Å opprettholde personvernet ditt er viktig for oss. Av denne grunn har vi utviklet en personvernerklæring som beskriver hvordan vi bruker og lagrer informasjonen din. Se gjennom vår personvernpraksis og gi oss beskjed hvis du har spørsmål.

Innsamling og bruk av personopplysninger

Personopplysninger refererer til data som kan brukes til å identifisere bestemt person eller forbindelse med ham.

Du kan bli bedt om å oppgi din personlige informasjon når som helst når du kontakter oss.

Nedenfor er noen eksempler på hvilke typer personopplysninger vi kan samle inn og hvordan vi kan bruke slik informasjon.

Hvilken personlig informasjon samler vi inn:

  • Når du sender inn en søknad på nettstedet, kan vi samle inn ulike opplysninger, inkludert navn, telefonnummer, adresse E-post etc.

Hvordan vi bruker dine personopplysninger:

  • Samlet av oss personlig informasjon lar oss kontakte deg og informere deg om unike tilbud, kampanjer og andre arrangementer og kommende arrangementer.
  • Fra tid til annen kan vi bruke din personlige informasjon til å sende viktige meldinger og kommunikasjoner.
  • Vi kan også bruke personopplysninger til interne formål som revisjon, dataanalyse og ulike studier for å forbedre tjenestene vi tilbyr og gi deg anbefalinger angående våre tjenester.
  • Hvis du deltar i en premietrekning, konkurranse eller lignende kampanje, kan vi bruke informasjonen du gir til å administrere slike programmer.

Utlevering av informasjon til tredjeparter

Vi utleverer ikke informasjonen mottatt fra deg til tredjeparter.

Unntak:

  • Om nødvendig - i samsvar med loven, rettslig prosedyre, rettslige prosesser og/eller basert på offentlige forespørsler eller forespørsler fra offentlige etater på den russiske føderasjonens territorium - oppgi din personlige informasjon. Vi kan også avsløre informasjon om deg hvis vi fastslår at slik avsløring er nødvendig eller hensiktsmessig for sikkerhet, rettshåndhevelse eller andre offentlige viktige formål.
  • I tilfelle en omorganisering, fusjon eller salg, kan vi overføre personopplysningene vi samler inn til gjeldende etterfølger tredjepart.

Beskyttelse av personopplysninger

Vi tar forholdsregler - inkludert administrative, tekniske og fysiske - for å beskytte din personlige informasjon mot tap, tyveri og misbruk, samt uautorisert tilgang, avsløring, endring og ødeleggelse.

Respekter ditt privatliv på bedriftsnivå

For å sikre at din personlige informasjon er sikker, kommuniserer vi personvern- og sikkerhetsstandarder til våre ansatte og håndhever strengt personvernpraksis.

Logaritmen av et positivt tall b til grunntallet a (a>0, a er ikke lik 1) er et tall c slik at a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b > 0)       

Merk at logaritmen til et ikke-positivt tall er udefinert. I tillegg må basen til logaritmen være positivt tall, ikke lik 1. Hvis vi for eksempel kvadrerer -2, får vi tallet 4, men dette betyr ikke at logaritmen til grunntallet -2 av 4 er lik 2.

Grunnleggende logaritmisk identitet

a log a b = b (a > 0, a ≠ 1) (2)

Det er viktig at omfanget av definisjon av høyre og venstre side av denne formelen er forskjellig. Venstre side er definert kun for b>0, a>0 og a ≠ 1. Høyre side er definert for enhver b, og er ikke avhengig av a i det hele tatt. Dermed kan anvendelsen av den grunnleggende logaritmiske "identiteten" ved løsning av likninger og ulikheter føre til en endring i OD.

To åpenbare konsekvenser av definisjonen av logaritme

log a a = 1 (a > 0, a ≠ 1) (3)
log a 1 = 0 (a > 0, a ≠ 1) (4)

Faktisk, når vi hever tallet a til første potens, får vi det samme tallet, og når vi hever det til første potens null grader- en.

