекта представлена на рис. (2). На схеме указано расположение первичных измерительных преобразователей контроля технологически. Датчики системы выполнены из материалов, устойчивых к воздействиям окружающей среды и имеющих взрывозащищенное исполнение, а так же выдержки давления до 10,0 МПа. Автоматизированная откачка сточных вод из емкости Е-314/1 производиться с помощью регулирующего клапана позиции LV 540/1, работающим с волновым радарным датчиком уровня позиция LIDC 540 Rosemount 5300 (по разделу фаз). При достижении уровня воды 100% открывается регулирующий клапан FV 540/1. Который подает оборотную воду в емкость, за счет гидростатической силы. При достижении масляного слоя, который определяется датчиком уровня LIDC 540 (по разделу фаз) клапан закрывается.

2. Перечень применяемых приборов

1) Уровень LIDA - 540: Rosemount 5300

Rosemount 5300 - это двухпроводные волноводные уровнемеры для измерения уровня и уровня границы раздела жидкостей, а также уровня сыпучих сред. Rosemount 5300 обеспечивают высокую надежность, современные меры обеспечения безопасности, простоту использования и неограниченные возможности подключения и интеграции в системы АСУТП.

Принцип действия волноводных уровнемеров:

Rosemount 5300 основан на технологии рефлектометрии с временным разрешением (TDR = Time Domain Reflectometry). Микроволновые наносекундные радарные импульсы малой мощности направляются вниз по зонду, погруженному в технологическую среду. Когда радарный импульс достигает среды с другим коэффициентом диэлектрической проницаемости, часть энергии импульса отражается в обратном направлении. Разница во времени между моментом передачи радарного импульса и моментом приема эхо-сигнала пропорциональна расстоянию, согласно которому рассчитывается уровень жидкости или уровень границы раздела двух сред. Интенсивность отраженного эхо-сигнала зависит от диэлектрической проницаемости среды. Чем выше коэффициент диэлектрической проницаемости, тем выше интенсивность отраженного сигнала. Волноводная технология имеет ряд преимуществ по сравнению с другими методами измерений уровня, поскольку радарные импульсы практически невосприимчивы к составу среды, атмосфере резервуара, температуре и давлению. Поскольку радарные импульсы направляются по зонду, а не свободно распространяются в пространстве резервуара, то волноводная технология может с успехом применяться в малых и узких резервуарах, а также в резервуарах с узкими патрубками. В уровнемерах 5300, для удобства применения и обслуживания в различных условиях, использованы следующие принципы и конструкторские решения:

Модульность конструкций;

Усовершенствованная аналоговая и цифровая обработка сигнала;

Возможность использования зондов нескольких типов в зависимости от условий применения уровнемера;

Подключение двухпроводным кабелем (питание подается по сигнальному контуру);

Поддержка коммуникационного цифрового протокола HART, что обеспечивает вывод данных в цифровом виде и возможность дистанционной настройки прибора при помощи портативного коммуникатора модели 375 или 475 либо персонального компьютера с установленным программным обеспечением Rosemount Radar Master.

2) FV 540 - запорно - регулирующий клапан

Запорно-регулирующий клапан предназначен для автоматического управления потоками жидких и газообразных сред, включая агрессивные и пожароопасные, а также для перекрытия трубопроводов.

Принцип действия регулирующего клапана заключается в изменении гидравлического сопротивления, а, следовательно, пропускной способности клапана за счет изменения проходного сечения дроссельного узла. Управление перемещением плунжера осуществляется приводом. При перемещении штока привода под действием управляющего сигнала плунжер клапана совершает возвратно - поступательное движение во втулке. На цилиндрической поверхности втулки в зависимости от требуемой условной пропускной способности и проходной характеристики выполнен набор отверстий или профилированных окон. Площадь отверстий, через которые дросселируется рабочая среда, зависит от высоты подъема плунжера.

Мембранно-пружинный привод прямого или обратного действия преобразует изменение давления сжатого воздуха, подаваемого в рабочую полость, в перемещение штока. При отсутствии давления сжатого воздуха в рабочей полости привода плунжер под действием усилия, развиваемого пружиной, устанавливается в крайнее нижнее положение в приводе НЗ (исполнение - нормально - закрытый).

Позиционер предназначен для повышения точности позиционирования штока привода и соединенного с ним штока клапана.

3) Технограф -160М

Приборы показывающие и регистрирующие ТЕХНОГРАФ 160М предназначены для измерения и регистрации по двенадцати каналам (К1-К9, КА, КВ, КС) напряжения и силы постоянного тока, а также не- электрических величин, преобразованных в электрические сигналы постоянного тока или активное сопротивление.

Приборы могут применяться в различных отраслях промышленности для контроля и регистрации производственных и технологических процессов.

Приборы позволяют осуществлять:

Позиционное регулирование;

Индикацию номера канала на одноразрядном табло и значения измеряемой величины на четырехразрядном;

Аналоговую, цифровую или комбинированную регистрацию на диаграммной ленте;

Обмен данных по каналу RS-232 или RS-485 с ПК;

Измерение и регистрацию мгновенного расхода (корнеизвлечение), а также регистрацию среднего или суммарного значения расхода за час.

Регистрация осуществляется шестицветной фломастерной печатающей головкой, ресурс записи один миллион точек для каждого цвета.

Параметры интерфейса: скорость передачи 2400 бит/с, 8 бит данных, 2 стоп-бита, без контроля на четность и без сигналов готовности.

4) Универсальны й промышленный регулятор КР5500

Регуляторы универсальные промышленные серии КР 5500 предназначены для измерения, индикации и регулирования силы и напряжения постоянного тока или активного сопротивления от датчиков давления, расхода, уровня, температуры и др.

