Водная среда обитания

СРЕДЫ ОБИТАНИЯ И ИХ ХАРАКТЕРИСТИКИ

В процессе исторического развития живые организмы освоили четыре среды обитания. Первая – вода. В воде жизнь зародилась и развивалась многие миллионы лет. Вторая – наземно-воздушная – на суше и в атмосфере возникли и бурно адаптировались к новым условиям растения и животные. Постепенно преобразуя верхний слой суши - литосферы, они создали третью среду обитания – почву, а сами стали четвертой средой обитания.

Водная среда обитания

Вода покрывает 71% площади земного. Основная масса воды сосредоточена в морях и океанах – 94-98%, в полярных льдах содержится около 1,2% воды и совсем малая доля – менее 0,5%, в пресных водах рек, озер и болот.

В водной среде обитает около 150 000 видов животных и 10 000 растений, что составляет соответственно всего 7 и 8 % от общего числа видов Земли.

В морях-океанах, как в горах, выражена вертикальная зональность. Особенно сильно различаются по экологии пелагиаль – вся толща воды, и бенталь – дно. Толща воды – пелагиаль, по вертикали делится на несколько зон: эпипелигеаль, батипелигеаль, абиссопелигиаль и ультраабиссопелигиаль (рис. 2).

В зависимости от крутизны спуска и глубины на дне тоже выделяют несколько зон, которым соответствуют указанные зоны пелагиали:

Литоральная – кромка берега, заливаемая во время приливов.

Супралиторальная – часть берега выше верхней приливной черты, куда долетают брызги прибоя.

Сублиторальная – плавное понижение суши до 200м.

Батиальная – крутое понижение суши (материковый склон),

Абиссальная – плавное понижение дна океанского ложа; глубина обеих зон вместе достигает 3-6 км.

Ультраабиссальная – глубоководные впадины от 6 до 10 км.

Экологические группы гидробионтов. Наибольшим разнообразием жизни отличаются теплые моря и океаны (40000 видов животных) в области экватора и тропиках, к северу и югу происходит обеднение флоры и фауны морей в сотни раз. Что касается распределения организмов непосредственно в море, то основная масса их сосредоточена в поверхностных слоях (эпипелагиаль) и в сублиторальной зоне. В зависимости от способа передвижения и пребывания в определенных слоях, морские обитатели подразделяются на три экологические группы: нектон, планктон и бентос .

Нектон (nektos – плавающий) - активно передвигающиеся крупные животные, способные преодолевать большие расстояния и сильные течения: рыбы, кальмары, ластоногие, киты. В пресных водоемах к нектону относятся и земноводные и множество насекомых.

Планктон (planktos – блуждающий, парящий) – совокупность растений (фитопланктон: диатомовые, зеленые и сине-зеленые (только пресные водоемы) водоросли, растительные жгутиконосцы, перидинеи и др.) и мелких животных организмов (зоопланктон: мелкие ракообразные, из более крупных – крылоногие моллюски, медузы, гребневики, некоторые черви), обитающих на разной глубине, но не способных к активным передвижениям и к противостоянию течениям. В состав планктона входят и личинки животных, образуя особую группу – нейстон . Это пассивно плавающее «временное» население самого верхнего слоя воды, представленное разными животными (десятиногие, усоногие и веслоногие ракообразные, иглокожие, полихеты, рыбы, моллюски и др.) в личиночной стадии. Личинки, взрослея, переходят в нижние слои пелагели. Выше нейстона располагается плейстон – это организмы, у которых верхняя часть тела растет над водой, а нижняя – в воде (ряска – Lemma, сифонофоры и др.). Планктон играет важную роль в трофических связях биосферы, т.к. является пищей для многих водных обитателей, в том числе основным кормом для усатых китов (Myatcoceti).

Бентос (benthos – глубина) – гидробионты дна. Представлен в основном прикрепленными или медленно передвигающимися животными (зообентос: фораминефоры, рыбы, губки, кишечнополостные, черви, моллюски, асцидии, и др.), более многочисленными на мелководье. На мелководье в бентос входят и растения (фитобентос: диатомовые, зеленые, бурые, красные водоросли, бактерии). На глубине, где нет света, фитобентос отсутствует. Наиболее богаты фитобентосом каменистые участки дна.

В озерах зообентос менее обилен и разнообразен, чем в море. Его образуют простейшие (инфузории, дафнии), пиявки, моллюски, личинки насекомых и др. Фитобентос озер образован свободно плавающими диатомеями, зелеными и сине-зелеными водорослями; бурые и красные водоросли отсутствуют.

Высокая плотность водной среды определяет особый состав и характер изменения жизнеобеспечивающих факторов. Одни из них те же, что и на суше – тепло, свет, другие специфические: давление воды (с глубиной увеличивается на 1 атм. на каждые 10 м), содержание кислорода, состав солей, кислотность. Благодаря высокой плотности среды, значения тепла и света с градиентом высоты изменяются гораздо быстрее, чем на суше.

Тепловой режим . Для водной среды характерен меньший приход тепла, т.к. значительная часть его отражается, и не менее значительная часть расходуется на испарение. Согласуясь с динамикой наземных температур, температура воды обладает меньшими колебаниями суточных и сезонных температур. Более того, водоемы существенно выравнивают ход температур в атмосфере прибрежных районов. При отсутствии ледового панциря моря в холодное время года оказывают отепляющее действие на прилегающие территории суши, летом – охлаждающее и увлажняющее.

Диапазон значений температуры воды в Мировом океане составляет 38° (от -2 до +36°С), в пресных водоемах – 26° (от -0,9 до +25°С). С глубиной температура воды резко падает. До 50 м наблюдаются суточные колебания температуры, до 400 – сезонные, глубже она становится постоянной, опускаясь до +1-3°С. Поскольку температурный режим в водоемах сравнительно стабилен, их обитателям свойственна стенотермность .

В связи с разной степенью прогревания верхних и нижних слоев в течение года, приливами и отливами, течениями, штормами происходит постоянное перемешивание водных слоев. Роль перемешивания воды для водных обитателей исключительно велика, т.к. при этом выравнивается распределение кислорода и питательных веществ внутри водоемов, обеспечивая обменные процессы между организмами и средой.

В стоячих водоемах (озерах) умеренных широт весной и осенью имеет место вертикальное перемешивание, и в эти сезоны температура во всем водоеме становится однородной, т.е. наступает гомотермия. Летом и зимой в результате резкого усиления прогревания или охлаждения верхних слоев перемешивание воды прекращается. Это явление называется температурной дихотомией , а период временного застоя – стагнацией (летней или зимней). Летом более легкие теплые слои остаются на поверхности, располагаясь над тяжелыми холодными (рис. 3). Зимой, наоборот, в придонном слое более теплая вода, так как непосредственно подо льдом температура поверхностных вод меньше +4°С и они в силу физико-химических свойств воды становятся более легкими, чем вода с температурой выше +4°С.

В периоды стагнаций четко выделяются три слоя: верхний (эпилимнион) с наиболее резкими сезонными колебаниями температуры воды, средний (металимнион или термоклин ), в котором происходит резкий скачок температур, и придонный (гиполимнион ), в котором температура в течение года изменяется слабо. В периоды стагнаций в толще воды образуется дефицит кислорода – летом в придонной части, а зимой и в верхней, вследствие чего в зимний период нередко происходят заморы рыбы.

Световой режим. Интенсивность света в воде сильно ослаблена из-за его отражения поверхностью и поглощения самой водой. Это сильно сказывается на развитии фотосинтезирующих растений.

Поглощение света тем сильнее, чем меньше прозрачность воды, которая зависит от количества взвешенных в ней частиц (минеральные взвеси, планктон). Уменьшается она при бурном развитии мелких организмов летом, а в умеренных и северных широтах – еще и зимой, после установления ледового покрова и укрытия его сверху снегом.

Прозрачность характеризуют предельной глубиной, на которой еще виден специально опускаемый белый диск диаметром около 20 см (диск Секки). Самые прозрачные воды - в Саргассовом море: диск виден до глубины 66,5 м. В Тихом океане диск Секки виден до 59 м, в Индийском - до 50, в мелких морях - до 5-15м. Прозрачность рек в среднем 1-1,5 м, а в самых мутных реках всего несколь­ко сантиметров.

В океанах, где вода очень прозрачна, на глубину 140 м проникает 1% световой радиации, а в небольших озерах на глубине 2 м проникает всего лишь десятые доли процента. Лучи разных частей спектра поглощаются в воде неодинаково, вначале поглощаются красные лучи. С глубиной становится все темнее, и цвет воды становится вначале зеленым, затем голубым, синим и в конце – сине-фиолетовым, переходя в полный мрак. Соответственно меняют цвет и гидробионты, адаптирующиеся не только к составу света, но и к его недостатку – хроматическая адаптация. В светлых зонах, на мелководьях, преобладают зеленые водоросли (Chlorophyta), хлорофилл которых поглощают красные лучи, c глубиной они сменяются бурыми (Phaephyta) и далее красными (Rhodophyta). На больших глубинах фитобентос отсутствует.

К недостатку света растения приспособились развитием хроматофоров крупных размеров, а также увеличением площади ассимилирующих органов (индекса листовой поверхности). Для глубоководных водорослей типичны сильно рассеченные листья, пластинки листьев тонкие, просвечивающиеся. Для полупогруженных и плавающих растений характерна гетерофиллия – листья над водой такие же, как у наземных растений, имеют цельную пластинку, развит устьичный аппарат, а в воде листья очень тонкие, состоят из узких нитевидных долей.