Logaritme av produktet og logaritme av kvotienten

log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) (5)

Logg a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0) (6)

Jeg vil advare skoleelever mot tankeløst å bruke disse formlene når de løser logaritmiske ligninger og ulikheter. Når du bruker dem "fra venstre til høyre", smalner ODZ, og når du flytter fra summen eller differansen av logaritmer til logaritmen til produktet eller kvotienten, utvides ODZ.

Faktisk er uttrykket log a (f (x) g (x)) definert i to tilfeller: når begge funksjonene er strengt tatt positive eller når f(x) og g(x) begge er mindre enn null.

Ved å transformere dette uttrykket til summen log a f (x) + log a g (x), er vi tvunget til å begrense oss til tilfellet når f(x)>0 og g(x)>0. Det er en innsnevring av utvalget av akseptable verdier, og dette er kategorisk uakseptabelt, siden det kan føre til tap av løsninger. Et lignende problem eksisterer for formel (6).

Graden kan tas ut av logaritmens fortegn

log a b p = p log a b (a > 0, a ≠ 1, b > 0) (7)

Og igjen vil jeg gjerne be om nøyaktighet. Tenk på følgende eksempel:

Logg a (f (x) 2 = 2 log a f (x)

Venstre side av likheten er åpenbart definert for alle verdier av f(x) bortsett fra null. Høyre side er kun for f(x)>0! Ved å ta graden ut av logaritmen, begrenser vi igjen ODZ. Den omvendte prosedyren fører til en utvidelse av utvalget av akseptable verdier. Alle disse merknadene gjelder ikke bare for kraft 2, men også for enhver jevn kraft.

Formel for å flytte til en ny stiftelse

log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) (8)

At sjeldent tilfelle, når ODZ ikke endres under transformasjonen. Hvis du har valgt base c med omhu (positiv og ikke lik 1), er formelen for å flytte til en ny base helt trygg.

Velger vi tallet b som ny grunntall c, får vi en viktig spesielt tilfelle formler (8):

Logg a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) (9)

Noen enkle eksempler med logaritmer

Eksempel 1. Regn ut: log2 + log50.
Løsning. log2 + log50 = log100 = 2. Vi brukte summen av logaritmene formel (5) og definisjonen av desimallogaritmen.


Eksempel 2. Regn ut: lg125/lg5.
Løsning. log125/log5 = log 5 125 = 3. Vi brukte formelen for å flytte til en ny base (8).

Tabell over formler relatert til logaritmer

a log a b = b (a > 0, a ≠ 1)
log a a = 1 (a > 0, a ≠ 1)
log a 1 = 0 (a > 0, a ≠ 1)
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b p = p log a b (a > 0, a ≠ 1, b > 0)
log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1)
log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1)

Så vi har to krefter. Hvis du tar tallet fra bunnlinjen, kan du enkelt finne kraften du må heve to til for å få dette tallet. For eksempel, for å få 16, må du heve to til den fjerde potensen. Og for å få 64, må du heve to til sjette potens. Dette kan sees fra tabellen.

Og nå - faktisk, definisjonen av logaritmen:

Grunnlaget a logaritmen av x er potensen som a må heves til for å få x.

Betegnelse: log a x = b, hvor a er grunntallet, x er argumentet, b er det logaritmen faktisk er lik.

For eksempel, 2 3 = 8 ⇒ log 2 8 = 3 (grunntall 2-logaritmen av 8 er tre fordi 2 3 = 8). Med samme suksesslogg 2 64 = 6, siden 2 6 = 64.

Operasjonen med å finne logaritmen til et tall til en gitt base kalles logaritmisering. Så la oss legge til en ny linje i tabellen vår:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1log 2 4 = 2 log 2 8 = 3log 2 16 = 4 log 2 32 = 5log 2 64 = 6

Dessverre er ikke alle logaritmer beregnet så lett. Prøv for eksempel å finne logg 2 5 . Tallet 5 er ikke i tabellen, men logikken tilsier at logaritmen vil ligge et sted på segmentet. Fordi 2 2< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Slike tall kalles irrasjonelle: tallene etter desimaltegn kan skrives i det uendelige, og de gjentas aldri. Hvis logaritmen viser seg å være irrasjonell, er det bedre å la det være slik: log 2 5, log 3 8, log 5 100.

