§ 1 Универсальный способ сравнения чисел

Познакомимся с основными свойствами числовых неравенств, а также рассмотрим универсальный способ сравнения чисел.

Результат сравнения чисел можно записать с помощью равенства или неравенства. Неравенство может быть строгим и нестрогим. Например, а>3 - это строгое неравенство; а≥3 - это нестрогое неравенство. Способ сравнения чисел зависит от вида сравниваемых чисел. Например, если надо сравнить десятичные дроби, то мы сравниваем их поразрядно; если необходимо сравнить обыкновенные дроби с разными знаменателями, то надо привести их к общему знаменателю и сравнить числители. Но существует универсальный способ сравнения чисел. Он состоит в следующем: находят разность чисел a и b; если a - b > 0, то есть положительное число, то a > b; если a - b < 0, то есть отрицательное число, то a < b; если a - b = 0, то a = b. Этот способ удобно использовать для доказательства неравенств. Например, доказать неравенство:

2b2 - 6b + 1 > 2b(b- 3)

Воспользуемся универсальным способом сравнения. Найдем разность выражений 2b2 - 6b + 1и 2b(b - 3);

2b2 - 6b + 1- 2b(b-3)= 2b2 - 6b + 1 - 2b2 + 6b; приведем подобные слагаемые и получим 1. Так как 1 больше нуля, положительное число, то 2b2 - 6b+1 > 2b(b-3).

§ 2 Cвойства числовых неравенств

Свойство 1. Если a> b, b > c, то a> c.

Доказательство. Если a > b, то значит, разность a - b > 0, то есть положительное число. Если b >c, значит, разность b - c > 0, положительное число. Сложим положительные числа a - b и b - c, раскроем скобки и приведем подобные слагаемые, получим (a - b) +(b - c) = a- b +b - c= a - c. Так как сумма положительных чисел - число положительное, значит, a - c положительное число. Следовательно, a > c, что и требовалось доказать.

Свойство 2. Если a < b, c- любое число, то a + с < b+ с. Это свойство можно трактовать так: «К обеим частям верного неравенства можно прибавить одно и то же число, при этом знак неравенства не изменится».

Доказательство. Найдем разность выражений a + с и b+ с, раскроем скобки и приведем подобные слагаемые, получим (a + с) - (b+ с) = a + с - b - с = a - b. По условию a < b, тогда разность a - b- отрицательное число. Значит, и разность (a + с) -(b+ с) отрицательна. Следовательно, a + с < b+ с, что и требовалось доказать.

Свойство 3. Если a < b, c - положительное число, то aс < bс.

Если a < b, c- отрицательное число, то aс > bс.

Доказательство. Найдем разность выражений aс и bс, вынесем за скобки с, тогда имеем aс-bс = с(a-b). Но так как a

Если отрицательное число a-b умножим на положительное число с, то произведение с(a-b) отрицательно, следовательно, разность aс-bс отрицательна, а значит, aс

Если же отрицательное число a-b умножить на отрицательное число с, то произведение с(a-b) будет положительно, следовательно, и разность aс-bс будет положительна, значит, aс>bс. Что и требовалось доказать.

Например, a-7b.

Так как деление можно заменить умножением на число обратное, = n∙, то доказанное свойство можно применить и для деления. Таким образом, смысл этого свойства в следующем: «Обе части неравенства можно умножить или разделить на одно и то же положительное число, при этом знак неравенства не изменится. Обе части неравенства можно умножить или разделить на отрицательное число, при этом необходимо поменять знак неравенства на противоположный знак».

Рассмотрим следствие к свойству 3.

Следствие. Если a

Доказательство. Разделим обе части неравенства a

сократим дроби и получим

Утверждение доказано.

Действительно, например, 2 < 3, но

Свойство 4. Если a > b и c > d, то a + c > b+ d.

Доказательство. Так как a>b и c >d, то разности a-b и c-d - положительные числа. Тогда сумма этих чисел также положительное число (a-b)+(c-d). Раскроем скобки и сгруппируем (a-b)+(c-d) = a-b+ c-d= (a+с)-(b+ d). В виду этого равенства полученное выражение (a+с)-(b+ d) будет положительным числом. Следовательно, a+ c> b+ d.