Животные, как и растения, закономерно меняют свою окраску с глубиной. В верхних слоях они ярко окрашены в разные цвета, в сумеречной зоне (морской окунь, кораллы, ракообразные) окрашены в цвета с красным оттенком – удобнее скрываться от врагов. Глубоководные виды лишены пигментов. В темных глубинах океана в качестве источника зрительной информации организмы используют свет, испускаемый живыми существами- биолюминесценция .

Высокая плотность (1 г/см3, что в 800 раз больше плотности воздуха) и вязкость воды (в 55 раз выше, чем у воздуха) привела к развитию специальных адаптаций гидробионтов:

1) У растений очень слабо развиты или вовсе отсутствуют механические ткани – им опора сама вода. Большинству свойственна плавучесть, за счет воздухоносных межклеточных полостей. Характерно активное вегетативное размножение, развитие гидрохории – вынос цветоносов над водой и распространение пыльцы, семян и спор поверхностными течениями.

2) У живущих в толще воды и активно плавающих животных тело имеет обтекаемую форму и смазано слизью, уменьшающей трение при передвижении. Развиты приспособления для повышения плавучести: скопления жира в тканях, плавательные пузыри у рыб, воздухоносные полости у сифонофор. У пассивно плавающих животных увеличивается удельная поверхность тела за счет выростов, шипов, придатков; тело уплощается, происходит редукция скелетных органов. Разные способы передвижения: изгибание тела, с помощью жгутиков, ресничек, реактивный способ передвижения (головоногие моллюски).

У придонных животных исчезает или слабо развит скелет, увеличиваются размеры тела, обычна редукция зрения, развитие осязательных органов.

Течения. Характерная черта водной среды – подвижность. Она обусловлена приливами и отливами, морскими течениями, штормами, разными уровнями высотных отметок русел рек. Приспособления гидробионтов:

1) В проточных водоемах растения прочно прикрепляются к неподвижным подводным предметам. Донная поверхность для них в первую очередь – субстрат. Это зеленые и диатомовые водоросли, водяные мхи. Мхи даже образуют плотный покров на быстрых перекатах рек. В прибойно-отливной полосе морей и многие животные имеют приспособления для прикрепления ко дну (брюхоногие моллюски, усоногие раки), или же прячутся в расщелинах.

2) У рыб проточных вод тело в поперечнике круглое, а у рыб, обитающих у дна, как и у придонных беспозвоночных животных, тело плоское. У многих на брюшной стороне есть органы фиксации к подводным предметам.

Соленость воды.

Природным водоемам свойствен определенный химический состав. Преобладают карбонаты, сульфаты, хлориды. В пресных водоемах концентрация солей не более 0,5 (причем около 80% составляют карбонаты), в морях – от 12 до 35 ‰ (в основном хлориды и сульфаты) . При солености более 40 промилле водоем называют гипергалинным или пересоленным.

1) В пресной воде (гипотоническая среда) хорошо выражены процессы осморегуляции. Гидробионты вынуждены постоянно удалять проникающую в них воду, они гомойосмотичны (инфузории каждые 2-3 минуты «прокачивают» через себя количество воды, равное ее весу). В соленой воде (изотоническая среда) концентрация солей в телах и тканях гидробионтов одинакова (изотонична) с концентрацией солей, растворенных в воде – они пойкилоосмотичны. Поэтому у обитателей соленых водоемов осморегуляторные функции не развиты, и они не смогли заселить пресные водоемы.

2) Водные растения способны поглощать воду и питательные вещества из воды – «бульона», всей поверхностью, поэтому у них сильно расчленены листья и слабо развиты проводящие ткани и корни. Корни служат в основном для прикрепления к подводному субстрату. У большинства растений пресных водоемов есть корни.

Типично морские и типично пресноводные виды – стеногалинные, не переносят значительных изменений в солености воды. Эвригалинных видов немного. Они обычны в солоноватых водах (пресноводный судак, щука, лещ, кефаль, приморские лососи).

Плотность воды - это фактор, определяющий условия передвижения водных организмов и давление на разных глубинах. Для дистиллированной воды плотность равна 1 г/см 3 при 4 °C. Плотность природных вод, содержащих растворенные соли, может быть больше, до 1,35 г/см 3 . Давление возрастает с глубиной примерно в среднем на 1 · 10 5 Па (1 атм) на каждые 10 м.

В связи с резким градиентом давления в водоемах гидробионты в целом значительно более эврибатны по сравнению с сухопутными организмами. Некоторые виды, распространенные на разных глубинах, переносят давление от нескольких до сотен атмосфер. Например, голотурии рода Elpidia, черви Priapulus caudatus обитают от прибрежной зоны до ультраабиссали. Даже пресноводные обитатели, например инфузории‑туфельки, сувойки, жуки‑плавунцы и др., выдерживают в опыте до 6 · 10 7 Па (600 атм).

Однако многие обитатели морей и океанов относительно стенобатны и приурочены к определенным глубинам. Стенобатность чаще всего свойственна мелководным и глубоководным видам. Только на литорали обитают кольчатый червь пескожил Arenicola, моллюски морские блюдечки (Patella). Многие рыбы, например из группы удильщиков, головоногие моллюски, ракообразные, погонофоры, морские звезды и др. встречаются лишь на больших глубинах при давлении не менее 4 · 10 7 - 5 · 10 7 Па (400-500 атм).

Плотность воды обеспечивает возможность опираться на нее, что особенно важно для бесскелетных форм. Плотность среды служит условием парения в воде, и многие гидробионты приспособлены именно к этому образу жизни. Взвешенные, парящие в воде организмы объединяют в особую экологическую группу гидробионтов - планктон («планктос» - парящий).

Рис. 39. Увеличение относительной поверхности тела у планктонных организмов (по С. A. Зернову, 1949):

A - палочковидные формы:

1 - диатомея Synedra;

2 - цианобактерия Aphanizomenon;

3 - перидинеевая водоросль Amphisolenia;

4 - Euglena acus;

5 - головоногий моллюск Doratopsis vermicularis;

6 - веслоногий рачок Setella;

7 - личинка Porcellana (Decapoda)

Б - расчлененные формы:

1 - моллюск Glaucus atlanticus;

2 - червь Tomopetris euchaeta;

3 - личинка рака Palinurus;

4 - личинка рыбы морского черта Lophius;

5 - веслоногий рачок Calocalanus pavo

В составе планктона - одноклеточные и колониальные водоросли, простейшие, медузы, сифонофоры, гребневики, крылоногие и киленогие моллюски, разнообразные мелкие рачки, личинки донных животных, икра и мальки рыб и многие другие (рис. 39). Планктонные организмы обладают многими сходными адаптациями, повышающими их плавучесть и препятствующими оседанию на дно. К таким приспособлениям относятся: 1) общее увеличение относительной поверхности тела за счет уменьшения размеров, сплющенности, удлинения, развития многочисленных выростов или щетинок, что увеличивает трение о воду; 2) уменьшение плотности за счет редукции скелета, накопления в теле жиров, пузырьков газа и т. п. У диатомовых водорослей запасные вещества отлагаются не в виде тяжелого крахмала, а в виде жировых капель. Ночесветка Noctiluca отличается таким обилием газовых вакуолей и капелек жира в клетке, что цитоплазма в ней имеет вид тяжей, сливающихся только вокруг ядра. Воздухоносные камеры есть и у сифонофор, ряда медуз, планктонных брюхоногих моллюсков и др.

Водоросли (фитопланктон) парят в воде пассивно, большинство же планктонных животных способно к активному плаванию, но в ограниченных пределах. Планктонные организмы не могут преодолевать течения и переносятся ими на большие расстояния. Многие виды зоопланктона способны, однако, к вертикальным миграциям в толще воды на десятки и сотни метров как за счет активного передвижения, так и за счет регулирования плавучести своего тела. Особую разновидность планктона составляет экологическая группа нейстона («нейн» - плавать) - обитатели поверхностной пленки воды на границе с воздушной средой.

Плотность и вязкость воды сильно влияют на возможность активного плавания. Животных, способных к быстрому плаванию и преодолению силы течений, объединяют в экологическую группу нектона («нектос» - плавающий). Представители нектона - рыбы, кальмары, дельфины. Быстрое движение в водной толще возможно лишь при наличии обтекаемой формы тела и сильно развитой мускулатуры. Торпедовидная форма вырабатывается у всех хороших пловцов независимо от их систематической принадлежности и способа движения в воде: реактивного, за счет изгибания тела, с помощью конечностей.

Кислородный режим. В насыщенной кислородом воде содержание его не превышает 10 мл в 1 л, это в 21 раз ниже, чем в атмосфере. Поэтому условия дыхания гидробионтов значительно усложнены. Кислород поступает в воду в основном за счет фотосинтетической деятельности водорослей и диффузии из воздуха. Поэтому верхние слои водной толщи, как правило, богаче этим газом, чем нижние. С повышением температуры и солености воды концентрация в ней кислорода понижается. В слоях, сильно заселенных животными и бактериями, может создаваться резкий дефицит О 2 из‑за усиленного его потребления. Например, в Мировом океане богатые жизнью глубины от 50 до 1000 м характеризуются резким ухудшением аэрации - она в 7‑10 раз ниже, чем в поверхностных водах, населенных фитопланктоном. Около дна водоемов условия могут быть близки к анаэробным.