Det er viktig å forstå at en logaritme er et uttrykk med to variabler (grunnlaget og argumentet). Til å begynne med forvirrer mange hvor grunnlaget er og hvor argumentasjonen er. For å unngå irriterende misforståelser, se bare på bildet:

Foran oss er ikke noe mer enn definisjonen av en logaritme. Huske: logaritme er en potens, som basen må bygges inn i for å få et argument. Det er basen som er hevet til en kraft – den er uthevet med rødt på bildet. Det viser seg at basen alltid er nederst! Jeg forteller elevene mine denne fantastiske regelen allerede i første leksjon – og det oppstår ingen forvirring.

Vi har funnet ut definisjonen - det gjenstår bare å lære å telle logaritmer, dvs. bli kvitt "logg"-tegnet. Til å begynne med merker vi at to viktige fakta følger av definisjonen:

  1. Argumentet og grunnlaget må alltid være større enn null. Dette følger av definisjonen av graden rasjonell indikator, som definisjonen av en logaritme kommer ned til.
  2. Basen må være forskjellig fra en, siden en i noen grad fortsatt forblir en. På grunn av dette er spørsmålet "til hvilken makt må man heves for å få to" meningsløst. Det er ingen slik grad!

Slike restriksjoner kalles utvalg av akseptable verdier(ODZ). Det viser seg at ODZ til logaritmen ser slik ut: log a x = b ⇒ x > 0, a > 0, a ≠ 1.

Merk at det ikke er noen begrensninger på tallet b (verdien av logaritmen). For eksempel kan logaritmen godt være negativ: log 2 0,5 = −1, fordi 0,5 = 2 −1.

Men nå vurderer vi bare numeriske uttrykk, der det ikke er nødvendig å kjenne VA til logaritmen. Alle begrensninger er allerede tatt i betraktning av forfatterne av problemene. Men når logaritmiske ligninger og ulikheter spiller inn, vil DL-krav bli obligatoriske. Tross alt kan grunnlaget og argumentasjonen inneholde svært sterke konstruksjoner som ikke nødvendigvis samsvarer med begrensningene ovenfor.

La oss nå vurdere generell ordning beregne logaritmer. Den består av tre trinn:

  1. Uttrykk grunntallet a og argumentet x som en potens med minimum mulig grunntall større enn én. Underveis er det bedre å kvitte seg med desimaler;
  2. Løs ligningen for variabel b: x = a b ;
  3. Det resulterende tallet b vil være svaret.

Det er alt! Hvis logaritmen viser seg å være irrasjonell, vil dette være synlig allerede i første trinn. Kravet om at basen skal være mer enn en, er veldig relevant: det reduserer sannsynligheten for feil og forenkler beregningene. Det er det samme med desimalbrøker: hvis du umiddelbart konverterer dem til vanlige, vil det være mange færre feil.

La oss se hvordan denne ordningen fungerer ved å bruke spesifikke eksempler:

Oppgave. Regn ut logaritmen: log 5 25

  1. La oss forestille oss grunnlaget og argumentet som en potens av fem: 5 = 5 1 ; 25 = 52;
  2. La oss lage og løse ligningen:
    log 5 25 = b ⇒ (5 1) b = 5 2 ⇒ 5 b = 5 2 ⇒ b = 2 ;

  3. Vi fikk svar: 2.

Oppgave. Regn ut logaritmen:

Oppgave. Regn ut logaritmen: log 4 64

  1. La oss forestille oss grunnlaget og argumentet som en potens av to: 4 = 2 2 ; 64 = 26;
  2. La oss lage og løse ligningen:
    log 4 64 = b ⇒ (2 2) b = 2 6 ⇒ 2 2b = 2 6 ⇒ 2b = 6 ⇒ b = 3 ;
  3. Vi fikk svar: 3.

Oppgave. Regn ut logaritmen: log 16 1

  1. La oss forestille oss grunnlaget og argumentet som en potens av to: 16 = 2 4 ; 1 = 20;
  2. La oss lage og løse ligningen:
    log 16 1 = b ⇒ (2 4) b = 2 0 ⇒ 2 4b = 2 0 ⇒ 4b = 0 ⇒ b = 0 ;
  3. Vi fikk svaret: 0.