Неравенства вида a>b, c >d или a < b, c< d называют неравенствами одинакового смысла, а неравенства a>b , c

Свойство 5. Если a > b, c > d, то ac> bd, где a, b, c , d- положительные числа.

Доказательство. Так как a>b и с - положительное число, то, используя свойство 3, получим aс > bс. Так как c >d и b- положительное число, то bc > bd. Следовательно, по первому свойству ac > bd. Смысл доказанного свойства в следующем: «Если умножить почленно неравенства одинакового смысла, у которых левая и правая части - положительные числа, то получим неравенство того же смысла»

Например, 6 < a < 7, 4 < b< 5 тогда, 24 < ab < 35.

Свойство 6. Если a < b, a и b - положительные числа, то an< bn, где n- натуральное число.

Доказательство. Если почленно перемножить n данных неравенств a < b, то, согласно утверждению свойства 5, получим an< bn. Прочесть доказанное утверждение можно так: «Если обе части неравенства - положительные числа, то их можно возвести в одну и ту же натуральную степень, сохранив знак неравенства».

§ 3 Применение свойств

Рассмотрим пример на применение рассмотренных нами свойств.

Пусть 33 < a < 34, 3 < b< 4. Оценить сумму a + b, разность a - b, произведение a ∙ b и частное a: b.

1) Оценим сумму a + b. Используя свойство 4, получим 33 + 3< a + b < 34 + 4 или

36 < a+ b <38.

2) Оценим разность a - b. Так как нет свойства на вычитание, то разность a - b заменим суммой a +(-b). Сначала оценим (- b). Для этого, используя свойство 3, обе части неравенства 3 < b< 4 умножим на -1, при этом меняем знак неравенства на противоположный знак 3 ∙ (-1) > b∙ (-1) > 4 ∙ (-1). Получим -4< -b< -3. Теперь можно сложить два неравенства одного знака 33< a < 34 и -4< -b< -3. Имеем 2 9< a - b <31.

3) Оценим произведение a ∙ b. По свойству 5 перемножим неравенства одного знака


Неравенства в математике играют заметную роль. В школе в основном мы имеем дело с числовыми неравенствами , с определения которых мы начнем эту статью. А дальше перечислим и обоснуем свойства числовых неравенств , на которых базируются все принципы работы с неравенствами.

Сразу отметим, что многие свойства числовых неравенств аналогичны . Поэтому, излагать материал будем по такой же схеме: формулируем свойство, приводим его обоснование и примеры, после чего переходим к следующему свойству.

Навигация по странице.

Числовые неравенства: определение, примеры

Когда мы вводили понятие неравенства, то заметили, что неравенства часто определяют по виду их записи. Так неравенствами мы назвали имеющие смысл алгебраические выражения, содержащие знаки не равно ≠, меньше <, больше >, меньше или равно ≤ или больше или равно ≥. На основе приведенного определения удобно дать определение числового неравенства:

Встреча с числовыми неравенствами происходит на уроках математики в первом классе сразу после знакомства с первыми натуральными числами от 1 до 9 , и знакомства с операцией сравнения. Правда, там их называют просто неравенствами, опуская определение «числовые». Для наглядности не помешает привести пару примеров простейших числовых неравенств из того этапа их изучения: 1<2 , 5+2>3 .

А дальше от натуральных чисел знания распространяются на другие виды чисел (целые, рациональные, действительные числа), изучаются правила их сравнения, и это значительно расширяет видовое разнообразие числовых неравенств: −5>−72 , 3>−0,275·(7−5,6) , .

Свойства числовых неравенств

На практике работать с неравенствами позволяет ряд свойств числовых неравенств . Они вытекают из введенного нами понятия неравенства. По отношению к числам это понятие задается следующим утверждением, которое можно считать определением отношений «меньше» и «больше» на множестве чисел (его часто называют разностным определением неравенства):

Определение.