Среди водных обитателей много видов, способных переносить широкие колебания содержания кислорода в воде, вплоть до почти полного его отсутствия (эвриоксибионты - «окси» - кислород, «бионт» - обитатель). К ним относятся, например, пресноводные олигохеты Tubifex tubifex, брюхоногие моллюски Viviparus viviparus. Среди рыб очень слабое насыщение воды кислородом могут выдерживать сазан, линь, караси. Вместе с тем ряд видов стеноксибионтны - они могут существовать лишь при достаточно высоком насыщении воды кислородом (радужная форель, кумжа, гольян, ресничный червь Planaria alpina, личинки поденок, веснянок и др.). Многие виды способны при недостатке кислорода впадать в неактивное состояние - аноксибиоз - и таким образом переживать неблагоприятный период.

Дыхание гидробионтов осуществляется либо через поверхность тела, либо через специализированные органы - жабры, легкие, трахеи. При этом покровы могут служить дополнительным органом дыхания. Например, рыба вьюн через кожу потребляет в среднем до 63 % кислорода. Если через покровы тела происходит газообмен, то они очень тонки. Дыхание облегчается также увеличением поверхности. Это достигается в ходе эволюции видов образованием различных выростов, уплощением, удлинением, общим уменьшением размеров тела. Некоторые виды при недостатке кислорода активно изменяют величину дыхательной поверхности. Черви Tubifex tubifex сильно вытягивают тело в длину; гидры и актинии - щупальцы; иглокожие - амбулакральные ножки. Многие сидячие и малоподвижные животные обновляют вокруг себя воду, либо создавая ее направленный ток, либо колебательными движениями способствуя ее перемешиванию. Двустворчатым моллюскам для этой цели служат реснички, выстилающие стенки мантийной полости; ракообразным - работа брюшных или грудных ножек. Пиявки, личинки комаров‑звонцов (мотыль), многие олигохеты колышут тело, высунувшись из грунта.

У некоторых видов встречается комбинирование водного и воздушного дыхания. Таковы двоякодышащие рыбы, сифонофоры дискофанты, многие легочные моллюски, ракообразные Gammarus lacustris и др. Вторичноводные животные сохраняют обычно атмосферный тип дыхания как более выгодный энергетически и нуждаются поэтому в контактах с воздушной средой, например ластоногие, китообразные, водяные жуки, личинки комаров и др.

Нехватка кислорода в воде приводит иногда к катастрофическим явлениям - заморам, сопровождающимся гибелью множества гидробионтов. Зимние заморы часто вызываются образованием на поверхности водоемов льда и прекращением контакта с воздухом; летние - повышением температуры воды и уменьшением вследствие этого растворимости кислорода.

Частая гибель рыб и многих беспозвоночных зимой характерна, например, для нижней части бассейна реки Оби, воды которой, стекающие из заболоченных пространств Западно‑Сибирской низменности, крайне бедны растворенным кислородом. Иногда заморы возникают и в морях.

Кроме недостатка кислорода, заморы могут быть вызваны повышением концентрации в воде токсичных газов - метана, сероводорода, СО 2 и др., образующихся в результате разложения органических материалов на дне водоемов.

Солевой режим. Поддержание водного баланса гидробионтов имеет свою специфику. Если для наземных животных и растений наиболее важно обеспечение организма водой в условиях ее дефицита, то для гидробионтов не менее существенно поддержание определенного количества воды в теле при ее избытке в окружающей среде. Излишнее количество воды в клетках приводит к изменению в них осмотического давления и нарушению важнейших жизненных функций.

Большинство водных обитателей пойкилосмотичны: осмотическое давление в их теле зависит от солености окружающей воды. Поэтому для гидробионтов основной способ поддерживать свой солевой баланс - это избегать местообитаний с неподходящей соленостью. Пресноводные формы не могут существовать в морях, морские - не переносят опреснения. Если соленость воды подвержена изменениям, животные перемещаются в поисках благоприятной среды. Например, при опреснении поверхностных слоев моря после сильных дождей радиолярии, морские рачки Calanus и другие спускаются на глубину до 100 м. Позвоночные животные, высшие раки, насекомые и их личинки, обитающие в воде, относятся к гомойосмотическим видам, сохраняя постоянное осмотическое давление в теле независимо от концентрации солей в воде.

У пресноводных видов соки тела гипертоничны по отношению к окружающей воде. Им угрожает излишнее обводнение, если не препятствовать поступлению или не удалять избыток воды из тела. У простейших это достигается работой выделительных вакуолей, у многоклеточных - удалением воды через выделительную систему. Некоторые инфузории каждые 2-2,5 мин выделяют количество воды, равное объему тела. На «откачку» избыточной воды клетка затрачивает очень много энергии. С повышением солености работа вакуолей замедляется. Так, у туфелек Paramecium при солености воды 2,5%о вакуоль пульсирует с интервалом в 9 с, при 5%о - 18 с, при 7,5%о - 25 с. При концентрации солей 17,5%о вакуоль перестает работать, так как разница осмотического давления между клеткой и внешней средой исчезает.

Если вода гипертонична по отношению к жидкостям тела гидробионтов, им грозит обезвоживание в результате осмотических потерь. Защита от обезвоживания достигается повышением концентрации солей также в теле гидробионтов. Обезвоживанию препятствуют непроницаемые для воды покровы гомойосмотических организмов - млекопитающих, рыб, высших раков, водных насекомых и их личинок.

Многие пойкилосмотические виды переходят к неактивному состоянию - анабиозу в результате дефицита воды в теле при возрастании солености. Это свойственно видам, обитающим в лужах морской воды и на литорали: коловраткам, жгутиковым, инфузориям, некоторым рачкам, черноморским полихетам Nereis divesicolor и др. Солевой анабиоз - средство переживать неблагоприятные периоды в условиях переменной солености воды.

Истинно эвригалинных видов, способных в активном состоянии обитать как в пресной, так и в соленой воде, среди водных обитателей не так много. В основном это виды, населяющие эстуарии рек, лиманы и другие солоноватоводные водоемы.

Температурный режим водоемов более устойчив, чем на суше. Это связано с физическими свойствами воды, прежде всего высокой удельной теплоемкостью, благодаря которой получение или отдача значительного количества тепла не вызывает слишком резких изменений температуры. Испарение воды с поверхности водоемов, при котором затрачивается около 2263,8 Дж/г, препятствует перегреванию нижних слоев, а образование льда, при котором выделяется теплота плавления (333,48 Дж/г), замедляет их охлаждение.

Амплитуда годовых колебаний температуры в верхних слоях океана не более 10-15 °C, в континентальных водоемах - 30-35 °C. Глубокие слои воды отличаются постоянством температуры. В экваториальных водах среднегодовая температура поверхностных слоев +(26-27) °С, в полярных - около 0 °C и ниже. В горячих наземных источниках температура воды может приближаться к +100 °C, а в подводных гейзерах при высоком давлении на дне океана зарегистрирована температура +380 °C.

Таким образом, в водоемах существует довольно значительное разнообразие температурных условий. Между верхними слоями воды с выраженными в них сезонными колебаниями температуры и нижними, где тепловой режим постоянен, существует зона температурного скачка, или термоклина. Термоклин резче выражен в теплых морях, где сильнее перепад температуры наружных и глубинных вод.

В связи с более устойчивым температурным режимом воды среди гидробионтов в значительно большей мере, чем среди населения суши, распространена стенотермность. Эвритермные виды встречаются в основном в мелких континентальных водоемах и на литорали морей высоких и умеренных широт, где значительны суточные и сезонные колебания температуры.

Световой режим. Света в воде гораздо меньше, чем в воздухе. Часть падающих на поверхность водоема лучей отражается в воздушную среду. Отражение тем сильнее, чем ниже положение Солнца, поэтому день под водой короче, чем на суше. Например, летний день около острова Мадейра на глубине 30 м - 5 ч, а на глубине 40 м всего 15 мин. Быстрое убывание количества света с глубиной связано с поглощением его водой. Лучи с разной длиной волны поглощаются неодинаково: красные исчезают уже недалеко от поверхности, тогда как сине‑зеленые проникают значительно глубже. Сгущающиеся с глубиной сумерки в океане имеют сначала зеленый, затем голубой, синий и сине‑фиолетовый цвет, сменяясь наконец постоянным мраком. Соответственно сменяют друг друга с глубиной зеленые, бурые и красные водоросли, специализированные на улавливании света с разной длиной волны.

Окраска животных меняется с глубиной так же закономерно. Наиболее ярко и разнообразно окрашены обитатели литоральной и сублиторальной зон. Многие глубинные организмы, подобно пещерным, не имеют пигментов. В сумеречной зоне широко распространена красная окраска, которая является дополнительной к сине‑фиолетовому свету на этих глубинах. Дополнительные по цвету лучи наиболее полно поглощаются телом. Это позволяет животным скрываться от врагов, так как их красный цвет в сине‑фиолетовых лучах зрительно воспринимается как черный. Красная окраска характерна для таких животных сумеречной зоны, как морской окунь, красный коралл, различные ракообразные и др.

У некоторых видов, обитающих у поверхности водоемов, глаза разделяются на две части с разной способностью к преломлению лучей. Одна половина глаза видит в воздухе, другая - в воде. Такая «четырехглазость» характерна для жуков‑вертячек, американской рыбки Anableps tetraphthalmus, одного из тропических видов морских собачек Dialommus fuscus. Эта рыбка при отливах сидит в углублениях, выставляя часть головы из воды (см. рис. 26).

Поглощение света тем сильнее, чем меньше прозрачность воды, которая зависит от количества взвешенных в ней частиц.