Oppgave. Regn ut logaritmen: log 7 14

  1. La oss forestille oss grunnlaget og argumentet som en potens av syv: 7 = 7 1 ; 14 kan ikke representeres som en potens av syv, siden 7 1< 14 < 7 2 ;
  2. Fra forrige avsnitt følger det at logaritmen ikke teller;
  3. Svaret er ingen endring: logg 7 14.

En liten merknad til det siste eksemplet. Hvordan kan du være sikker på at et tall ikke er en eksakt potens av et annet tall? Det er veldig enkelt - bare del det ned i primære faktorer. Hvis utvidelsen har minst to forskjellige faktorer, er ikke tallet en eksakt potens.

Oppgave. Finn ut om tallene er nøyaktige potenser: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - eksakt grad, fordi det er bare én multiplikator;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - er ikke en eksakt potens, siden det er to faktorer: 3 og 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - eksakt grad;
35 = 7 · 5 - igjen ikke en eksakt potens;
14 = 7 · 2 - igjen ikke en eksakt grad;

Merk også at selve primtallene alltid er eksakte potenser av seg selv.

Desimal logaritme

Noen logaritmer er så vanlige at de har et spesielt navn og symbol.

Desimallogaritmen til x er logaritmen til grunntallet 10, dvs. Potensen som tallet 10 må heves til for å oppnå tallet x. Betegnelse: lg x.

For eksempel log 10 = 1; log 100 = 2; lg 1000 = 3 - osv.

Fra nå av, når en setning som "Finn lg 0.01" vises i en lærebok, vet du: dette er ikke en skrivefeil. Dette er en desimallogaritme. Men hvis du ikke er kjent med denne notasjonen, kan du alltid skrive den om:
log x = log 10 x

Alt som er sant for vanlige logaritmer, er også sant for desimallogaritmer.

Naturlig logaritme

Det er en annen logaritme som har sin egen betegnelse. På noen måter er det enda viktigere enn desimal. Det handler om om den naturlige logaritmen.

Den naturlige logaritmen til x er logaritmen til basen e, dvs. potensen som tallet e må heves til for å oppnå tallet x. Betegnelse: ln x .

Mange vil spørre: hva er tallet e? Dette er et irrasjonelt tall; dets eksakte verdi kan ikke finnes og skrives ned. Jeg vil bare gi de første tallene:
e = 2,718281828459...

Vi vil ikke gå i detalj om hva dette nummeret er og hvorfor det er nødvendig. Bare husk at e er grunnlaget for den naturlige logaritmen:
ln x = log e x

Dermed ln e = 1; ln e2 = 2; ln e 16 = 16 - osv. På den annen side er ln 2 et irrasjonelt tall. Generelt er den naturlige logaritmen til evt rasjonalt tall irrasjonell. Bortsett fra, selvfølgelig, for en: ln 1 = 0.

For naturlige logaritmer er alle reglene som er sanne for vanlige logaritmer gyldige.

\(a^(b)=c\) \(\venstrepil\) \(\log_(a)(c)=b\)

La oss forklare det enklere. For eksempel er \(\log_(2)(8)\) lik potensen som \(2\) må heves til for å få \(8\). Fra dette er det klart at \(\log_(2)(8)=3\).

Eksempler:

\(\log_(5)(25)=2\)

fordi \(5^(2)=25\)

\(\log_(3)(81)=4\)

fordi \(3^(4)=81\)

\(\log_(2)\)\(\frac(1)(32)\) \(=-5\)

fordi \(2^(-5)=\)\(\frac(1)(32)\)

Argument og basis for logaritmen

Enhver logaritme har følgende "anatomi":

Argumentet til en logaritme skrives vanligvis på nivået, og basen skrives i trukket skrift nærmere logaritmetegnet. Og denne oppføringen lyder slik: "logaritme av tjuefem til base fem."

Hvordan beregne logaritme?

For å beregne logaritmen må du svare på spørsmålet: til hvilken potens skal basen heves for å få argumentet?