  • число a больше числа b тогда и только тогда, когда разность a−b является положительным числом;
  • число a меньше числа b тогда и только тогда, когда разность a−b – отрицательное число;
  • число a равно числу b тогда и только тогда, когда разность a−b равна нулю.

Это определение можно переделать в определение отношений «меньше или равно» и «больше или равно». Вот его формулировка:

Определение.

  • число a больше или равно числу b тогда и только тогда, когда a−b – неотрицательное число;
  • число a меньше или равно числу b тогда и только тогда, когда a−b – неположительное число.

Данные определения мы будем использовать при доказательстве свойств числовых неравенств, к обзору которых мы и переходим.

Основные свойства

Обзор начнем с трех основных свойств неравенств. Почему они основные? Потому, что они являются отражением свойств неравенств в самом общем смысле, а не только по отношению к числовым неравенствам.

Числовым неравенствам, записанным с использованием знаков < и >, характерно:

Что касается числовых неравенств, записанных при помощи знаков нестрогих неравенства ≤ и ≥, то они обладают свойством рефлексивности (а не антирефлексивности), так как неравенства a≤a и a≥a включают в себя случай равенства a=a . Также им свойственны антисимметричность и транзитивность.

Итак, числовые неравенства, записанные при помощи знаков ≤ и ≥, обладают свойствами:

  • рефлексивности a≥a и a≤a – верные неравенства;
  • антисимметричности, если a≤b , то b≥a , и если a≥b , то b≤a .
  • транзитивности, если a≤b и b≤c , то a≤c , а также, если a≥b и b≥c , то a≥c .

Их доказательство очень похоже на уже приведенные, поэтому не будем на них останавливаться, а перейдем к другим важным свойствам числовых неравенств.

Другие важные свойства числовых неравенств

Дополним основные свойства числовых неравенств еще серией результатов, имеющих большое практическое значение. На них основаны методы оценки значений выражений, на них базируются принципы решения неравенств и т.п. Поэтому целесообразно хорошо разобраться с ними.

В этом пункте свойства неравенств будем формулировать только для одного знака строгого неравенства, но стоит иметь в виду, что аналогичные свойства будут справедливы и для противоположного ему знака, а также для знаков нестрогих неравенств. Поясним это на примере. Ниже мы сформулируем и докажем такое свойство неравенств: если a

  • если a>b , то a+c>b+c ;
  • если a≤b , то a+c≤b+c ;
  • если a≥b , то a+c≥b+c .

Для удобства представим свойства числовых неравенств в виде списка, при это будем давать соответствующее утверждение, записывать его формально с помощью букв, приводить доказательство, после чего показывать примеры использования. А в конце статьи сведем все свойства числовых неравенств в таблицу. Поехали!

    Прибавление (или вычитание) любого числа к обеим частям верного числового неравенства дает верное числовое неравенство. Другими словами, если числа a и b таковы, что a

    Для доказательства составим разность левой и правой частей последнего числового неравенства, и покажем, что она отрицательна при условии a(a+c)−(b+c)=a+c−b−c=a−b . Так как по условию a

    На доказательстве этого свойства числовых неравенств для вычитания числа c не останавливаемся, так как на множестве действительных чисел вычитание можно заменить прибавлением −c .

    Например, если к обеим частям верного числового неравенства 7>3 прибавить число 15 , то получится верное числовое неравенство 7+15>3+15 , что то же самое, 22>18 .

    Если обе части верного числового неравенства умножить (или разделить) на одно и то же положительное число c, то получится верное числовое неравенство. Если обе части неравенства умножить (или разделить) на отрицательное число c , и изменить знак неравенства на противоположный, то получится верное неравенство. В буквенном виде: если для чисел a и b выполняется неравенство ab·c.

    Доказательство. Начнем со случая, когда c>0 . Составим разность левой и правой частей доказываемого числового неравенства: a·c−b·c=(a−b)·c . Так как по условию a0 , то произведение (a−b)·c будет отрицательным числом как произведение отрицательного числа a−b на положительное число c (что следует из ). Следовательно, a·c−b·c<0 , откуда a·c

    На доказательстве рассмотренного свойства для деления обеих частей верного числового неравенства на одно и то же число c не останавливаемся, так как деление всегда можно заменить умножением на 1/c .