Прозрачность характеризуют предельной глубиной, на которой еще виден специально опускаемый белый диск диаметром около 20 см (диск Секки). Самые прозрачные воды - в Саргассовом море: диск виден до глубины 66,5 м. В Тихом океане диск Секки виден до 59 м, в Индийском - до 50, в мелких морях - до 5‑15 м. Прозрачность рек в среднем 1-1,5 м, а в самых мутных реках, например в среднеазиатских Амударье и Сырдарье, всего несколько сантиметров. Граница зоны фотосинтеза поэтому сильно варьирует в разных водоемах. В самых чистых водах эуфотическая зона, или зона фотосинтеза, простирается до глубин не свыше 200 м, сумеречная, или дисфотическая, зона занимает глубины до 1000-1500 м, а глубже, в афотическую зону, солнечный свет не проникает совсем.

Количество света в верхних слоях водоемов сильно меняется в зависимости от широты местности и от времени года. Длинные полярные ночи сильно ограничивают время, пригодное для фотосинтеза, в арктических и приантарктических бассейнах, а ледовый покров затрудняет доступ света зимой во все замерзающие водоемы.

В темных глубинах океана в качестве источника зрительной информации организмы используют свет, испускаемый живыми существами. Свечение живого организма получило название биолюминесценции. Светящиеся виды есть почти во всех классах водных животных от простейших до рыб, а также среди бактерий, низших растений и грибов. Биолюминесценция, по‑видимому, многократно возникала в разных группах на разных этапах эволюции.

Химия биолюминесценции сейчас довольно хорошо изучена. Реакции, используемые для генерации света, разнообразны. Но во всех случаях это окисление сложных органических соединений (люциферинов) с помощью белковых катализаторов (люцифераз). Люциферины и люциферазы у разных организмов имеют неодинаковую структуру. В ходе реакции избыточная энергия возбужденной молекулы люциферина выделяется в виде квантов света. Живые организмы испускают свет импульсами, обычно в ответ на раздражения, поступающие из внешней среды.

Свечение может и не играть особой экологической роли в жизни вида, а быть побочным результатом жизнедеятельности клеток, как, например, у бактерий или низших растений. Экологическую значимость оно получает только у животных, обладающих достаточно развитой нервной системой и органами зрения. У многих видов органы свечения приобретают очень сложное строение с системой отражателей и линз, усиливающих излучение (рис. 40). Ряд рыб и головоногих моллюсков, неспособных генерировать свет, используют симбиотических бактерий, размножающихся в специальных органах этих животных.

Рис. 40. Органы свечения водных животных (по С. А. Зернову, 1949):

1 - глубоководный удильщик с фонариком над зубатой пастью;

2 - распределение светящихся органов у рыбы сем. Mystophidae;

3 - светящийся орган рыбы Argyropelecus affinis:

а - пигмент, б - рефлектор, в - светящееся тело, г - линза

Биолюминесценция имеет в жизни животных в основном сигнальное значение. Световые сигналы могут служить для ориентации в стае, привлечения особей другого пола, подманивания жертв, для маскировки или отвлечения. Вспышка света может быть защитой от хищника, ослепляя или дезориентируя его. Например, глубоководные каракатицы, спасаясь от врага, выпускают облако светящегося секрета, тогда как виды, обитающие в освещенных водах, используют для этой цели темную жидкость. У некоторых донных червей - полихет - светящиеся органы развиваются к периоду созревания половых продуктов, причем светятся ярче самки, а глаза лучше развиты у самцов. У хищных глубоководных рыб из отряда удильщиковидных первый луч спинного плавника сдвинут к верхней челюсти и превращен в гибкое «удилище», несущее на конце червеобразную «приманку» - железу, заполненную слизью со светящимися бактериями. Регулируя приток крови к железе и, следовательно, снабжение бактерии кислородом, рыба может произвольно вызывать свечение «приманки», имитируя движения червя и подманивая добычу.


Водная среда включает поверхностные и подземные воды. Поверхностные воды в основном сосредоточены в океане, содержанием 1 млрд. 375 млн. км 3 - около 98% всей воды на Земле. Поверхность океана (акватория) составляет 361 млн. км 2 . Она примерно в 2,4 раза больше площади суши территории, занимающей 149 млн. км 2 . Вода в океане соленая, причем большая ее часть (более 1 млрд. км 3) сохраняет постоянную соленость около 3,5% и температуру, примерно равную 3,7°С. Заметные различия в солености и температуре наблюдаются почти исключительно в поверхностном слое воды, а также в окраинных и особенно в средиземных морях. Содержание растворенного кислорода в воде существенно уменьшается на глубине 50-60 метров.

Подземные воды бывают солеными, солоноватыми (меньшей солености) и пресными; существующие геотермальные воды имеют повышенную температуру (более 30°С.). Для производственной деятельности человечества и его хозяйственно-бытовых нужд требуется пресная вода, количество которой составляет всего лишь 2,7% общего объема воды на Земле, причем очень малая ее доля (всего 0,36%) имеется в легкодоступных для добычи местах. Большая часть пресной воды содержится в снегах и пресноводных айсбергах, находящихся в районах в основном Южного полярного круга. Годовой мировой речной сток пресной воды составляет 37,3 тыс. км 3 . томе того, может использоваться часть подземных вод, равная 13 тыс. км 3 . К сожалению, большая часть речного стока в России, составляющая около 5000 км 3 , приходится на малоплодородные и малозаселенные северные территории. При отсутствии пресной воды используют соленую поверхностную или подземную воду, производя ее опреснение или гиперфильтрацию: пропускают под большим перепадом давлений через полимерные мембраны с микроскопическими отверстиями, задерживающими молекулы соли. Оба эти процесса весьма энергоемки, поэтому представляет интерес предложение, состоящее в использовании в качестве источника пресной воды пресноводных айсбергов (или их части), которые с этой целью буксируют по воде к берегам, не имеющим пресной воды, где организуют их таяние. По предварительным расчетам разработчиков этого предложения, получение пресной воды будет примерно вдвое менее энергоемки по сравнению с опреснением и гиперфильтрацией. Важным обстоятельством, присущим водной среде, является то, что через нее в основном передаются инфекционные заболевания (примерно 80% всех заболеваний). Впрочем, некоторые из них, например, коклюш, ветрянка, туберкулез, передаются через воздушную среду. С целью борьбы с распространением заболеваний через водную среду Всемирная организация здравоохранения (ВОЗ) объявила текущее десятилетие десятилетием питьевой воды.

Водный баланс Земли

Чтобы представить, сколько воды участвует в круговороте, охарактеризуем различные части гидросферы. Более 94% ее составляет Мировой океан. Другая часть (4%) – подземные воды. При этом следует учесть, что большая их часть относится к глубинным рассолам, а пресные воды составляют 1/15 долю. Значителен также объем льда полярных ледников: с пересчетом на воду он достигает 24 млн. км., или 1,6% объема гидросферы. Озерной воды в 100 раз меньше – 230 тыс. км., а в руслах рек содержится всего лишь 1200 м. Воды, или 0,0001% всей гидросферы. Однако, несмотря на малый объем воды, реки играют очень большую роль: они, как и подземные воды, удовлетворяют значительную часть потребностей населения, промышленности и орошаемого земледелия. Воды на Земле довольно много. Гидросфера составляет около 1/4180 части массы нашей планеты. Однако на долю пресных вод, исключая воду, скованную в полярных ледниках, приходится немногим более 2 млн. км., или только 0,15% всего объема гидросферы.

Гидросфера как природная система

Гидросфера – это прерывистая водная оболочка Земли, совокупность морей, океанов, континентальных вод (включая подземные) и ледяных покровов. Моря и океаны занимают около 71% земной поверхности, в них сосредоточено около 96,5% всего объема гидросферы. Суммарная площадь всех внутренних водоемов суши составляет менее 3% ее площади. На долю ледников приходится 1,6% запасов воды в гидросферы, а их площадь составляет около 10% площади континентов.

Важнейшее свойство гидросферы – единство всех видов природных вод (Мирового океана, вод суши, водяного пара в атмосфере, подземных вод), которое осуществляется в процессе круговорота воды в природе. Движущими силами этого глобального процесса служат поступающая на поверхность Земли тепловая энергия Солнца и сила тяжести, обеспечивающие перемещение и возобновление природных вод всех видов.

Испарение с поверхности Мирового океана и с поверхности суши является начальным звеном круговорота воды в природе, обеспечивающим не только возобновление наиболее ценного его компонента – пресных воды суши, но и их высокое качество. Показателем активности водообмена природных вод служит высокая скорость их возобновления, хотя различные природные воды возобновляются (замещаются) с неодинаковой скоростью. Наиболее мобильный агент гидросферы – речные воды, период возобновления которых составляет 10-14 суток.

Преобладающая часть гидросферных вод сосредоточена в Мировом океане. Мировой океан – основное замыкающее звено круговорота воды в природе. Он отдает большую часть испаряющейся влаги в атмосферу. Водные организмы, населяющие поверхностный слой Мирового океана, обеспечивают возврат в атмосферу значительной части свободного кислорода планеты.

Огромный объем Мирового океана свидетельствует о неисчерпаемости природных ресурсов планеты. Кроме того, Мировой океан является коллектором речных вод суши, ежегодно принимая около 39 тыс. м 3 воды. Наметившееся в отдельных районах загрязнение Мирового океана грозит нарушить естественный процесс влагоооборота в его наиболее ответственном звене – испарении с поверхности океана.