For eksempel, beregn logaritmen: a) \(\log_(4)(16)\) b) \(\log_(3)\)\(\frac(1)(3)\) c) \(\log_(\ sqrt (5))(1)\) d) \(\log_(\sqrt(7))(\sqrt(7))\) e) \(\log_(3)(\sqrt(3))\)

a) Til hvilken kraft må \(4\) heves for å få \(16\)? Tydeligvis den andre. Derfor:

\(\log_(4)(16)=2\)

\(\log_(3)\)\(\frac(1)(3)\) \(=-1\)

c) Til hvilken styrke må \(\sqrt(5)\) heves for å få \(1\)? Hvilken kraft gjør noen nummer én? Null, selvfølgelig!

\(\log_(\sqrt(5))(1)=0\)

d) Til hvilken makt må \(\sqrt(7)\) heves for å oppnå \(\sqrt(7)\)? For det første er ethvert tall i første potens lik seg selv.

\(\log_(\sqrt(7))(\sqrt(7))=1\)

e) Til hvilken makt må \(3\) heves for å oppnå \(\sqrt(3)\)? Fra vi vet hva det er brøkkraft, og det betyr Kvadratrot er potensen til \(\frac(1)(2)\) .

\(\log_(3)(\sqrt(3))=\)\(\frac(1)(2)\)

Eksempel : Beregn logaritmen \(\log_(4\sqrt(2))(8)\)

Løsning :

\(\log_(4\sqrt(2))(8)=x\)

Vi må finne verdien av logaritmen, la oss betegne den som x. La oss nå bruke definisjonen av en logaritme:
\(\log_(a)(c)=b\) \(\venstrepil\) \(a^(b)=c\)

\((4\sqrt(2))^(x)=8\)

Hva forbinder \(4\sqrt(2)\) og \(8\)? To, fordi begge tallene kan representeres av toere:
\(4=2^(2)\) \(\sqrt(2)=2^(\frac(1)(2))\) \(8=2^(3)\)

\(((2^(2)\cdot2^(\frac(1)(2))))^(x)=2^(3)\)

Til venstre bruker vi egenskapene til graden: \(a^(m)\cdot a^(n)=a^(m+n)\) og \((a^(m))^(n)= a^(m\cdot n)\)

\(2^(\frac(5)(2)x)=2^(3)\)

Grunnlaget er like, vi går videre til likestilling av indikatorer

\(\frac(5x)(2)\) \(=3\)


Multipliser begge sider av ligningen med \(\frac(2)(5)\)


Den resulterende roten er verdien av logaritmen

Svar : \(\log_(4\sqrt(2))(8)=1,2\)

Hvorfor ble logaritmen oppfunnet?

For å forstå dette, la oss løse ligningen: \(3^(x)=9\). Bare match \(x\) for å få likestillingen til å fungere. Selvfølgelig, \(x=2\).

Løs nå ligningen: \(3^(x)=8\).Hva er x lik? Det er poenget.

De smarteste vil si: "X er litt mindre enn to." Hvordan skal man egentlig skrive dette tallet? For å svare på dette spørsmålet ble logaritmen oppfunnet. Takket være ham kan svaret her skrives som \(x=\log_(3)(8)\).

Jeg vil understreke at \(\log_(3)(8)\), liker enhver logaritme er bare et tall. Ja, det ser uvanlig ut, men det er kort. For hvis vi ville skrive det i skjemaet desimal, så vil det se slik ut: \(1.892789260714.....\)

Eksempel : Løs ligningen \(4^(5x-4)=10\)

Løsning :

\(4^(5x-4)=10\)

\(4^(5x-4)\) og \(10\) kan ikke bringes til samme base. Dette betyr at du ikke kan klare deg uten en logaritme.

La oss bruke definisjonen av logaritme:
\(a^(b)=c\) \(\venstrepil\) \(\log_(a)(c)=b\)

\(\log_(4)(10)=5x-4\)

La oss snu ligningen slik at X er til venstre

\(5x-4=\log_(4)(10)\)

Før oss. La oss flytte \(4\) til høyre.

Og ikke vær redd for logaritmen, behandle det som et vanlig tall.

\(5x=\log_(4)(10)+4\)

Del ligningen med 5

\(x=\)\(\frac(\log_(4)(10)+4)(5)\)


Dette er roten vår. Ja, det ser uvanlig ut, men de velger ikke svaret.