    Покажем пример применения разобранного свойства на конкретных числах. Например, можно обе части верного числового неравенства 4<6 умножить на положительное число 0,5 , что дает верное числовое неравенство −4·0,5<6·0,5 , откуда −2<3 . А если обе части верного числового неравенства −8≤12 разделить на отрицательное число −4 , и изменить знак неравенства ≤ на противоположный ≥, то получится верное числовое неравенство −8:(−4)≥12:(−4) , откуда 2≥−3 .

    Из только что разобранного свойства умножения обеих частей числового равенства на число следуют два практически ценных результата. Так их и сформулируем в виде следствий.

    Все разобранные выше в этом пункте свойства объединяет то, что сначала дано верное числовое неравенство, и из него посредствам некоторых манипуляций с частями неравенства и знаком получается другое верное числовое неравенство. Сейчас мы приведем блок свойств, в которых изначально дано не одно, а несколько верных числовых неравенств, а новый результат получается из их совместного использования после сложения или умножения их частей.

    Если для чисел a , b , c и d справедливы неравенства a

    Докажем, что (a+c)−(b+d) – отрицательное число, этим будет доказано, что a+c

    По индукции это свойство распространяется на почленное сложение трех, четырех, и, вообще, любого конечного числа числовых неравенств. Так, если для чисел a 1 , a 2 , …, a n и b 1 , b 2 , …, b n справедливы неравенства a 1 a 1 +a 2 +…+a n .

    Например, нам даны три верных числовых неравенства одного знака −5<−2 , −1<12 и 3<4 . Рассмотренное свойство числовых неравенств позволяет нам констатировать, что неравенство −5+(−1)+3<−2+12+4 – тоже верное.

    Можно почленно умножать числовые неравенства одного знака, обе части которых представлены положительными числами. В частности, для двух неравенств a

    Для доказательства можно умножить обе части неравенста a

    Указанное свойство справедливо и для умножения любого конечного числа верных числовых неравенств с положительными частями. То есть, если a 1 , a 2 , …, a n и b 1 , b 2 , …, b n – положительные числа, причем a 1 a 1 ·a 2 ·…·a n .

    Отдельно стоит заметить, что если в записи числовых неравенств содержатся неположительные числа, то их почленное умножение может приводить к неверным числовым неравенствам. Например, числовые неравенства 1<3 и −5<−4 – верные и одного знака, почленное умножение этих неравенств дает 1·(−5)<3·(−4) , что то же самое, −5<−12 , а это неверное неравенство.

    • Следствие. Почленное умножение одинаковых верных неравенств вида a

В заключение статьи, как и было обещано, соберем все изученные свойства в таблицу свойств числовых неравенств :

Список литературы.

  • Моро М. И. . Математика. Учеб. для 1 кл. нач. шк. В 2 ч. Ч. 1. (Первое полугодие) / М. И. Моро, С. И. Волкова, С. В. Степанова.- 6-е изд. - М.: Просвещение, 2006. - 112 с.: ил.+Прил. (2 отд. л. ил.). - ISBN 5-09-014951-8.
  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.

ЛИНЕЙНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА I

§ 10 Основные свойства числовых неравенств

1. Если а > b , то b < а , и, наоборот, если а < b , то b > а .

Доказательство. Пусть а > b . По определению это означает, что число (а - b ) положительно. Если мы перед ним поставим знак минус, то полученное число - (а - b ) будет, очевидно, отрицательным. Поэтому - (а - b ) < 0, или b - а < 0. А это (опять же по определению) и означает, что b < a .

Обратное утверждение предлагаем учащимся доказать самостоятельно.

Доказанное свойство неравенств допускает простую геометрическую интерпретацию: если точка А лежит на числовой прямой правее точки В, то точка В лежит левее точки А, и наоборот (см. рис. 20).