Вода с точки зрения химии

Огромная роль воды в жизни человека и природы послужила причиной того, что она была одним из первых соединений, привлекших внимание ученых. Тем не менее, изучение воды еще далеко не закончено.

Общие свойства воды

Вода в силу популярности ее молекул способствует разложению контактирующих с ней молекул солей на ионы, но сама вода проявляет большую устойчивость и в химически чистой воде содержится очень мало ионов по H + и OH - .

Вода – инертный растворитель; химически не изменяется под действием большинства технических соединений, которые не растворяет. Это очень важно для всех живых организмов на нашей планете, поскольку необходимые тканям питательные вещества поступают в водных растворах в сравнительно мало измененном виде. В природных условиях вода всегда содержит то или иное количество примесей, взаимодействуя не только с твердыми и жидкими веществами, но растворяя также и газы.

Даже из свежевыпавшей дождевой воды можно выделить несколько десятков миллиграммов различных растворенных в ней веществ на каждый литр объема. Абсолютно чистую воду никогда и никому еще не удавалось получить ни в одном из ее агрегатных состояний; химически чистую воду, в значительной мере лишенную растворенных веществ, производят путем длительной и кропотливой очистки в лабораториях или на специальных промышленных установках.

В природных условиях вода не может сохранить «химическую чистоту». Постоянно соприкасаясь со всевозможными веществами, она фактически всегда представляет собой раствор различного, зачастую очень сложного свойства. В пресной воде содержание растворенных веществ обычно превышает 1 г/л. От нескольких единиц до десятков граммов на литр колеблются содержание солей в морской воде: например, в Балтийском море их всего 5 г/л, в Черном – 18, а в Красном море – даже 41 г/л.

Солевой состав морской воды в основном на 89% слагается из хлоридов (преимущественно хлорида натрия, калия, кальция), 10% приходится на сульфаты (натрия, калия, магния) и 1% - на карбонаты (натрия, кальция) и другие соли. Пресные воды содержат обычно больше всего до 80% карбонатов (натрия, кальция), около 13% сульфатов (натрия, калия, магния) и 7% хлоридов (натрия и кальция).

Вода хорошо растворяет газы (особенно при низких температурах), главным образом кислород, азот, диоксид углерода, сероводород. Количество кислорода иногда достигает 6 мг/л. В минеральных водах типа нарзан общее содержание газов может составлять до 0,1%. В природной воде присутствуют гумусовые вещества – сложные органические соединения, образующиеся в результате неполного распада остатков растительных и животных тканей, а также соединения типа белков, сахаров, спиртов.

Вода обладает исключительно высокой теплоемкостью. Теплоемкость воды принята за единицу. Теплоемкость песка, например, составляет 0,2, а железа – лишь 0,107 теплоемкости воды. Способность воды накапливать большие запасы тепловой энергии позволяет сглаживать резкие температурные колебания на прибрежных участках Земли в различные времена года и в различную пору суток: вода выступает как бы регулятором температуры на всей нашей планете.

Следует отметить особое свойство воды – ее высокое поверхностное напряжение – 72,7 эрг/см 2 (при 20°С). В этом отношении из всех видов жидкостей вода уступает только ртути. Подобное свойство воды во многом обусловлено водородными связями между отдельными молекулами H 2 O. Особенно наглядно проявляется поверхностное напряжение в прилипании воды ко многим поверхностям – смачивании. Установлено, что вещества – глина, песок, стекло, ткани, бумага и многие другие, легко смачиваемые водой, непременно имеют в своем составе атомы кислорода. Такой факт оказался ключевым при объяснении природы смачивания: энергетически неуравновешенные молекулы поверхностного слоя воды получают возможность образовать дополнительные связи с «чужими» атомами кислорода.

Смачивание и поверхностное натяжение лежат в составе явления, названного капиллярностью: в узких каналах вода способна подниматься на высоту гораздо большую, чем та, которую «позволяет» сила тяжести для столбика данного сечения.

В капиллярах вода обладает поразительными свойствами. Б. В. Дерягин установил, что в капиллярах вода, сконденсировавшаяся из водяного пара, не замерзает при 0° и даже при снижении температуры на десятки градусов.



Федеральное агентство по рыболовству

ФГОУ ВПО Камчатский Государственный технический университет

Кафедра экологии и природопользования

Дисциплина экология

Реферат на тему

“Водная среда жизни и адаптация к ней организмов ”

Выполнил Проверил

Студент группы 11ПЖб Доцент

Сазонов П.А. Ступникова Н.А.

Петропавловск-Камчатский

Введение…………………………………….3

Общая характеристика……………………...3- 4

Экологические зоны Мирового океана………….4

Основные свойства водной среды………………….5

· Плотность…………………………………….5- 6

· Кислородный режим…………………………6-7

· Солевой режим……………………………….7-8

· Температурный режим………………………8

· Световой режим………………………………..8- 9

Специфические приспособления гидробионтов………..10- 11

Особенности адаптации растений к водной среде………11- 12

Особенности адаптации животных к водной среде……..12- 14

Список литературы…………………………………………15

Введение

На нашей планете живые организмы освоили четыре основные среды

обитания. Водная среда была первой, в которой возникла и

распространилась жизнь. Только потом организмы овладели

наземно-воздушной, создали и заселили почву и сами стали четвертой

специфической средой жизни.

Вода как среда обитания имеет ряд специфических свойств, таких как

большая плотность, сильные перепады давления, малое содержание

кислорода, сильное поглощение солнечных лучей. Кроме того, водоемы и

их отдельные участки различаются солевым режимом, скоростью течений,

также свойства грунта, режим разложения органических остатков и т.д.

Поэтому наряду с адаптациями к общим свойствам водной среды ее

обитатели должны быть приспособлены и к разнообразным частным

условиям.

Все обитатели водной среды получили в экологии общее название

гидробионтов.

Гидробионты населяют Мировой океан, континентальные водоемы и

подземные воды.

Общая характеристика

Гидросфера как водная среда жизни занимает около 71% площади и 1/800 часть объема земного шара. Основное количество воды, более 94%, сосредоточено в морях и океанах. В пресных водах рек, озер количество воды не превышает 0,016% общего объема пресной воды.

В океане с входящими в него морями прежде всего различают две экологические области: толщу воды - пелагиаль и дно - бенталь. В зависимости от глубины бенталь делится на сублиторальную зону - область плавного понижения суши до глубины 200 м, батиальную - область крутого склона и абиссальную зону - океанического ложа со средней глубиной 3-6 км. Более глубокие области бентали, соответствующие впадинам океанического ложа (6-10 км) называются ультраабиссалью. Кромка берега, заливаемая во время приливов, называется литоралью. Часть берега выше уровня приливов, увлажняемая брызгами прибоя, называется суперлиторалью.

Открытые воды Мирового океана также делятся на зоны по вертикали соответствующие зонам бентали: эпипелигиаль, батипелигиаль, абиссопелигиаль.

В водной среде обитает примерно 150 000 видов животных, или около 7% общего их количества и 10 000 видов растений (8%).

Удельный вес рек, озер и болот, как уже было отмечено ранее, по сравнению с морями и океанами незначителен. Однако они создают необходимый для растений, животных и человека запас пресной воды.

Характерной чертой водной среды является ее подвижность, особенно в проточных, быстро текущих ручьях и реках. В морях и океанах наблюдаются приливы и отливы, мощные течения, штормы. В озерах вода перемещается под действием температуры и ветра.

Экологические зоны Мирового океана

В любом водоеме можно выделить различные по условиям зоны. В океане

вместе с входящими в него морями различают, прежде всего, две

экологические области: пелагиаль – толща воды и бенталь –

В зависимости от глубины бенталь делится на сублиторальную зону – область плавного понижения суши до глубины

примерно 200 м, батиальную – область крутого склона и абиссальную

зону – океанического ложа со средней глубиной 3-6 км. Еще более

глубокие области бентали, соответствующие впадинам океанического ложа,

называют ультрабенталью. Кромка берега, заливаемая во время приливов,

называется литоралью. Часть берега выше уровня приливов, увлажняемая

брызгами, называется супралиторалью.

Естественно, что, например, обитатели сублиторали живут в условиях

относительно невысокого давления, дневного солнечного освещения, часто

довольно значительных изменений температурного режима. Обитатели

абиссальных и ультраабиссальных глубин существуют во мраке, при

постоянной температуре и давлении в несколько сотен, а иногда и около

тысячи атмосфер. Поэтому одно лишь указание на то, в какой зоне

бентали обитает тот или иной вид организмов, уже говорит о том, какими

общими экологическими свойствами он должен обладать.

Все население дна океана получило название бентоса. Организмы,

обитающие в толще воды, или пелагиали, относятся к пелагосу.

Пелагиаль также делят на вертикальные зоны, соответствующие по глубине

зонам бентали: эпипелагиаль, батипелагиаль, абиссопелагиаль. Нижняя

граница эпипелагиали (не более 200 м) определяется проникновением

солнечного света в количестве, достаточном для фотосинтеза. Зеленые

растения глубже этих зон существовать на могут. В сумеречных

батиальных и полных мрака абиссальных глубинах обитают лишь

микроорганизмы и животные. Разные экологические зоны выделяются и во

всех других типах водоемов: озерах, болотах, прудах, реках и т.д.

Разнообразие гидробионтов, освоивших все эти места обитания, очень

Основные свойства водной среды

1. Плотность воды

это фактор, определяющий условия передвижения водных организмов и

давление на разных глубинах. Для дистиллированной воды плотность равна

1 г/см 3 при +4 0 С. Плотность природных вод, содержащих растворенные

соли, может быть больше, до 1, 35 г/см 3 . Давление возрастает с

глубиной примерно в среднем на 1 атмосферу на каждые 10 м.