Svar : \(\frac(\log_(4)(10)+4)(5)\)

Desimal og naturlige logaritmer

Som angitt i definisjonen av en logaritme, kan basen være et hvilket som helst positivt tall bortsett fra ett \((a>0, a\neq1)\). Og blant alle mulige baser er det to som forekommer så ofte at en spesiell kort notasjon ble oppfunnet for logaritmer med dem:

Naturlig logaritme: en logaritme hvis grunntall er Eulers tall \(e\) (lik ca. \(2.7182818...\)), og logaritmen skrives som \(\ln(a)\).

Det er, \(\ln(a)\) er det samme som \(\log_(e)(a)\)

Desimallogaritme: En logaritme hvis grunntall er 10 skrives \(\lg(a)\).

Det er, \(\lg(a)\) er det samme som \(\log_(10)(a)\), hvor \(a\) er et tall.

Grunnleggende logaritmisk identitet

Logaritmer har mange egenskaper. En av dem kalles "Basic Logarithmic Identity" og ser slik ut:

\(a^(\log_(a)(c))=c\)

Denne egenskapen følger direkte av definisjonen. La oss se nøyaktig hvordan denne formelen ble til.

La oss huske en kort notasjon av definisjonen av logaritme:

hvis \(a^(b)=c\), så \(\log_(a)(c)=b\)

Det vil si at \(b\) er det samme som \(\log_(a)(c)\). Da kan vi skrive \(\log_(a)(c)\) i stedet for \(b\) i formelen \(a^(b)=c\). Det viste seg at \(a^(\log_(a)(c))=c\) - den logaritmiske hovedidentiteten.

Du kan finne andre egenskaper ved logaritmer. Med deres hjelp kan du forenkle og beregne verdiene til uttrykk med logaritmer, som er vanskelige å beregne direkte.

Eksempel : Finn verdien til uttrykket \(36^(\log_(6)(5))\)

Løsning :

Svar : \(25\)

Hvordan skrive et tall som en logaritme?

Som nevnt ovenfor er enhver logaritme bare et tall. Det motsatte er også sant: ethvert tall kan skrives som en logaritme. For eksempel vet vi at \(\log_(2)(4)\) er lik to. Så i stedet for to kan du skrive \(\log_(2)(4)\).

Men \(\log_(3)(9)\) er også lik \(2\), noe som betyr at vi også kan skrive \(2=\log_(3)(9)\) . På samme måte med \(\log_(5)(25)\), og med \(\log_(9)(81)\), etc. Det vil si, viser det seg

\(2=\log_(2)(4)=\log_(3)(9)=\log_(4)(16)=\log_(5)(25)=\log_(6)(36)=\ log_(7)(49)...\)

Hvis vi trenger det, kan vi altså skrive to som en logaritme med hvilken som helst base hvor som helst (det være seg i en likning, i et uttrykk eller i en ulikhet) - vi skriver ganske enkelt grunntallet opphøyd som et argument.

Det er det samme med trippelen – den kan skrives som \(\log_(2)(8)\), eller som \(\log_(3)(27)\), eller som \(\log_(4)( 64) \)... Her skriver vi basen i kuben som et argument:

\(3=\log_(2)(8)=\log_(3)(27)=\log_(4)(64)=\log_(5)(125)=\log_(6)(216)=\ log_(7)(343)...\)

Og med fire:

\(4=\log_(2)(16)=\log_(3)(81)=\log_(4)(256)=\log_(5)(625)=\log_(6)(1296)=\ log_(7)(2401)...\)

Og med minus én:

\(-1=\) \(\log_(2)\)\(\frac(1)(2)\) \(=\) \(\log_(3)\)\(\frac(1)( 3)\) \(=\) \(\log_(4)\)\(\frac(1)(4)\) \(=\) \(\log_(5)\)\(\frac(1) )(5)\) \(=\) \(\log_(6)\)\(\frac(1)(6)\) \(=\) \(\log_(7)\)\(\frac (1)(7)\) \(...\)

Og med en tredjedel:

\(\frac(1)(3)\) \(=\log_(2)(\sqrt(2))=\log_(3)(\sqrt(3))=\log_(4)(\sqrt( 4))=\log_(5)(\sqrt(5))=\log_(6)(\sqrt(6))=\log_(7)(\sqrt(7))...\)

Ethvert tall \(a\) kan representeres som en logaritme med grunntallet \(b\): \(a=\log_(b)(b^(a))\)

Eksempel : Finn betydningen av uttrykket \(\frac(\log_(2)(14))(1+\log_(2)(7))\)

Løsning :

Svar : \(1\)

Logaritmer, som alle tall, kan legges til, trekkes fra og transformeres på alle måter. Men siden logaritmer er ikke akkurat vanlige tall, det er regler her, som kalles hovedegenskaper.

Du trenger definitivt å kjenne til disse reglene - uten dem kan ikke et eneste alvorlig problem løses. logaritmisk problem. I tillegg er det svært få av dem – du kan lære alt på en dag. Så la oss komme i gang.

Legge til og subtrahere logaritmer

Tenk på to logaritmer med samme base: log en x og logg en y. Deretter kan de legges til og trekkes fra, og:

  1. Logg en x+ logg en y=logg en (x · y);
  2. Logg en x− logg en y=logg en (x : y).

Så summen av logaritmer er lik logaritmen til produktet, og forskjellen er lik logaritmen til kvotienten. Merk: nøkkel øyeblikk Her - identiske grunner. Hvis årsakene er forskjellige, fungerer ikke disse reglene!

Disse formlene vil hjelpe deg med å beregne et logaritmisk uttrykk selv når dets individuelle deler ikke vurderes (se leksjonen "Hva er en logaritme"). Ta en titt på eksemplene og se:

Logg 6 4 + logg 6 9.

Siden logaritmer har samme base, bruker vi sumformelen:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Oppgave. Finn verdien av uttrykket: log 2 48 − log 2 3.

Basene er de samme, vi bruker forskjellsformelen:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Oppgave. Finn verdien av uttrykket: log 3 135 − log 3 5.

Igjen er basene de samme, så vi har:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Som du kan se, består de opprinnelige uttrykkene av "dårlige" logaritmer, som ikke beregnes separat. Men etter transformasjonene får man helt normale tall. Mange er bygget på dette faktum testpapirer. Ja, testlignende uttrykk tilbys i fullt alvor (noen ganger med praktisk talt ingen endringer) på Unified State Examination.

Trekke ut eksponenten fra logaritmen

La oss nå komplisere oppgaven litt. Hva om basen eller argumentet til en logaritme er en potens? Deretter kan eksponenten for denne graden tas ut av logaritmens fortegn i henhold til følgende regler:

Det er lett å se at den siste regelen følger de to første. Men det er bedre å huske det uansett - i noen tilfeller vil det redusere mengden beregninger betydelig.

Selvfølgelig gir alle disse reglene mening hvis ODZ til logaritmen blir observert: en > 0, en ≠ 1, x> 0. Og en ting til: lær å bruke alle formler ikke bare fra venstre til høyre, men også omvendt, dvs. Du kan legge inn tallene før logaritmetegnet i selve logaritmen. Dette er det som oftest kreves.

Oppgave. Finn verdien av uttrykket: log 7 49 6 .

La oss bli kvitt graden i argumentet ved å bruke den første formelen:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Oppgave. Finn betydningen av uttrykket:

[Tekst til bildet]

Legg merke til at nevneren inneholder en logaritme, hvis basis og argument er eksakte potenser: 16 = 2 4 ; 49 = 7 2. Vi har:

[Tekst til bildet]

Jeg tror det siste eksemplet krever litt avklaring. Hvor har logaritmene blitt av? Helt til siste øyeblikk jobber vi kun med nevneren. Vi presenterte grunnlaget og argumentet for logaritmen som sto der i form av potenser og tok ut eksponentene - vi fikk en "tre-etasjers" brøk.

La oss nå se på hovedbrøken. Telleren og nevneren inneholder samme tall: log 2 7. Siden log 2 7 ≠ 0, kan vi redusere brøken - 2/4 vil forbli i nevneren. I henhold til reglene for regnestykket kan de fire overføres til telleren, som er det som ble gjort. Resultatet ble svaret: 2.