2. Если a > b , a b > c , то а > с .

Геометрически это свойство состоит в следующем. Пусть точка А (соответствующая числу а ) лежит правее точки В (соответствующей числу b ), а точка В, в свою очередь, лежит правее точки С (соответствующей числу с ). Тогда точка А и подавно будет лежать правее точки С (рис. 21).

Приведем алгебраическое доказательство этого свойства неравенств.

Пусть а > b , a b > с . Это означает, что числа (а - b ) и (b- с ) положительны. Сумма двух положительных чисел, очевидно, положительна. Поэтому (а - b ) + (b- с ) > 0, или а - с > 0. Но это и означает, что а > с .

3. Если а > b , то для любого числа с а + с > b + с , а - c > b - с .

Иными словами, если к обеим частям числового неравенства прибавить или от обеих частей отнять одно и то же число, то неравенство не нарушится.

Доказательство. Пусть а > b . Это означает, что а - b > 0. Но а - b = (а + с ) - (b + с ). Поэтому (а + с ) - (b + с ) > 0. А по определению это и означает, что а + с > b + с . Аналогично показывается, что а - c > b - с .

Например, если к обеим частям неравенства 5 > 4 прибавить 1 1 / 2 , то получим
6 1 / 2 > 5 1 / 2 . Отнимая от обеих частей данного неравенства число 5, получим 0 > - 1.

Следствие. Любое слагаемое одной части числового неравенства можно перенести в другую часть неравенства, поменяв знак этого слагаемого на противоположный.

Пусть, например, а + b > с . Требуется доказать, что а > с - b . Для доказательства от обеих частей данного неравенства достаточно отнять число b .

4. Пусть а > b . Если с > 0 , то аc > bc . Если же с < 0 , то ас < bс .

Иными словами, если обе части числового неравенства умножить на положительное число, то неравенство не нарушится;
если обе части неравенства умножить на отрицательное число, то знак неравенства изменится на противоположный.

Короче это свойство формулируется таким образом:

Неравенство сохраняется при почленном умножении на положительное число и изменяет знак на противоположный при почленном умножении на отрицательное число.

Например, умножив неравенство 5 > 1 почленно на 7, получим 35 > 7. Почленное умножение того же неравенства на - 7 дает - 35 < - 7.

Доказательство 4-го свойства.

Пусть а > b . Это означает, что число а - b положительно. Произведение двух положительных чисел а - b и с , очевидно, также положительно, т. е. (а - b ) с > 0, или
ас - bс > 0. Поэтому ас > bс .

Аналогично рассматривается случай, когда число с отрицательно. Произведение положительного числа а - b на отрицательное число с , очевидно, отрицательно, т. е.
(а - b) с < 0; поэтому ас - bс < 0, откуда ас < bс .

Следствие. Знак неравенства сохраняется при почленном делении на положительное число и изменяется на противоположный при почленном делении на отрицательное число.

Это вытекает из того, что деление на число с =/= 0 равносильно умножению на число 1 / c .

Упражнения

81. Можно ли неравенство 2 > 1 умножить почленно на

а) а 2 + 1; б) | а |; в) а ; г) 1 - 2а +а 2

так чтобы знак неравенства сохранился?

82. Всегда ли 5х больше 4х , а - у меньше у ?

83. Каким может быть число х , если известно, что -х > 7?

84. Расположить в порядке возрастания числа: a) а 2 , 5а 2 , 2а 2 ; б) 5а , 2а ; в) а , а 2 , а 3 . 85. Расположить в порядке убывания числа

а - b , а - 2b , а - 3b .

86. Дать геометрическую интерпретацию третьему свойству числовых неравенств.

Множество всех действительных чисел можно представить, как объединение трех множеств: множество положительных чисел, множество отрицательных чисел и множество состоящее из одного числа - число нуль. Для того чтобы указать, что число а положительно, пользуются записью а > 0 , для указания отрицательного числа используют другую запиь a < 0 .