В связи с резким градиентом давления в водоемах гидробионты в целом

значительно более эврибатны по сравнению с сухопутными организмами.

Некоторые виды, распространенные на разных глубинах, переносят

давление от нескольких до сотен атмосфер.

Однако многие обитатели морей и океанов относительно стенобатны и

приурочены к определенным глубинам. Стенобатность обычно свойственна

мелководным и глубоководным видам.

Плотность воды обеспечивает возможность опираться на нее, что

особенно важно для бесскелетных форм. Опорность среды служит условием

парения в воде, и многие гидробионты приспособлены именно к этому

образу жизни. Взвешенные, парящие в воде организмы объединяют в особую

экологическую группу гидробионтов планктон.

В составе планктона одноклеточные водоросли, простейшие, медузы,

сифонофоры, гребневики, крылоногие и киленогие моллюски, разнообразные

мелкие рачки, личинки донных животных, икра и мальки рыб и многие

другие. Планктонные организмы обладают многими сходными адаптациями,

повышающими их плавучесть и препятствующими оседанию на дно. К таким

приспособлениям относятся: 1) общее увеличение поверхности тела за

счет уменьшения размеров, сплющенности, удлинения, развития

многочисленных выростов и щетинок, что увеличивает трение о воду; 2)

уменьшение плотности за счет редукции скелета, накопления в теле

жиров, пузырьков газа и т.д.

Одноклеточные водоросли фитопланктон парят в воде пассивно,

большинство же планктонных животных способно к активному плаванию, но

в ограниченных пределах. Планктонные организмы не могут преодолевать

течения и переносятся ими на большие расстояния. Многие виды

зоопланктона способны, однако, на к вертикальным миграциям в толще

воды на десятки и сотни метров как за счет активного передвижения, так

и за счет регулирования плавучести своего тела. Особую разновидность

планктона составляет экологическая группа нейстона обитатели

поверхностной пленки воды на границе с воздушной средой.

Плотность и вязкость воды сильно влияют на возможность активного

плавания. Животных, способных к быстрому плаванию и преодолению силы

течений, объединяют в экологическую группу нектона. Представители

нектона рыбы, кальмары, дельфины. Быстрое движение в водной толще

возможно, лишь при наличии обтекаемой формы тела и сильно развитой

мускулатуры. Торпедовидная форма вырабатывается у всех хороших

пловцов, независимо от их систематической принадлежности и способа

движения в воде: реактивного, за счет изгибания тела, с помощью

конечностей.

2. Кислородный режим

Коэффициент диффузии кислорода в воде примерно в 320 тыс. раз ниже,

чем в воздухе, а общее содержание его не превышает 10 мл в 1 литре

воды, это в 21 раз ниже, чем в атмосфере. Поэтому условия дыхания

гидробионтов значительно усложнены. Кислород поступает в воду в

основном за счет фотосинтетической деятельности водорослей и диффузии

из воздуха. Поэтому верхние соли водной толщи, как правило, богаче

кислородом, чем нижние. С повышением температуры и солености воды

концентрация в ней кислорода понижается. В слоях, сильно заселенных

бактериями и животными, может создаваться резкий дефицит кислорода

изза усиленного его потребления.

Среди водных обитателей много видов, способных переносить широкие

отсутствия (эвриоксибионты). Вместе с тем ряд видов стеноксибионтны

они могут существовать лишь при достаточно высоком насыщении воды

кислородом. Многие виды способны при недостатке кислорода впадать в

неактивное состояние аноксибиоз и таким образом переживать

неблагоприятный период.

Дыхание гидробионтов осуществляется либо через поверхность тела,

либо через специализированные органы жабры, легкие, трахеи.

При этом покровы могут служить дополнительным органом дыхания. Если

через покровы тела происходит газообмен, то они очень тонки. Дыхание

облегчается также увеличением поверхности. Это достигается в ходе

эволюции видов образованием различных выростов, уплощением,

удлинением, общим уменьшением размеров тела. Некоторые виды при

нехватке кислорода активно изменяют величину дыхательной поверхности.

Многие сидячие и малоподвижные животные обновляют вокруг себя воду,

либо создавая ее направленный ток, либо колебательными движениями

способствуя ее перемешиванию.

У некоторых видов встречается комбинирование водного и воздушного

дыхания. Вторичноводные животные сохраняют обычно атмосферное дыхание

как более выгодный энергетически и нуждаются поэтому в контактах с

воздушной средой.

Нехватка кислорода в воде приводит иногда к катастрофическим

явлениям заморам, сопровождающимся гибелью множества гидробионтов.

Зимние заморы часто вызываются образованием на поверхности водоемов

льда и прекращением контакта с воздухом; летние повышением температуры

воды и уменьшением вследствие этого растворимости кислорода. Заморы

чаще возникают чаще возникают в прудах, озерах, реках. Реже заморы

происходят в морях. Кроме недостатка кислорода, заморы могут быть

вызваны повышением концентрации в воде токсичных газов метана,

сероводорода и других, образующихся в результате разложения

органических материалов на дне водоемов.

3. Солевой режим

Поддержание водного баланса гидробионтов имеет свою специфику. Если

для наземных животных и растений наиболее важно обеспечение организма

водой в условиях ее дефицита, то для гидробионтов не менее существенно

поддержание определенного количества воды в теле при ее избытке в

окружающей среде. Излишнее количество воды в клетках приводит к

изменению в них осмотического давления и нарушению важнейших жизненных

Большинство водных обитателей пойкилосмотичны: осмотическое давление

в их теле зависит от солености окружающей воды. Поэтому для

гидробионтов основной способ поддерживать свой солевой баланс это

избегать местообитаний с неподходящей соленостью. Пресноводные формы

не могут существовать в морях, морские не переносят опреснения. Если

соленость воды подвержена изменениям, животные перемещаются в поисках

благоприятной среды. Позвоночные животные, высшие раки, насекомые и их

личинки, обитающие в воде, относятся к гомойосмотическим видам,

сохраняя постоянное осмотическое давление в теле независимо от

концентрации солей в воде.

У пресноводных видов соки тела гипертоничны по отношению к

окружающей среде. Им угрожает излишнее обводнение, если не

препятствовать поступлению или не удалять избыток воды из тела. У

простейших это достигается работой выделительных вакуолей, у

многоклеточных удалением воды через выделительную систему. Некоторые

инфузории каждые 2-2,5 минуты выделяют количество воды, равное объему

тела. На «откачку» избыточной воды клетка затрачивает очень много

энергии. С повышением солености работа вакуолей замедляется.

Если вода гипертонична по отношению к сокам тела гидробионтов, им

грозит обезвоживание в результате осмотических потерь. Защита от

обезвоживания достигается повышением концентрации солей также в теле

гидробионтов. Обезвоживанию препятствуют непроницаемые для воды

покровы гомойосматических организмов млекопитающих, рыб, высших раков,

водных насекомых и их личинок. Многие пойкилосмотические виды

переходят к неактивному состоянию анабиозу в результате дефицита воды

в теле при возрастании солености. Это свойственно видам, обитающим в

лужах морской воды и на литорали: коловраткам, жгутиковым, инфузориям,

некоторым рачкам и др. Солевой анабиоз средство переживать

неблагоприятные периоды в условиях переменной солености воды.

Истинно эвригалинных видов, способных в активном состоянии обитать

как в пресной, так и в соленой воде, среди водных обитателей не так уж

много. В основном это виды, населяющие эстуарии рек, лиманы и другие

солоноватоводные водоемы.

4. Температурный режим водоемов

более устойчив, чем на суше. Это связано с физическими свойствами

воды, прежде всего высокой удельной теплоемкостью, благодаря которой

получение или отдача значительного количества тепла не вызывает

слишком резких изменений температуры. Амплитуда годовых колебаний

температуры в верхних слоях океана не более 10-15 0 С, в

континентальных водоемах 30-35 0 С. Глубокие слои воды отличаются

постоянством температуры. В экваториальных водах среднегодовая

температура поверхностных слоев +26...+27 0 С, в полярных около 0 0 С

и ниже. Таким образом, в водоемах существует довольно значительное

разнообразие температурных условий. Между верхними слоями воды с

выраженными в них сезонными колебаниями температуры и нижними, где

тепловой режим постоянен, существует зона температурного скачка, или

термоклина. Термоклин резче выражен в теплых морях, где сильнее

перепад температуры наружных и глубинных вод.

В связи с более устойчивым температурным режимом воды среди

гидробионтов в значительно большей мере, чем среди населения суши,

распространена стенотермность. Эвритермные виды встречаются в основном

в мелких континентальных водоемах и на литорали морей высоких и

умеренных широт, где значительны суточные и сезонные колебания

температуры.

5. Световой режим водоемов

Света в воде гораздо меньше, чем в воздухе. Часть падающих на

поверхность водоема лучей отражается в воздушную среду. Отражение тем

сильнее, чем ниже положение Солнца, поэтому день под водой короче, чем

на суше. Быстрое убывание количества света с глубиной связано с

поглощением его водой. Лучи с разной длиной волны поглощаются

неодинаково: красные исчезают уже недалеко от поверхности, тогда как

синезеленые проникают гораздо глубже. Сгущающиеся с глубиной сумерки

имеют сначала зеленый, затем голубой, синий и синефиолетовый цвет,

сменяясь наконец постоянным мраком. Соответственно сменяют друг друга

с глубиной зеленые, бурые и красные водоросли, специализированные на

улавливание света с разной длиной волны. Окраска животных меняется с глубиной так же закономерно.