Регуляторы могут применяться в металлургической, нефтехимической, энергетической и других отраслях промышленности для контроля и регулирования производственных и технологических процессов. Несомненным преимуществом этих приборов является расширенный диапазон климатических условий их применения: они могут работать в диапазонетемператур -5…+55°С при влажности 10…80%.

Универсальные промышленные регуляторы серии КР 5500 являются высокоточными и надежными приборами самого современного уровня, с программируемым пользователем законом регулирования (П, ПИ, ПИД) и с 1 или 2-мя выходами различных типов. Обмен данными с ПК осуществляется посредством интерфейсов RS 422 или RS 485. Функции корнеизвлечения и возведения в квадрат позволяют контролировать не только температуру, но и другие параметры технологических процессов - давление, расход, уровень в единицах измеряемой величины. Результаты измерений отображаются на светодиодном табло.

Назначение

Регуляторы с цифровой индикацией и программируемым типом закона регулирования - ПИД, ПД, П - предназначены для измерения и регулирования температуры и других неэлектрических величин (давления, расхода, уровня и др.), преобразованных в электрические сигналы силы и напряжения постоянного тока.

Заключение

сточный технологический контроль автоматизированный

В данной работе был рассмотрен вопрос об автоматизации технологического процесса сбора очистки сточных вод.

Первоначально было установлено, какие параметры нам необходимо контролировать и регулировать. Затем выбраны объекты регулирования и оборудование, с помощью которого можно достичь поставленной цели.

Высокая эффективность применения автоматизированного регулирования параметров и оптимизации работы различных технологических систем с механизмами, работающими в переменных режимах, подтверждена многолетним мировым опытом. Применение автоматизации позволяет оптимизировать работу технологических установок и улучшить качество выпускаемой продукции.

Список литературы

1. Проектная документация цеха ИФ - 9. ОАО «Уралоргсинтез» 2010

2. Уровнемеры волноводные Rosemount 5300. Руководство по эксплуатации.

3. Каталог продукции «Современные средства контроля, регулирования и регистрации технологических процессов в промышленности» НФП «Сенсорика» Екатеринбург.

4. Автоматизация производственных процессов в химической промышленности / Лапшенков Г.И., Полоцкий Л.М. Изд. 3-е, перераб. и доп. - М.: Химия, 1988, 288 с.

5. Каталог продукции и применений ОАО «Теплоприбор» Челябинск

Размещено на Allbest.ru

Подобные документы

    Обзор основных функций автоматизированных систем управления технологическими процессами (АСУ ТП), способы их реализации. Виды обеспечения АСУ ТП: информационное, аппаратное, математическое, программное, организационное, метрологическое, эргономическое.

    презентация , добавлен 10.02.2014

    Обоснование необходимости очистки сточных вод от остаточных нефтепродуктов и механических примесей. Три типоразмера автоматизированных блочных установок для очистки. Качество обработки воды флотационным методом. Схема очистки вод на УПН "Черновское".

    курсовая работа , добавлен 07.04.2015

    Изучение технологического процесса сушки макарон. Структурная схема системы автоматизации управления технологическими процессами. Приборы и средства автоматизации. Преобразования структурных схем (основные правила). Типы соединения динамических звеньев.

    курсовая работа , добавлен 22.12.2010

    Определение концентрации загрязнений в сточной воде перед очистными сооружениями. Требуемые показатели качества очищенных сточных вод. Горизонтальные песколовки с круговым движением воды. Гидромеханизированный сбор песка. Схема очистки бытовых вод.

    контрольная работа , добавлен 03.11.2014

    Система регулирования и контроля температуры в реакторе-автоклаве при производстве поливинилхлорида. Структурная схема автоматизации технологического процесса фильтрования. Принцип действия приборов системы регулирования. Конструкция шлангового клапана.

    курсовая работа , добавлен 01.02.2014

    Метрологические характеристики и погрешности измерений и измерительных приборов. Технические данные, назначение, устройство и принцип работы логометров. Основные виды, принципы действия и области применения механических и гидростатических уровнемеров.

    контрольная работа , добавлен 02.11.2010

    Проблемы автоматизации химической промышленности. Возможности современных систем автоматизированного управления технологическими процессами предприятий химической промышленности. Главные особенности технологического оснащения химических предприятий.

    реферат , добавлен 05.12.2010

    Классификация сточных вод и методы их очистки. Основные направления деятельности предприятия "Мосводоканал". Технологическая схема автомойки и процесс фильтрации воды. Структурная схема управления системой очистки воды, операторы программы CoDeSys.

    отчет по практике , добавлен 03.06.2014

    Анализ возможности автоматизации процессов очистки сточных вод. Составление структурной схемы уровня воды для наполнения резервуара. Разработка алгоритма функционирования системы автоматизации и интерфейса визуального отображения измерительной информации.

    дипломная работа , добавлен 03.06.2014

    Исследование технологического процесса систем тепловодоснабжения на предприятии и характеристики технологического оборудования. Оценка системы управления и параметров контроля. Выбор автоматизированной системы управления контроля и учета электроэнергии.

Автоматизация очистных сооружений

Объем работ по автоматизации в каждом конкретном случае должен подтверждаться экономической эффективностью и санитарным эффектом.


На очистных сооружениях могут быть автоматизированы:

  1. устройства и приборы, регистрирующие изменения технологического режима при нормальной эксплуатации;
  2. устройства и приборы, обеспечивающие локализацию аварий и обеспечивающие оперативные переключения;
  3. вспомогательные процессы в работе сооружений, особенно это относится к насосным станциям (залив насосов, откачка дренажных вод, вентиляция и т. д.);
  4. сооружения обеззараживания сточных под, прошедших очистку.

Наряду с комплексным решением автоматизации целесообразно автоматизировать отдельные технологические процессы: распределение сточных вод по сооружениям, регулирование уровней осадков, ила.