Сумма и произведение положительных чисел также являются положительными числами. Если число а отрицательно, то число положительно (и наоборот). Для любого положительного числа а найдется такое положительное рациональное число r , что r < а . Эти факты и лежат в основе теории неравенств.

По определению неравенство а > b (или, что то же самое, b < a) имеет место в том и только в том случае, если а - b > 0, т. е. если число а - b положительно.

Рассмотрим, в частности, неравенство а < 0 . Что означает это неравенство? Согласно приведенному выше определению оно означает, что 0 - а > 0 , т. е. -а > 0 или, иначе, что число положительно. Но это имеет место в том и только в том случае, если число а отрицательно. Итак, неравенство а < 0 означает, что число а отрицательно.

Часто используется также запись аb (или, что то же самое, ).
Запись аb , по определению, означает, что либо а > b , либо а = b . Если рассматривать запись аb как неопределенное высказывание, то в обозначениях математической логики можно записать

(a b) [(a > b) V (a = b)]

Пример 1. Верны ли неравенства 5 0, 0 0?

Неравенство 5 0 - это сложное высказывание состоящее из двух простых высказываний связанных логической связкой "или" (дизъюнкция). Либо 5 > 0 либо 5 = 0. Первое высказывание 5 > 0 - истинно, второе высказывание 5 = 0 - ложно. По определению дизъюнкции такое сложное высказывание истинно.

Аналогично обсуждается запись 00.

Неравенства вида а > b, а < b будем называть строгими, а неравенства вида ab, ab - нестрогими.

Неравенства а > b и с > d (или а < b и с < d ) будем называть неравенствами одинакового смысла, а неравенства а > b и c < d - неравенствами противоположного смысла. Отметим, что эти два термина (неравенства одинакового и противоположного смысла) относятся лишь к форме записи неравенств, а не к самим фактам, выражаемым этими неравенствами. Так, по отношению к неравенству а < b неравенство с < d является неравенством того же смысла, а в записи d > c (означающей то же самое) - неравенством противоположного смысла.

Наряду с неравенствами вида a > b , ab употребляются так называемые двойные неравенства, т. е. неравенства вида а < с < b , ас < b , a < cb ,
a
cb . По определению запись

а < с < b (1)
означает, что имеют место оба неравенства:

а < с и с < b.

Аналогичный смысл имеют неравенства асb, ас < b, а < сb.

Двойное неравенство (1) можно записать так:

(a < c < b) [(a < c) & (c < b)]

а двойное неравенство a ≤ c ≤ b можно записать в следующем виде:

(a c b) [(a < c)V(a = c) & (c < b)V(c = b)]

Перейдем теперь к изложению основных свойств и правил действий над неравенствами, договорившись, что в данной статье буквы a, b, с обозначают действительные числа, а n означает натуральное число.

1) Если а > b и b > с, то a > с (транзитивность).

Д о к а з а т е л ь с т в о.

Так как по условию а > b и b > c , то числа а - b и b - с положительны, и, следовательно, число а - с = (а - b) + (b - с) , как сумма положительных чисел, также является положительным. Это означает, по определению, что а > с .

2) Если а > b, то при любом с имеет место неравенство а + с > b + c.

Д о к а з а т е л ь с т в о.

Так как а > b , то число а - b положительно. Следовательно, число (а + с) - (b + с) = a + c - b - c = а - b также является положительным, т. е.
a + с > b + с.

3) Если a + b > c, то a > b - c , т. е. любое слагаемое можно перенести из одной части неравенства в другую, изменив знак этого слагаемого на противоположный.

Доказательство вытекает из свойства 2) достаточно к обеим частям неравенства а + b > с прибавить число - b.

4) Если а > b и с > d, то а + с > b + d, т. е. при сложении двух неравенств одного и того же смысла получается неравенство того же смысла.

Д о к а з а т е л ь с т в о.

В силу определения неравенства достаточно показать, что разность
(а + с} - (b + c) положительна. Эту разность можно записать следующим образом:
(a + c) - (b + d) = {а - b) + (с - d) .
Так как по условию числа а - b и с - d положительны, то (a + с) - (b + d) также есть число положительное.