Наиболее ярко и разнообразно окрашены обитатели литоральной и

сублиторальной зон. Многие глубинные организмы, подобно пещерным, не

имеют пигментов. В сумеречной зоне широко распространена красная

окраска, которая является дополнительной к синефиолетовому свету на

этих глубинах. Дополнительные по цвету лучи наиболее полно поглощаются

телом. Это позволяет животным скрываться от врагов, так как их красный

цвет в синефиолетовых лучах зрительно воспринимается как черный.

Поглощение света тем сильнее, чем меньше прозрачность воды, которая

зависит от количества взвешенных в ней частиц. Прозрачность

характеризуют предельной глубиной, на которой еще виден специально

опускаемый белый диск диаметром около 20 см (диск Секки).

Специфические приспособления гидробионтов

Способы ориентации животных в водной среде

Жизнь в постоянных сумерках или во мраке сильно ограничивает

возможности зрительной ориентации гидробионтов. В связи с быстрым

затуханием световых лучей в воде даже обладатели хорошо развитых

органов зрения ориентируются при их помощи лишь на близком расстоянии.

Звук распространяется в воде быстрее, чем в воздухе. Ориентация на

звук развита у гидробионтов в целом лучше, чем зрительная. Ряд видов

улавливает даже колебания очень низкой частоты (инфразвуки),

возникающие при изменении ритма волн, и заблаговременно спускается

перед штормом из поверхностных слоев в более глубокие. Многие

обитатели водоемов млекопитающие, рыбы, моллюски, ракообразные сами

издают звуки. Ракообразные осуществляют это трением друг о друга

разных частей тела; рыбы с помощью плавательного пузыря, глоточных

зубов, челюстей, лучей грудных плавников и другими способами. Звуковая

сигнализация служит чаще всего для внутривидовых взаимоотношений

например, для ориентации в стае, привлечения особей другого пола, и

особенно развита у обитателей мутных вод и больших глубин, живущих в

Ряд гидробионтов отыскивает пище и ориентируется при помощи

эхолокации восприятия отраженных звуковых волн. Многие воспринимают

отраженные электрические импульсы, производя при плавании разряды

разной частоты. Известно около 300 видов рыб, способных генерировать

электричество и использовать его для ориентации и сигнализации. Ряд

рыб использует электрические поля также для защиты и нападения.

Для ориентации в глубине служит восприятие гидростатического давления. Оно осуществляется при помощи статоцистов, газовых камер и

других органов.

Наиболее древний способ, свойственный всем водным животным,

восприятие химизма среды. Хеморецепторы многих гидробионтов обладают

чрезвычайной чувствительностью. В тысячекилометровых миграциях,

которые характерны для многих видов рыб, они ориентируются в основном

по запахам, с поразительной точностью находя места нерестилищ или

Фильтрация как тип питания

Некоторые гидробионты обладают особым характером питания это

отцеживание или осаждение взвешенных в воде частиц органического

происхождения и многочисленных мелких организмов. Такой способ

питания, не требующий больших затрат энергии на поиски добычи,

характерен для пластинчатожабренных моллюсков, сидячих иглокожих,

полихет, мшанок, асцидий, планктонных рачков и других. Животные

фильтраторы выполняют важнейшую роль в биологической очистке водоемов.

Литоральная зона океана, особенно богатая скоплениями фильтрующих

организмов, работает как эффективная очистительная система.

Специфика приспособлений к жизни в пересыхающих водоемах

На Земле существует много временных, неглубоких водоемов,

возникающие после разлива рек, сильных дождей, таяния снега и т.п. В

этих водоемах, несмотря на краткость их существования, поселяются

разнообразные гидробионты. Общими особенностями обитателей

пересыхающих бассейнов являются способности давать за короткие сроки

многочисленное потомство и переносить длительные периоды без воды.

Представители многих видов при этом закапываются в ил, переходя в

состояние пониженной жизнедеятельности гипобиоза. Многие мелкие виды

образуют цисты, выдерживающие засуху. Другие переживают

неблагоприятный период в стадии высокоустойчивых яиц. Некоторым видам

пересыхающих водоемов присуща уникальная способность высыхать до

состояния пленки, а при увлажнении возобновлять рост и развитие.

Экологическая пластичность является важным регулятором расселения организмов. Гидробионты с высокой экологической пластичностью распространены широко, например, элодея. Противоположный пример - рачок артемия, живущий в небольших водоемах с очень соленой водой, является типичным стеногалинным представителем с узкой экологической пластичностью. По отношению же к другим факторам он обладает значительной пластичностью и в соленых водоемах встречается довольно часто.

Экологическая пластичность зависит от возраста и фазы развития организма. Например, морской брюхоногий моллюск Littorina во взрослом состоянии при отливах ежедневно длительное время находится без воды, однако его личинки ведут планктонный образ жизни и не переносят высыхания.

Особенности адаптации растений к водной среде

Водные растения имеют значительные отличия от наземных растительных организмов. Так, способность водных растений поглощать влагу и минеральные соли непосредственно из окружающей среды отражается на их морфологической и физиологической организации. Характерным для водных растений является слабое развитие проводящей ткани и корневой системы. Корневая система служит главным образом для прикрепления к подводному субстрату и не выполняет функции минерального питания и водоснабжения, как у наземных растений. Питание же водных растений осуществляется всей поверхностью их тела. Значительная плотность воды дает возможность обитания растений во всей ее толще. У низших растений, заселяющих различные слои и ведущих плавающий образ жизни, для этого имеются специальные придатки, которые увеличивают их плавучесть и позволяют им удерживаться во взвешенном состоянии. Высшие гидрофиты имеют слабо развитую механическую ткань. В их листьях, стеблях, корнях располагаются воздухоносные межклеточные полости, увеличивающие легкость и плавучесть взвешенных в воде и плавающих на поверхности органов, что также способствует омыванию внутренних клеток водой с растворенными в ней солями и газами. Гидрофиты отличаются большой поверхностью листьев при малом общем объеме растения, что обеспечивает им интенсивный газообмен при недостатке растворенного в воде кислорода и других газов.

У ряда водных организмов развита разнолистность, или гетерофилия. Так, у сальвинии погруженные листья обеспечивают минеральное питание, а плавающие - органическое.

Важной особенностью адаптации растений к обитанию в водной среде является и то, что листья, погруженные в воду, как правило, очень тонкие. Часто хлорофилл в них располагается в клетках эпидермиса, что способствует усилению интенсивности фотосинтеза при слабом освещении. Такие анатомо-морфологические особенности наиболее четко выражены у водных мхов, валиснерии, рдестов.

От вымывания у водных растений из клеток минеральных солей или выщелачивания защитой является выделение специальными клетками слизи и образование эндодермы из более толстостенных клеток в виде кольца.

Относительно низкая температура водной среды обусловливает отмирание вегетирующих частей у погруженных в воду растений после образования зимних почек и замену летних тонких нижних листьев более жесткими и короткими зимними. Низкая температура воды отрицательно сказывается на генеративных органах водных растений, а высокая ее плотность затрудняет перенос пыльцы. В связи с этим водные растения интенсивно размножаются вегетативным путем. Большинство плавающих на поверхности и погруженных растений выносят цветоносные стебли в воздушную среду и размножаются половым путем. Пыльца разносится ветром и поверхностными течениями. Плоды и семена, которые образуются, также распространяются поверхностными течениями. Это явление носит название гидрохории. К гидрохорным относятся не только водные, а также многие прибрежные растения. Их плоды имеют высокую плавучесть, длительное время находятся в воде и не теряют при этом всхожесть. Например, водой переносятся плоды и семена стрелолиста, сусака, частухи. Плоды многих осок заключены в своеобразные мешочки с воздухом и разносятся водными течениями.

Особенности адаптации животных к водной среде

У животных, обитающих в водной среде, по сравнению с растениями адаптивные особенности более многообразны, к ним относятся такие, как анатомо-морфологические, поведенческие и др.

Животные, обитающие в толще воды, обладают в первую очередь приспособлениями, которые увеличивают их плавучесть и позволяют противостоять движению воды, течениям. Данные организмы вырабатывают приспособления, которые препятствуют поднятию их в толщу воды или уменьшают плавучесть, что позволяет удерживаться на дне, включая и быстро текущие воды.

У мелких форм, живущих в толще воды, отмечается редукция скелетных образований. Так, у простейших (радиолярии) раковины обладают пористостью, кремневые иглы скелета внутри полые. Удельная плотность гребневиков, медуз уменьшается благодаря наличию воды в тканях. Скопление капелек жира в теле способствует увеличению плавучести. Крупные скопления жира наблюдаются у некоторых ракообразных, рыб и китообразных. Удельную плотность тела снижают и тем самым повышают плавучесть плавательные пузыри, наполненные газом, которые имеют многие рыбы. У сифонофор развиты мощные воздухоносные полости.

Для животных, пассивно плавающих в толще воды, характерно не только уменьшение массы, но и увеличение удельной поверхности тела. Это связано с тем, что чем больше вязкость среды и выше удельная поверхность тела организма, тем он медленнее погружается в воду. У животных уплощается тело, на нем образуются шипы, выросты, придатки, например у жгутиковых, радиолярий.