Частичная автоматизация в перспективе должна предусматривать возможность перехода на комплексную автоматизацию всего технологического цикла.


Относительно небольшое внедрение установок автоматического управления в технику очистки сточных вод на предприятиях пищевой промышленности объясняется тем, что большинство очистных станций имеет малую или среднюю производительность, в силу чего капитальные затраты на автоматизацию часто выражаются значительными суммами н не могут быть компенсированы соответствующей экономией эксплуатационных затрат. В перспективе на очистных сооружениях широко будет применяться автоматическая дозировка реагентов и контроль эффективности очистки сточных вод.


Технические требования к автоматизации процессов очистки сточных вод могут быть сведены к следующему:

  1. любая система автоматического управления должна допускать возможность местного управления отдельными механизмами при их осмотре и ремонте;
  2. должна быть исключена возможность управления одновременно двумя способами (например, автоматическое и местное);
  3. перевод системы с ручного управления на автоматическое не должен сопровождаться отключением находящихся в работе механизмов;
  4. схема автомагического управления должна обеспечить нормальное протекание технологического процесса и обеспечивать надежность и точность работы установки;
  5. при нормальной остановке агрегата схема автоматики должна быть готова к следующему автоматическому пуску;
  6. предусматриваемая блокировка должна исключать возможность автоматического или дистанционного пуска после аварийного отключения агрегата;
  7. во всех случаях нарушения нормальной работы автоматизированной установки должен подаваться аварийный сигнал на пункт с постоянным дежурством.
  1. насосные станции — основные агрегаты и дренажные насосы; включение и отключение в зависимости от уровня жидкости в резервуарах и приямках, автоматическое переключение при поломке одного насоса на резервный; подача звукового сигнала в случаях выхода из строя насосных агрегатов н переполнения уровня в приемном резервуаре;
  2. дренажные приямки — сигнализация аварийного уровня;
  3. напорные задвижки насосных агрегатов (при пуске агрегата на закрытую задвижку) — открытие и закрытие, сблокированное с работой насосов;
  4. механические грабли — работа в соответствии с заданной программой;
  5. электроотопнтельные приборы — включение и отключение электронагревательных приборов в зависимости от температуры в помещениях;
  6. приемные резервуары иловых насосных станций — взмучивание сточной жидкости;
  7. напорные трубопроводы иловых насосных станций — опорожнение после остановки насосов;
  8. здание решеток с механической очисткой — включение и отключение механических граблей в зависимости от перепада уровней до и после решетки (засорение решетки) или по временному графику;
  9. песколовки — включение гидроэлеватора для откачки песка по временному графику или в зависимости от уровня песка, автоматическое поддержание постоянного расхода;
  10. отстойники, контактные резервуары — выпуск (откачка) ила (осадка) по временному графику или в зависимости от уровня ила; работа скребковых механизмов по временному графику или в зависимости от уровня ила; открытие гидравлического затвора при пуске подвижной скребковой фермы;
  11. станции нейтрализации сточных вод, хлораторные на х торной извести — дозирование реагента в зависимости от расхода стоков.

Характерной особенностью сточных вод предприятий пищевой промышленности является отсутствие нормы азота и фосфора для биохимических процессов.


Поэтому возникает необходимость в добавлении недостающих элементов в виде биогенных добавок.


Внесение добавок сопряжено со сложностью регулирования объема добавок в зависимости от размеров поступления сточных вод и загрязнений. С учетом изменяющегося расхода сточных вод дозирование биогенных добавок особенно сложно, поэтому для измерения расхода сточных вод институтом Союзводоканалпроект разработана схема автоматизации, в которой применены диафрагмы и поплавковые показывающие дифманометры типа ДЭМП-280 с индукционными датчиками.


Импульсы от дифманометра передаются на электронный регулятор соотношения ЭРС-67, который электрическим исполнительным механизмом типа МГ, воздействуя на регулирующий клапан, приводит расход биогенных добавок в соответствие с размером поступления сточных вод. При этом необходимое расчетное соотношение между расходом сточных вод и биогенных добавок задается регулятору в зависимости от изменения концентрации загрязнений в сточных водах, поступающих на очистные сооружения.

Введение

1. Структура систем автоматического управления

2. Диспетчерское управление

3. Контроль работы очистных сооружений

Библиографический список

Введение

Автоматизация биологической очистки сточных вод - применение технических средств, экономико-математических методов, систем контроля и управления, частично или полностью освобождающих человека от участия в процессах, происходящих в песколовках, первичных и вторичных отстойниках, аэротенках, оксшпенках и др. сооружениях на станции биологической очистки сточных вод.

Главные цели автоматизации систем и сооружений водоотведения состоят в улучшении качества водоотведения и очистки сточной воды (бесперебойность отведения и перекачки сточных вод, качество очистки сточных вод и др.); сокращении эксплуатационных затрат; улучшении условий труда.

Основной функцией систем и сооружений биологической очистки сточных вод является повышение надежности работы сооружений путем контроля состояния оборудования и автоматической проверки достоверности информации и стабильности работы сооружений. Всё это способствуют автоматической стабилизации параметров технологических процессов и показателей качества очистки сточных вод, оперативной реакции на возмущающие воздействия (изменение количества отводимой сточной воды, изменение качества очищенной сточной воды). Оперативное обнаружение способствует локализации и ликвидации аварий и сбоев в работе технологического оборудования. Обеспечение хранения и оперативной обработки данных и представление их в наиболее информативном виде на всех уровнях управления; анализ данных и выработка управляющих воздействий и рекомендаций производственному персоналу координирует управление технологическими процессами, а автоматизация подготовки и обработки документов позволяет ускорять документооборот. Конечной целью автоматизации является повышение эффективности управленческой деятельности.