Следствие. Из правил 2) и 4) вытекает следующее Правило вычитания неравенств: если а > b, с > d , то a - d > b - с (для доказательства достаточно к обеим частям неравенства а + с > b + d прибавить число - c - d ).

5) Если а > b, то при с > 0 имеем ас > bc, а при с < 0 имеем ас < bc.

Иначе говоря, при умножении обеих частей неравенства ни положительное число знак неравенства сохраняется (т. е. получается неравенство, того же смысла), а при умножении на отрицательное число знак неравенства меняется на противоположный (т. е. получается неравенство противоположного смысла.

Д о к а з а т е л ь с т в о.

Если а > b , то а - b есть число положительное. Следовательно, знак разности ас-bс = с(а - b) совпадает со знаком числа с : если с - положительное число, то и разность ас - bc положительна и потому ас > bс , а если с < 0 , то эта разность отрицательна и потому bc - ас положительно, т. е. bc > ас .

6) Если а > b > 0 и с > d > 0, то ас > bd, т. е. если все члены двух неравенств одинакового смысла положительны, то при почленном умножении этих неравенств получается неравенство того же смысла.

Д о к а з а т е л ь с т в о.

Имеем ас - bd = ac - bc + bc - bd = c(a - b) + b{c - d) . Так как с > 0, b > 0, a - b > 0, с - d > 0, то ас - bd > 0, т. е. ас > bd.

Замечание. Из доказательства видно, что условие d > 0 в формулировке свойства 6) несущественно: для справедливости этого свойства достаточно, чтобы были выполнены условия a > b > 0, с > d, с > 0 . Если же (при выполнении неравенств a > b, с > d ) числа а, b, с не будут все положительными, то неравенство ас > bd может не выполняться. Например, при а = 2, b =1, c = -2, d = -3 имеем a > b, с > d , но неравенство ас > bd (т. е. -4 > -3) не выполнено. Таким образом, требование положительности чисел а, b, с в формулировке свойства 6) существенно.

7) Если a ≥ b > 0 и c > d > 0, то(деление неравенств).

Д о к а з а т е л ь с т в о.

ИмеемЧислитель дроби, стоящей в правой части, положителен (см. свойства 5), 6)), знаменатель также положителен. Следовательно,. Этим свойство 7) доказано.

Замечание. Отметим важный частный случай правила 7), получающийся при а = b = 1: если с > d > 0, то. Таким образом, если члены неравенства положительны, то при переходе к обратным величинам получаем неравенство противоположного смысла. Предлагаем читателям проверить, что это правило сохраняется и в7) Если ab > 0 и c > d > 0, то(деление неравенств).

Д о к а з а т е л ь с т в о. то.

Мы доказали выше несколько свойств неравенств, записанных с помощью знака > (больше). Однако все эти свойства можно было бы формулировать с помощью знака < (меньше), так как неравенство b < а означает, по определению, то же самое, что и неравенство а > b . Кроме того, как это нетрудно проверить, доказанные выше свойства сохраняются и для нестрогих неравенств. Например, свойство 1) для нестрогих неравенств будет иметь следующий вид: если аb и bс , то ас .

Разумеется, сказанным выше не ограничиваются общие свойства неравенств. Существует еще целый ряд неравенств общего вида, связанных с рассмотрением степенной, показательной, логарифмической и тригонометрических функций. Общий подход для написания такого рода неравенств заключается в следующем. Если некоторая функция у = f(х) монотонно возрастает на отрезке [а, b] , то при x 1 > x 2 (где x 1 и x 2 принадлежат этому отрезку) мы имеем f(x 1) > f(x 2). Аналогично, если функция y = f{x) монотонно убывает на отрезке [а, b] , то при х 1 > х 2 (где х 1 и х 2 принадлежат этому отрезку) мы имеем f(x 1) < f(x 2 ). Разумеется, сказанное не отличается от определения монотонности, но для запоминания и написания неравенств этот прием очень удобен.

Так, например, для любого натурального n функция у = х n является монотонно возрастающей на луче }