Overgang til ny stiftelse

Når jeg snakker om reglene for å addere og subtrahere logaritmer, la jeg spesielt vekt på at de bare fungerer med de samme basene. Hva om årsakene er forskjellige? Hva om de ikke er nøyaktige potenser av samme tall?

Formler for overgang til en ny stiftelse kommer til unnsetning. La oss formulere dem i form av et teorem:

La logaritmeloggen gis en x. Deretter for et hvilket som helst tall c slik at c> 0 og c≠ 1, likheten er sann:

[Tekst til bildet]

Spesielt hvis vi setter c = x, vi får:

[Tekst til bildet]

Fra den andre formelen følger det at basen og argumentet til logaritmen kan byttes, men i dette tilfellet blir hele uttrykket "snudd", dvs. logaritmen vises i nevneren.

Disse formlene finnes sjelden i vanlige numeriske uttrykk. Det er mulig å vurdere hvor praktiske de er bare når man løser logaritmiske ligninger og ulikheter.

Det er imidlertid problemer som ikke kan løses i det hele tatt bortsett fra ved å flytte til en ny stiftelse. La oss se på et par av disse:

Oppgave. Finn verdien av uttrykket: log 5 16 log 2 25.

Merk at argumentene til begge logaritmene inneholder eksakte potenser. La oss ta ut indikatorene: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

La oss nå "reversere" den andre logaritmen:

[Tekst til bildet]

Siden produktet ikke endrer seg ved omorganisering av faktorer, multipliserte vi rolig fire og to, og behandlet deretter logaritmer.

Oppgave. Finn verdien av uttrykket: log 9 100 lg 3.

Grunnlaget og argumentet til den første logaritmen er eksakte potenser. La oss skrive dette ned og bli kvitt indikatorene:

[Tekst til bildet]

La oss nå bli kvitt desimallogaritmen ved å flytte til en ny base:

[Tekst til bildet]

Grunnleggende logaritmisk identitet

Ofte i løsningsprosessen er det nødvendig å representere et tall som en logaritme til en gitt base. I dette tilfellet vil følgende formler hjelpe oss:

I det første tilfellet, nummeret n blir en indikator på graden stående i argumentasjonen. Antall n kan være absolutt hva som helst, fordi det bare er en logaritmeverdi.

Den andre formelen er faktisk en omskrevet definisjon. Det er det det kalles: den grunnleggende logaritmiske identiteten.

Faktisk, hva vil skje hvis nummeret b heve til en slik styrke at tallet b til denne potensen gir tallet en? Det stemmer: du får det samme nummeret en. Les denne paragrafen nøye igjen - mange setter seg fast i den.

Som formler for å flytte til en ny base, er den grunnleggende logaritmiske identiteten noen ganger den eneste mulige løsningen.

Oppgave. Finn betydningen av uttrykket:

[Tekst til bildet]

Merk at log 25 64 = log 5 8 - tok bare kvadratet fra basen og argumentet til logaritmen. Vurderer reglene for å multiplisere potenser med samme grunnlag, vi får:

[Tekst til bildet]

Hvis noen ikke vet, var dette en skikkelig oppgave fra Unified State Exam :)

Logaritmisk enhet og logaritmisk null

Avslutningsvis vil jeg gi to identiteter som vanskelig kan kalles egenskaper – snarere er de konsekvenser av definisjonen av logaritmen. De dukker stadig opp i problemer og, overraskende nok, skaper de problemer selv for "avanserte" studenter.

  1. Logg en en= 1 er en logaritmisk enhet. Husk en gang for alle: logaritme til hvilken som helst base en fra denne grunnen er lik en.
  2. Logg en 1 = 0 er logaritmisk null. Utgangspunkt en kan være hva som helst, men hvis argumentet inneholder én, er logaritmen lik null! Fordi en 0 = 1 er direkte konsekvens fra definisjonen.

Det er alle egenskapene. Sørg for å trene på å sette dem ut i livet! Last ned juksearket i begynnelsen av leksjonen, skriv det ut og løs problemene.