1 Структура систем автоматического управления

Внутри каждой системы имеются следующие структуры: функциональная, организационная, информационная, программная, техническая.

Основой создания системы является функциональная структура, при этом остальные структуры определяются самой функциональной структурой.

По функциональному признаку каждая системы управления подразделяется на три подсистемы:

· оперативный контроль и управление технологическими процессами;

· оперативное планирование технологических процессов;

· расчет технико-экономических показателей, анализ и планирование работы системы водоотведения.

Кроме того, подсистемы могут быть разделены по критерию оперативности (длительности выполнения функций) на иерархические уровни. Группы однотипных функций одного уровня объединяются в блоки.

Функциональная структура АСУ работы очистными сооружениями приведена на рисунке 1.

Рис.1 Функциональная структура АСУ работы очистными сооружениями

2 Диспетчерское управление

Основные технологические процессы, контролируемые и управляемые диспетчером на сооружениях биологической очистки сточных вод это:

· выгрузка песка из песколовок и сырого осадка из первичных отстойников;

· стабилизация значения рН воды, поступающей в аэротенки, на оптимальном уровне;

· сброс токсичных сточных вод в аварийную емкость и последующая постепенная подача его в аэротенки;

· сброс части потока воды в накопитель или подкачка из него воды;

· распределение сточной воды между параллельно работающими аэротенками;

· распределение сточной воды по длине аэротенка для динамичного перераспределения рабочего объема между окислителем и регенератором с целью накопления ила и повышения среднесуточного качества очищенной воды;

· подача воздуха для поддержания во всем объеме аэротенка оптимальной концентрации растворенного кислорода;

· подача возвратного активного ила для поддержания постоянной нагрузки на ил по органическим веществам;

· выгрузка ила из вторичных отстойников;

· вывод избыточного активного ила из аэротенков для поддержания его оптимального возраста;

· включение в работу насосов и нагнетателей и их выключение для минимизации энергозатрат на перекачку воды, ила, осадка и воздуха.

Кроме того, с контролируемых объектов в диспетчерские пункты передаются следующие сигналы: аварийное отключение оборудования; нарушение технологического процесса; предельные уровни сточных вод в резервуарах; предельная концентрация взрывоопасных газов в производственных помещениях; предельная концентрация хлора в помещениях хлораторной.

Если это возможно, помещения диспетчерских пунктов следует Располагать недалеко от технологических сооружений (насосных станций, воздуходувных станций, лабораторий и т.д.), так как выдача управляющих воздействий производится на различные электронные и пневматические регуляторы или непосредственно на исполнительные механизмы. В диспетчерских пунктах предусматриваться вспомогательные помещения (комнаты отдыха, санузел, кладовая и ремонтная мастерская).

3 Контроль работы очистных сооружений

На основании данных технологического контроля и управления процессами прогнозируют график поступления сточной воды, ее качество и график энергопотребления для минимизации общих затрат на обработку воды. Контроль и управление этими процессами осуществляются с помощью вычислительного комплекса, работающего в режиме либо советчика диспетчера, либо автоматического управления.

Качественный контроль процесса и оптимизированное управление им могут быть обеспечены при измерении таких параметров, как степень токсичности сточной воды для микроорганизмов активного ила, интенсивность биоокисления, БПК поступающей и очищенной воды, активность ила и другие, которые нельзя определить непосредственным измерением. Указанные параметры могут быть определены путем расчета на основании измерения скорости потребления кислорода в технологических емкостях малого объема со специальным режимом нагрузки. Скорость потребления кислорода определяют по времени снижения концентрации растворенного кислорода от максимальных до минимальных заданных значений при отключении аэрации или по уменьшению концентрации растворенного кислорода за заданное время в тех же условиях. Измерение производят в установке циклического действия, состоящей из технологического блока и микропроцессорного контроллера, управляющего узлами измерителя и вычисляющего скорость потребления кислорода. Время одного цикла измерения составляет 10-20 мин в зависимости от скорости. Технологический блок может устанавливаться на мостике обслуживания аэротенка или аэробного стабилизатора. Конструкция обеспечивает работу измерителя на открытом воздухе в зимнее время. Скорость потребления кислорода может определяться непрерывно в реакторах большого объема при пост. подаче активного ила, сточной воды и воздуха. Система снабжена дозаторами с плоской струей производительностью 0,5-2 и 1ч. Простота конструкции и большие расходы воды обеспечивают высокую надежность измерения в производственных условиях. Измерители могут быть использованы для непрерывного контроля нагрузки по органическим веществам. Большую точность и чувствительность измерения скорости потребления кислорода обеспечивают манометрические системы измерения, оборудованные герметичными реакторами, давление в которых поддерживается за счет добавки кислорода. Источником кислорода служит, как правило, электролизер, управляемый импульсной или непрерывной системой стабилизации давления. Кол-во поданного кислорода является мерой скорости его потребления. Измерители этого типа предназначены для лабораторных исследований и систем измерения БПК.

Основное назначение АСУ подачей воздуха - поддержание заданных концентраций растворенного кислорода во всем объеме аэротенка Стабильную работу таких систем можно обеспечить, если использовать для управления сигнал не только кислородомера, но и расхода сточной воды или скорости потребления кислорода в активной зоне аэротенка.

Регулирование систем аэрации позволяет стабилизировать технологический режим очистки и снизить среднегодовые затраты электроэнергии на 10-20%. Доля энергозатрат на аэрацию составляет 30- 50% себестоимости биологической очистки, а удельные энергозатраты на аэрацию изменяются от 0,008 до 2,3 кВт’ч/м.