Большая группа животных, обитающих в пресной воде, при передвижении использует поверхностное натяжение воды. По поверхности воды свободно бегают клопы водомерки, жуки вертячки и др. Членистоногое, касающееся воды окончанием своих придатков, покрытых водоотталкивающими волосками, вызывает деформацию ее поверхности с образованием вогнутого мениска. Когда подъемная сила, направленная вверх, больше массы животного, последнее и будет удерживаться на воде благодаря поверхностному натяжению.

Таким образом, жизнь на поверхности воды возможна для сравнительно мелких животных, так как масса растет пропорционально кубу размера, а поверхностное натяжение увеличивается как линейная величина.

Активное плавание у животных осуществляется с помощью ресничек, жгутиков, изгибания тела, реактивным способом за счет энергии выбрасываемой струи воды. Наибольшего совершенства реактивный способ передвижения достиг у головоногих моллюсков.

У крупных животных нередко имеются специализированные конечности (плавники, ласты), тело их обтекаемой формы и покрыто слизью.

Только в водной среде встречаются неподвижные, ведущие прикрепленный образ жизни, животные. Это такие, как гидроиды и коралловые полипы, морские лилии, двустворчатые и др. Для них характерны своеобразная форма тела, незначительная плавучесть (плотность тела больше плотности воды) и специальные приспособления для прикрепления к субстрату.

Водные животные большей частью пойкилотермны. У гомойотермных же (китообразные, ластоногие) образуется значительный слой подкожного жира, который выполняет теплоизоляционную функцию.

Глубоководные животные отличаются специфическими чертами организации: исчезновение или слабое развитие известкового скелета, увеличение размеров тела, нередко - редукция органов зрения, усиление развития осязательных рецепторов и т.д.

Осмотическое давление и ионное состояние растворов в теле животных обеспечивается сложными механизмами водно-солевого обмена. Наиболее распространенным способом поддержания постоянного осмотического давления является регулярное удаление поступающей в организм воды с помощью пульсирующих вакуолей и органов выделения. Так, пресноводные рыбы избыток воды удаляют усиленной работой выделительной системы, а соли поглощают через жаберные лепестки. Морские рыбы вынуждены пополнять запасы воды и поэтому пьют морскую воду, а излишки поступающих с водой солей выводят из организма через жаберные лепестки.

Целый ряд гидробионтов обладают особым характером питания - это отцеживание или осаждение взвешенных в воде частиц органического происхождения, многочисленных мелких организмов. Этот способ питания не требует больших затрат энергии на поиски добычи и характерен для пластинчатожаберных моллюсков, сидячих иглокожих, асцидий, планктонных рачков и др. Животные-фильтраторы выполняют важную роль в биологической очистке водоемов.

В связи с быстрым затуханием световых лучей в воде жизнь в постоянных сумерках или во мраке сильно ограничивает возможности зрительной ориентации гидробионтов. Звук распространяется в воде быстрее, чем в воздухе, и ориентация на звук у гидробионтов развита лучше зрительной. Отдельные виды улавливают даже ультразвуки. Звуковая сигнализация служит больше всего для внутривидовых взаимоотношений: ориентации в стае, привлечения особей другого пола и т.д. Китообразные, например, отыскивают пищу и ориентируются при помощи эхолокации - восприятия отраженных звуковых волн. Принцип локатора дельфина заключается в излучении звуковых волн, которые распространяются перед плывущим животным. Встречая препятствие, например рыбу, звуковые волны отражаются и возвращаются к дельфину, который слышит возникающее эхо и таким образом обнаруживает предмет, вызывающий отражение звука.

Известно около 300 видов рыб, которые способны генерировать электричество и использовать его для ориентации и сигнализации. Ряд рыб (электрический скат, электрический угорь) используют электрические поля для защиты и нападения.

Водным организмам свойственен древний способ ориентации - восприятие химизма среды. Хеморецепторы многих гидробионтов (лососи, угри) обладают чрезвычайной чувствительностью. В тысячекилометровых миграциях они с поразительной точностью находят места нерестилищ и нагула.

Список литературы

1. Акимова Т.А. Экология / Т.А. Акимова, В.В. Хаскин М.: ЮНИТИ, 1998 г.

2. Одум Ю. Общая экология / Ю. Одум М.: Мир. 1986 г.

3. Степановских А.С. Экология / А.С. Степановских М.: ЮНИТИ - 2001

4. Экологический энциклопедический словарь. М.: "Ноосфера", 1999 г.

По мнению большинства авторов, изучающих возникновение жизни на Земле, эволюционно первичной средой жизни была именно водная среда. Этому положению мы находим немало косвенных подтверждений. Прежде всего, большинство организмов не способны к активной жизнедеятельности без поступления воды в организм или, по крайней мере, без сохранения определенного содержания жидкости внутри организма. Внутренняя среда организма, в которой происходят основные физиологические процессы, очевидно, по-прежнему сохраняет черты той среды, в которой происходила эволюция первых организмов. Так, содержание солей в крови человека (поддерживаемое на относительно постоянном уровне) близко к таковому в океанической воде. Свойства водной океанической среды во многом определили химико-физическую эволюцию всех форм жизни. Пожалуй, главной отличительной особенностью водной среды является ее относительная консервативность. Скажем, амплитуда сезонных или суточных колебаний температуры в водной среде намного меньше, чем в наземно-воздушной. Рельеф дна, различие условий на различных глубинах, наличие коралловых рифов и проч. создают разнообразие условий в водной среде. Особенности водной среды проистекают из физико-химических свойств воды. Так, большое экологическое значение имеют высокая плотность и вязкость воды. Удельная масса воды соизмерима с таковой тела живых организмов. Плотность воды примерно в 1000 раз выше плотности воздуха. Поэтому водные организмы (особенно, активно движущиеся) сталкиваются с большой силой гидродинамического сопротивления. Эволюция многих групп водных животных по этой причине шла в направлении формирования формы тела и типов движения, снижающих лобовое сопротивления, что приводит к снижению энергозатрат на плавание. Так, обтекаемая форма тела встречается у представителей различных групп организмов, обитающих в воде, - дельфинов (млекопитающих), костистых и хрящевых рыб. Высокая плотность воды является также причиной того, что механические колебания (вибрации) хорошо распространяются в водной среде. Это имело большое значение в эволюции органов чувств, ориентации в пространстве и коммуникации между водными обитателями. Вчетверо большая, чем в воздухе, скорость звука в водной среде определяет более высокую частоту эхолокационных сигналов. В связи с высокой плотностью водной среды ее обитатели лишены обязательной связи с субстратом, которая характерна для наземных форм и связана с силами гравитации. Поэтому есть целая группа водных организмов (как растений, так и животных), существующих без обязательной связи с дном или другим субстратом, "парящих" в водной толще. Электропроводность открыла возможность эволюционного формирования электрических органов чувств, обороны и нападения.

Вопрос 7. Наземно-воздушная среда жизни. Наземно-воздушная среда характеризуется огромным разнообразием условий существования, экологических ниш и заселяющих их организмов. Надо отметить, что организмы играют первостепенную роль в формировании условий наземно-воздушной среды жизни, и прежде всего - газового состава атмосферы. Практически весь кислород земной атмосферы имеет биогенное происхождение. Основными особенностями наземно-воздушной среды является большая амплитуда изменения экологических факторов, неоднородность среды, действие сил земного тяготения, низкая плотность воздуха. Комплекс физико-географических и климатических факторов, свойственных определенной природной зоне, приводит к эволюционному становлению морфофизиологических адаптаций организмов к жизни в этих условиях, многообразию форм жизни. Высокое содержание кислорода в атмосфере (около 21%) определяет возможность формирования высокого (энергетического) уровняобмена веществ . Атмосферный воздух отличается низкой и изменчивой влажностью. Это обстоятельство во многом лимитировало (ограничивало) возможности освоения наземно-воздушной среды, а также направляло эволюцию водно-солевого обмена и структуры органов дыхания.

Вопрос 8. Почва как среда жизни . Почва является результатом деятельности живых организмов. Заселявшие наземно-воздушную среду организмы приводили к возникновению почвы как уникальной среды обитания. Почва представляет собой сложную систему, включающую твердую фазу (минеральные частицы), жидкую фазу (почвенная влага) и газообразную фазу. Соотношение этих трех фаз и определяет особенности почвы как среды жизни. Важной особенностью почвы является также наличие определенного количества органического вещества. Оно образуется в результате отмирания организмов и входит в состав их экскретов (выделений). Условия почвенной среды обитания определяют такие свойства почвы как ее аэрация (то есть насыщенность воздухом), влажность (присутствие влаги), теплоемкость и термический режим (суточный, сезонный, разногодичный ход температур). Термический режим, по сравнению с наземно-воздушной средой, более консервативный, особенно на большой глубине. В целом, почва отличается довольно устойчивыми условиями жизни. Вертикальные различия характерны и для других свойств почвы, например, проникновение света, естественно, зависит от глубины. Многие авторы отмечают промежуточность положения почвенной среды жизни между водной и наземно-воздушной средами. В почве возможно обитание организмов, обладающих как водным, так и воздушным типом дыхания. Вертикальный градиент проникновения света в почве еще более выражен, чем в воде. Микроорганизмы встречаются по всей толще почвы, а растения (в первую очередь, корневые системы) связаны с наружными горизонтами. Для почвенных организмов характерны специфические органы и типы движения (роющие конечности у млекопитающих; способность к изменению толщины тела; наличие специализированных головных капсул у некоторых видов); формы тела (округлая, вольковатая, червеобразная); прочные и гибкие покровы; редукция глаз и исчезновение пигментов. Среди почвенных обитателей широко развита сапрофагия - поедание трупов других животных, гниющих остатков и т.д.