Типовые системы управления выпуском ила поддерживают заданный уровень раздела ил - вода. Фотодатчик уровня раздела устанавливают у борта отстойника в застойной зоне. Качество регулирования подобных систем может быть улучшено, если применить ультразвуковой сигнализатор уровня раздела сред. Более высокое качество очищенной воды можно получить, если применить для регулирования следящий уровнемер раздела ил - вода.

Для стабилизации илового режима не только отстойников, но и всей системы аэротенк - насосная станция возвратного ила - вторичный отстойник необходимо поддерживать заданный коэффициент рециркуляции то есть, чтобы расход выгружаемого ила был пропорционален расходу поступающей сточной воды. Уровень стояния ила измеряется для косвенного контроля изменения илового индекса или неисправности системы регулирования расхода иловой смеси.

При регулировании сброса избыточного ила необходимо вычислять количество ила, приросшего в течение суток, для удаления из системы только приросшего ила и стабилизации возраста ила. Этим обеспечиваются высокое качество ила и оптимальная скорость биоокисления. Из-за отсутствия измерителей концентрации активного ила эту задачу можно решить с помощью измерителей скорости потребления кислорода, т.к. скорость роста ила и скорость потребления кислорода взаимосвязаны. Вычислительный блок системы интегрирует количество потребления кислорода и количество удаленного ила и 1 раз в сутки корректирует заданный расход избыточного ила. Система может использоваться как при непрерывном, так и при периодическом сбросе избыточного ила.

В окситенках предъявляются более высокие требования к качеству поддержания кислородного режима из-за опасности интоксикации ила при высоких концентрациях растворенного кислорода и резкого снижения скорости очистки при малых концентрациях. При эксплуатации окситенков необходимо управлять как подачей кислорода, так и сбросом отработанных газов. Подачу кислорода регулируют либо по давлению газовой фазы, либо по концентрации растворенного кислорода в активной зоне. Сброс отработанных газов регулируют либо пропорционально расходу сточной воды, либо по концентрации кислорода в обработанном газе.

Библиографический список

1. Воронов Ю.В., Яковлев С.В. Водоотведение и очистка сточных вод/ учебник для ВУЗов: – М.: Издательство Ассоциации строительных вузов,2006 – 704с.

1

Для эффективного управления процессом очистки сточных вод промышленных предприятий от фенольных соединений (на примере Бисфенола-А) с использованием усовершенствованных окислительных процессов (УФ излучения, λ = 365 нм, Н2О2, FeCl3) предложена экспоненциальная модель снижения концентрации фенольных соединений, идентифицированная в программной среде Statistica. С целью стабилизации неустойчивых параметров модели использована идея регуляризации А.Н. Тихонова, проведена процедура «гребневой регрессии». Полученная регуляризованная модель, устанавливающая зависимость степени разложения фенольных соединений в водной среде под действием физико-химических факторов (реактив фото-Фентона) от параметров процесса, является статистически значимой (R2 = 0,9995) и обладает улучшенными прогнозными свойствами, чем модель, идентифицированная по методу наименьших квадратов. С использованием регуляризованной модели снижения концентрации фенольных соединений методом множителей Лагранжа в системе MathCad определены удельные оптимальные уровни расходов FeCl3, H2O2, обеспечивающие снижение концентрации фенольных соединений в сточных водах до предельно допустимого уровня.

регуляризация

некорректные задачи

моделирование

сточные воды

усовершенствованные окислительные процессы

1. Вучков И., Бояджиева Л., Солаков Е. Прикладной линейный регрессионный анализ. – М.: Финансы и статистика, 1987. 240 с.

2. Дрейпер Н., Смит Г. Прикладной регрессионный анализ. – М.: Издательский дом «Вильямс», 2007. – 912 с.

3. Елисеева И.И. Эконометрика. – М.: Издательство Юрайт, 2014. – 449 с.

4. Кармазинов Ф.В., Костюченко С.В., Кудрявцев Н.Н., Храменков С.В. Ультрафиолетовые технологии в современном мире: монография. – Долгопрудный: Издательский Дом «Интеллект», 2012. – 392 с.

5. Моисеев Н.Н., Иванилов Ю.П., Столярова Е.М. Методы оптимизации. – М.: Наука, 1978. – 352 с.

6. Рабек Я. Экспериментальные методы в фотохимии и фотофизике: Т. 2. – М.: Мир, 1985. – 544 с.

7. Соколов А.В., Токарев В.В. Методы оптимальных решений. В 2 т. Т.1. Общие положения. Математическое программирование. – М.: Физматлит, 2010. – 564 с.

8. Соколов Э.М., Шейнкман Л.Э., Дергунов Д.В. Исследование снижения концентрации фенольных соединений в водных средах с использованием математического моделирования // Вестник Южного научного центра РАН. – 2013. – Т. 9, № 2. – С. 23–31.

9. Соколов Э.М., Шейнкман Л.Э., Дергунов Д.В. Нелинейная кинетика распада фенольных соединений в водной среде // Фундаментальные исследования. – 2014. – № 9, Ч. 12. – С. 2677–2681.

10. Стерлигова А.Н. Управление запасами в цепях поставок. – М.: ИНФРА-М, 2009. – 430 с.

11. Сычев А.Я., Исак В.Г. Соединения железа и механизмы гомогенного катализа активации О2, Н2О2 и окисления органических субстратов // Успехи химии. – 1995. – № 64 (12). – С. 1183–1209.

12. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. – М.: Наука, 1979. – 285 с.

13. Тихонов А.Н. О регуляризации некорректно поставленных задач // Доклады АН СССР. – 1963. – № 153(1). – С. 45–52.

14. Тихонов А.Н. Решение некорректно поставленных задач и метод регуляризации // Доклады АН СССР. – 1963. – № 151(3). – С. 501–504.

15. Тихонов А.Н., Уфимцев М.В. Статистическая обработка результатов экспериментов. – М.: Издательство МГУ, 1988. – 174 с.

17. Marta I. Litter, Natalia Quici Photochemical Advanced Oxidation Processes for Water and Wastewater Treatment // Recent Patents on Engineering. – 2010. – Vol. 4, № 3. – P. 217–241.

18. Xiangxuan Liu, Jiantao Liang, Xuanjun Wang Kinetics and Reaction Pathways of Formaldehyde Degradation Using the UV-Fenton Method // Water Environment Research. – 2011. – Vol. 83, № 5. – P. 418–426.

Сточные воды ряда отраслей промышленности (химической, фармацевтической, металлургической, целлюлозно-бумажной, горно-перерабатывающей и др.) вносят значительный вклад в загрязнение поверхностных и подземных водных объектов фенольными и трудноокисляемыми органическими соединениями. Фенол - потенциально опасное, канцерогенное вещество, представляющее значительную медицинскую проблему, даже при низких концентрациях.

Усовершенствованные окислительные процессы (AOP) играют важную роль в разложении органических веществ, содержащихся в сточных водах в широких пределах концентраций. AOP-процессы генерируют гидроксильные радикалы, которые являются сильными окислителями, способными осуществлять минерализацию широкого спектра органических веществ. Гидроксильный радикал имеет высокий окислительно-восстановительный потенциал (E0 = 2,80 В) и способен реагировать с фактически всеми классами органических соединений . Окисляющие гидроксильные радикалы могут быть инициированы фотолизом в результате фото-Фентон процесса.

Очистка сточных вод от фенольных соединений с использованием усовершенствованных окислительных процессов происходит преимущественно в фотохимических реакторах. Фотохимические реакторы, представляют собой аппараты, в которых осуществляются фотохимические реакции. Но в них не только совершаются превращения, но и протекают сопутствующие процессы массо- и теплообмена и интенсивное движение среды. От правильности выбора типа реактора, его конструкции и режима работы в наибольшей степени зависит эффективность и безопасность процесса очистки .

При использовании фотореакторов для решения различных прикладных задач эффективному облучению в них должны подвергаться большие объемы реагентов.

Важным элементом модуля фотохимической очистки в общей системе локальных очистных сооружений является система дозирования реагентов, катализатора FeCl 3 и перекиси водорода Н 2 О 2 .

Для стабильного функционирования реакторов и повышения эффективности минерализации органических соединений необходима оптимизация процесса очистки с целью определения оптимальных доз реагентов, вводимых в реактор. Оптимизация может быть основана на минимизации затрат, требуемых для осуществления запаса реагентов с учетом экологического регулирования процесса очистки. В качестве экологического регулятора может выступать функция зависимости концентрации органического загрязнителя от параметров процесса (концентраций реагентов и времени УФ-облучения), ограниченная предельно допустимым значением концентрации фенольного соединения. Функция концентрации определяется на основе статистического анализа экспериментальных данных АОР-процесса методом наименьших квадратов (МНК).

Зачастую задача определения параметров регрессионного уравнения методом наименьших квадратов является некорректно поставленной, и использование полученного уравнения при решении задачи оптимизации по определению оптимальных доз реагентов может привести к неадекватным результатам.

Таким образом, целью работы является применение методов регуляризации к построению устойчивой модели зависимости концентрации фенольного соединения от параметров процесса фотохимической очистки и идентификации оптимальных уровней расходов перекиси водорода и хлорида железа (III) при минимизации затрат на реагенты.

Для построения математической модели зависимости снижения концентрации фенольного соединения от параметров АОР-процесса при совместном воздействии перекиси водорода, хлорида железа (III) и ультрафиолетового излучения длиной волны 365 нм на фенольный загрязнитель в водной среде с целью решения задачи оптимизации по идентификации уровней расходов химических реагентов проводились экспериментальные исследования на модельных растворах, содержащих фенольные соединения (бисфенол-А, ВРА), с применением жидкостной и газовой хроматографии. При проведении оптимального планирования эксперимента оценивалось влияние УФ-излучения и окислителей на уровень разложения органического загрязнителя при различных концентрациях ВРА - x1 (50 мкг/л, 100 мкг/л); перекиси водорода H 2 O 2 - x2 (100 мг/л; 200 мг/л) и активатора - хлорида железа (III) FeCl 3 (1; 2 г/л) - x3. Модельный раствор, содержащий ВРА, перекись водорода и FeCl 3 , подвергался воздействию УФ-излучения в течение 2 часов (время облучения t - x4). Пробы отбирались через 1 и 2 часа после облучения, и измерялась остаточная концентрация ВРА (y). Измерения осуществлялись жидкостным хроматографом LC-MS/MS. Продукты полураспада в течение фотодеградации ВРА были определены с помощью газового хроматографа GS-MS .

При реализации процесса фото-Фентона (Fe2+/Н2О2/hν) для минерализации органических загрязнителей в кислой среде при рН = 3, формируется комплекс Fe(OH) 2+ :

Fe 2+ + H 2 O 2 → Fe 3+ + OH ● + OH − ;

Fe 3+ + H 2 O → Fe(OH) 2+ + H + .

Под действием УФ-облучения комплекс подвергается разложению, в результате чего образуются радикал OH● и ион Fe 2+ :

2+ + hν → Fe 2+ + OH ● .

Количественное описание фото-Фентон процесса на макроуровне, применительно к деградации органического загрязнителя в водной среде, можно описать моделью :

где 0 - начальная концентрация органического загрязнителя; 0 , 0 - начальные концентрации, активатора, содержащего ионы железа (II) и перекиси водорода соответственно; k - константа скорости реакции; r - скорость реакции; α, β, γ - порядки реакции по веществам.

При создании математической модели зависимости снижения концентрации фенольного соединения, от факторов процесса фотохимической очистки с участием реагента «фото-Фентона» будем исходить из линейных моделей или моделей, которые можно свести к линейным по коэффициентам с помощью подходящего преобразования, которые могут быть записаны в общем виде следующим образом :

где fi(x1, x2, …, xm) - произвольные функции факторов (регрессоров); β1, β2,…, βk - коэффициенты модели; ε - ошибка эксперимента.

Исходя из закона действующих масс зависимость концентрации фенольного соединения от факторов процесса математически можно представить следующим выражением:

где η - уровень остаточной концентрации BPA в момент времени t, мг/л; x1 - исходная концентрация ВРА, мг/л; x2 - концентрация перекиси водорода, мг/л; x3 - концентрация хлорида железа (III), г/л; x4 - время процесса очистки, ч; β1, β2, β3, β4, β5 - параметры модели.

Коэффициенты в модель (2) входят нелинейно, но при линеаризации путем логарифмировании по натуральному основанию, правой и левой частей уравнения (2), получим

где в соответствии с (1)

Однако при таком преобразовании случайное возмущение (ошибка эксперимента) входит в модель мультипликативно и имеет логнормальное распределение, т.е. , и после логарифмирования это дает

После линеаризации и введения новых переменных выражение (2) примет вид

где предикторные переменные X1, X2, X3, X4 и отклик Y являются логарифмическими функциями:

Y = lny, X1 = lnx1,

X 2 = lnx 2 , X 3 = lnx 3 , X 4 = lnx 4 ;

b0, b1, b2, b3, b4 - параметры модели.

Обычно в задачах обработки данных матрица эксперимента и вектор отклика известны неточно, т.е. с погрешностями, и задача определения регрессионных коэффициентов по методу наименьших квадратов неустойчива к ошибкам в исходных данных . При плохой обусловленности информационной матрицы FTF (F - матрица регрессоров) МНК-оценки обычно неустойчивы. Для преодоления плохой обусловленности информационной матрицы предложена идея регуляризации, обоснованная в работах А.Н. Тихонова .

Применительно к решению регрессионных задач идея регуляризации А.Н. Тихонова интерпретирована А.Э. Хоэрлом как процедура «гребневой регрессии». При использовании метода «гребневой регрессии» для стабилизации МНК-оценок (определяемых b = (FTF)-1FTY) регуляризация связана с добавлением некоего положительного числа τ (параметра регуляризации) к диагональным элементам матрицы FTF .

Выбор параметра регуляризации τ Хоэрл, Кеннард и Белдвин предложили осуществлять следующим образом:

где m - количество параметров (без учета свободного члена) в исходной модели регрессии; SSe - остаточная сумма квадратов, полученная по исходной модели регрессии без корректировки на мультиколлинеарность; b* - вектор-столбец коэффициентов регрессии, преобразованный по формуле

,

где bj - параметр при переменной Xj в исходной модели регрессии, определенный по МНК; - среднее значение j-й независимой переменной.

После выбора величины τ формула для оценки регуляризованных параметров регрессии будет иметь вид

где I - единичная матрица; F - матрица регрессоров; Y - вектор значений зависимой переменной.

Величина параметра регуляризации, определяемая по формуле (4), принимает значение, равное τ = 1,371·10-4.

Регуляризованная модель снижения концентрации фенольного соединения, построенная в системе Statistica с учетом формулы (5), может быть представлена в виде

где С ост и С ВРА - остаточная и начальная концентрации фенольного загрязнителя соответственно, мг/л; - концентрация перекиси водорода, мг/л; СА - концентрация хлорида железа (III), г/л; t - время, ч.

Значения коэффициента детерминации, R 2 = 0,9995, критерия Фишера F = 5348,417, превышающего критическое значение (F кр (0,01; 4,11) = 5,67), характеризуют адекватность регуляризованной модели результатам эксперимента на уровне значимости α = 0,1.

Определение оптимальных удельных значений концентраций химических реагентов (FeCl 3 , H 2 O 2), необходимых для очистки воды, при достижении минимального удельного уровня затрат представляет собой задачу нелинейного (выпуклого) программирования вида (7-9) :

(8)

где f - функция финансовых средств, связанная с запасом химических реагентов f = Z(c2, c3); gi - функция снижения концентрации фенольного соединения в водной среде в процессе физико-химической очистки, g = Cost(с1, c2, c3, t) (функция ограничения); x1, x2,…, xn - параметры процесса; x1 - начальная концентрация фенольного соединения, х1 = c1, мг/л; х2 и х3 ‒ концентрации перекиси водорода и хлорида железа (III) соответственно х2 = c2, мг/л, х3 = с3, г/л; t - время, ч; bi - предельно допустимая концентрация фенольного соединения (ПДК), мг/л.

Функцию финансовых средств, представляющую двухноменклатурную модель затрат, связанную с запасом перекиси водорода и хлорида железа (III), с учетом формулы Вильсона можно представить в виде

(10)

где Z(c2, c3) - удельные суммарные затраты, связанные с запасом, руб.; A - удельные накладные затраты одной общей поставки, руб.; c2 - удельное потребление перекиси водорода, мг/л; c3 - удельное потребление хлорида железа, г/л; I1, I2 - удельные тарифы затрат на хранение перекиси водорода и хлорида железа (III) соответственно, руб.; m1, m2 - доля цены продукции, приходящаяся на затраты на выполнение одного заказа по перекиси водорода и хлориду железа (III) соответственно; i1, i2 - доля цены продукции, приходящаяся на затраты на содержание запаса по перекиси водорода и хлориду железа (III) соответственно; k2, k3 - удельная закупочная цена единицы запаса перекиси водорода (руб./мг) и хлорида железа (III) (руб./г) соответственно.

Для решения системы (7)-(9) вводится набор переменных λ1, λ2, …, λm, называемых множителями Лагранжа, составляют функцию Лагранжа:

,

находятся частные производные и и рассматривается система n + m уравнений

(11)

c n + m неизвестными x1, x2, ..., xn; λ1, λ2, ..., λm. Всякое решение системы уравнений (11) определяет условно-стационарную точку, в которой может иметь место экстремум функции f(x1, x2, ..., xn). При соблюдении условий Куна ‒ Таккера (12.1)-(12.6) точка является седловой точкой функции Лагранжа, т.е. найденное решение задачи (7)-(9) оптимально :

Задача идентификации оптимальных параметров процесса очистки промышленных сточных вод от фенольных соединений при достижении минимального уровня текущих удельных затрат, необходимых для обесфеноливания вод, решалась при следующих исходных данных: начальная концентрация фенольного загрязнителя в сточных водах 0,006 мг/л (6ПДК); время очистки, определенное технологическим процессом, - 5 суток (120 часов); предельно допустимая концентрация загрязнителя 0,001 мг/л (b = 0,001); удельная закупочная цена единицы запаса по перекиси водорода 24,5·10 ‒6 руб./мг (k2 = 24,5·10 ‒6), по хлориду железа (III) 37,5·10 ‒3 руб./г (k3 = 37,5·10 ‒3); доля цены продукции, приходящаяся на затраты по содержанию запаса по перекиси водорода и хлориду железа, равна соответственно 10 % (i = 0,1) и 12 % (i = 0,12); доля цены продукции, приходящаяся на затраты по выполнению заказа по перекиси водорода и хлориду железа 5 % (m1 = 0,05) и 7 % (m2 = 0,07) соответственно.

Решая задачу (7)-(9) в системе MathCad, получаем точку X* с координатами

(с2*, с3*, λ*) = (6,361∙103; 5,694; 1,346·10 4),

в которой соблюдаются условия Куна - Таккера (12.1)-(12.6). Существует точка, принадлежащая области допустимых решений, в которой выполняется условие регулярности Слейтера:

Сost(c2°, c3°) = Сost (10 3 ,1) = - 7,22·10 -9 < 0.

Вид условно-стационарной точки определялся в соответствии с критерием Сильвестра применительно к матрице Гессе функции Лагранжа:

В соответствии с критерием Сильвестра матрица L является ни положительно, ни отрицательно определенной (полуопределенной) (Δ 1 = 4,772·10 -8 ≥ 0; Δ 2 = 6,639·10 -9 ≥ 0; Δ 3 = ‒5,042·10 -17 ≤ 0).

Из выполнения условий Куна - Таккера, регулярности Слейтера и на основе исследования знакоопределенности матрицы Гессе функции Лагранжа в условно-стационарной точке следует, что точка (6,361∙10 3 ; 5,694; 1,346·10 4) является седловой точкой функции Лагранжа, т.е. оптимальным решением задачи (7)-(9).

Таким образом, для снижения уровня фенолов в промышленных сточных водах с 0,006 мг/л (6 ПДК) до предельно допустимого (0,001 мг/л), потребуются удельные текущие затраты в размере 1,545 руб./л. Данное значение удельных затрат является минимальным при использовании в процессе очистки оптимальных удельных уровней расхода перекиси водорода 6,361·10 3 мг/л и хлорида железа (III) 5,694 г/л.

Методом множителей Лагранжа для технико-экономических условий (с 1 = 0,006 мг/л; t = 120 ч; b = 10 -3 мг/л; k 2 = 24,5·10 -6 руб./мг, k 3 = 37,5·10 -3 руб./г; i 1 = 10 %, i 2 = 12 %; m 1 = 5 %, m2 = 7 %) решена задача определения оптимальных удельных значений ингредиентов, используемых в качестве окислителей в фотокаталитическом процессе разложения фенольного соединения, содержащегося в промышленных сточных водах до уровня ПДК.

Идентифицированная регуляризованная математическая модель, устанавливающая зависимость уровня снижения концентрации фенольного соединения в водной среде от параметров процесса фотохимической очистки, обладает лучшими прогнозными свойствами, чем модель, определяемая по методу наименьших квадратов. С использованием полученной регуляризованной математической модели методом множителей Лагранжа решена задача математического программирования по определению оценок оптимальных удельных уровней расхода химических реагентов (FeCl 3 , H 2 O 2), являющихся устойчивыми решениями.

Рассмотренный подход к идентификации оптимальных параметров процесса фотохимической очистки с применением регуляризации позволит обеспечивать эффективное управление очисткой сточных вод от фенольных соединений.

Рецензенты:

Яшин А.А., д.т.н., д.б.н., профессор кафедры «Общая патология» Медицинского института, ФГБОУ ВПО «Тульский государственный университет», г. Тула;

Короткова А.А., д.б.н., профессор, заведующая кафедрой биоэкологии и туризма, ФГБОУ ВПО «Тульский государственный педагогический университет им. Л.Н. Толстого», г. Тула.

Работа поступила в редакцию 16.02.2015.

Библиографическая ссылка

Шейнкман Л.Э., Дергунов Д.В., Савинова Л.Н. ИДЕНТИФИКАЦИЯ ПАРАМЕТРОВ ПРОЦЕССА ФОТОХИМИЧЕСКОЙ ОЧИСТКИ ПРОМЫШЛЕННЫХ СТОЧНЫХ ВОД ОТ ФЕНОЛЬНЫХ ЗАГРЯЗНИТЕЛЕЙ С ИСПОЛЬЗОВАНИЕМ МЕТОДОВ РЕГУЛЯРИЗАЦИИ // Фундаментальные исследования. – 2015. – № 4. – С. 174-179;
URL: http://fundamental-research.ru/ru/article/view?id=37143 (дата обращения: 17.09.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»