Во время предполетной подготовки командир ВС, второй пилот и штурман должны изучить на АМСГ метеорологическую обстановку и условия полета по маршруту, в аэропортах вылета и посадки, на запасных аэродромах, обратив внимание на основные атмосферные процессы, обуславливающие погоду:

На состояние воздушных масс;

На расположение барических образований;

На положение атмосферных фронтов относительно маршрута полета.

2.1. Воздушные массы и погода в них

Большие массы воздуха в тропосфере, обладающие однородными погодными условиями и физическими свойствами, называются воздушными массами (ВМ).Основой термодинамической характеристикой ВМ является их температурный режим, влагосодержание и движение. В связи с этим ВМ подразделяется:

Устойчивая ВМ - более теплая, чем подстилающая поверхность. В неге нет условия для развития вертикальных движений воздуха, так как охлаждение снизу уменьшает вертикальный градиент температуры за счет убывания температурного контраста между нижними и верхними слоями. Здесь образуются слои инверсии и изотермии. Наиболее благоприятным временем для приобретения устойчивости ВМ над континентом является в течение суток – ночь, в течение года - зима.

Характер погоды в УВМ зимой: низкие подинверсионые слоистые и слоисто-кучевые облака, морось, дымка, туман, гололед, в облаках обледенение (Рис. 3).

Рис. 3 Погода в УВМ зимой

Сложные условия только для взлета, посадки и визуальных полетов, от земли до 1-2 км, выше малооблачно. Летом в УВМ преобладает малооблачная погода или кучевые облака со слабой турбулентностью до 500 м, видимость несколько ухудшена за счет задымленности. Циркулирует УРМ и теплом секторе циклона в па западной периферии антициклонов.

Неустойчивая воздушная масса (НВМ) – это холодная ВМ, в которой наблюдаются благоприятные условия для развития восходящих движений воздуха, главным образом термической конвекции. При перемещении над теплой подстилающей поверхностью нижние слой ХВ прогреваются, что приводит к возрастанию вертикальных градиентов температуры до 0,8-1,5/100 м, как следствие этого, к интенсивному развитию конвективных движений в атмосфере. Наиболее активна НВМ в теплое время года. При достаточном влагосодержании воздуха развиваются кучево-дождевые облака до 8-12 км, ливни, град, внутримассовые грозы, шквалистые усиления ветра. Хорошо выражен суточный ход всех элементов. При достаточной влажности и последующем ночном прояснении утром могут возникать радиационные туманы. Полет в этой массе сопровождается болтанкой (Рис. 4).


Рис. 4 Погода в НВМ летом

В холодное время года в НВМ сложности с полетами не наблюдается. Как правило, ясно, поземок, низовая метель, при ветрах северных и северо-восточных, а при северо-западном вторжении ХВ наблюдаются облака с нижней границей не ниже 200-300 м типа слоисто-кучевая или кучево-дождливая со снежными зарядами.

В НВМ могут возникать вторичные холодные фронты. Циркулирует НВМ в тыловой части циклона и на восточной периферии антициклонов.

2.2. Атмосферные фронты

Для оценки фактического и ожидаемого состояния погоды на маршруте или в районе полетов большое значение имеет анализ положения атмосферных фронтов относительно маршрута полета и их перемещения.

Фронты являются зонами активного взаимодействия теплых и холодных ВМ. Вдоль поверхности фронта происходит упорядоченный подъем воздуха, сопровождающийся конденсацией содержащего в нем водяного пара.

Это приводит к формированию на фронте мощных облачных систем и осадков, вызывающих наиболее сложные для авиации условия погоды.

Перед вылетом необходимо оценить активность фронта по следующим признакам:

Фронты располагаются по оси ложбины, чем резче выражена ложбина, тем активен фронт;

Ветер претерпевает при переходе через фронт резкие изменения в направлении, наблюдается сходимость линий потока, а также изменения их по скорости;

Температура по обе стороны фронта претерпевает резкие изменения, контрасты температуры составляют 6-10 0 и более;

Барическая тенденция не одинакова по обе стороны фронта, перед фронтом падает, за фронтом растет, иногда изменение давления за 3 часа составляет 3-4 гПа и более;

Вдоль линии фронта располагаются характерные для каждого типа фронта облака и зоны осадков. Чем влажнее ВМ в зоне фронта, тем активнее погода. На высотных картах фронт выражен в сгущении изогипс и изотерм, в резках контрастах температуры и ветра.

Перемещение фронта происходит в направлении и со скоростью наблюдающегося в холодном воздухе градиентного ветра или его составляющей, направленной перпендикулярно к фронту. Если ветер направлен вдоль линии фронта, то он остается малоподвижным.

Смещение фронта определяется по воздушному потоку по карте АТ 700 ГПА со скоростью приблизительно равное 0,7-0,8 скорости ветра на уровне АТ700, а также методам экстраполяции, т.е. сравнение двух приземных карт погоды за разные сроки.

2.3 Теплый фронт

Характер погоды и условия полета в зоне теплого фронта определяются, как правило, наличием обширной зоны слоистообразных облаков, расположенных над фронтальной поверхностью впереди линии фронта, шириной до 700-1000 км. Фронтальная облачность формируется за счет адиабатического охлаждения теплого воздуха при его упорядоченном подъеме по клину отступающего холодного воздуха. При полете навстречу ТФ экипаж прежде всего встречают предвестники фронта – облака перистые, затем перисто-слоистые, высокослоистые, слоисто-дождевые. Из высокослоистых и слоисто-дождевых выпадают обложные осадки шириной до 300-400 км. Под слоисто-дождевыми, вследствие испарения выпадающих осадков, часто образуются разорванно-дождевые, высотой 50-150 м, а иногда переходят в туман. Наиболее сложные условия погоды, влияющие на взлет и посадку самолетов и визуальные полеты, отмечаются на расстоянии 300-400 км в зоне фронта вблизи центра циклона. Здесь наблюдаются низкая облачность, осадки, ухудшение видимости из-за фронтального тумана, в облаках и осадках зимой обледенение, гололед, общие метели (Рис. 5).


Рис. 5 Теплый фронт в зимнее время

Облака имеют достаточно большую вертикальную мощность и выход из этих облаков обычно осуществляется на высотах 5-6 км, а выше отмечаются безоблачные прослойки, достаточно устойчивые по времени, которые можно использовать для полета.

Летом ТФ слабо выраженный, но ночью обостряется особенно в тех случаях, когда ТВМ оказывается тропический воздух, в котором наблюдается значительные запасы влаги и большие вертикальные температурные градиенты, тогда на ТФ развивается кучево-дождливые облака с ливнями и грозами, замаскированные слоистообразными облаками, что представляет опасность для полетов самолетов (Рис. 6,7).


Рис. 6 Теплый фронт в летнее время


Рис. 7 Грозовые очаги на теплом фронте

Болтанка может наблюдаться лишь в отдельных случаях, когда в зоне фронта отмечаются струйные течения, расположенных перед линией фронта на 400-500 км на высоте 7-9 км.

2.4 Холодные фронты

В зависимости от скорости движения фронта, характеристика восходящих движений ТВ, а такие от расположения зон облачности и осадков относительно фронтальной поверхности, холодные фронты подразделяются:

Холодный фронт 1 рода – медленно движущийся (15-30 км/час)

Холодный фронт 2 рода – быстро движущийся фронт (30 км/час и более).

Холодные фронты наиболее выражены в теплое время и обостряются в середине дня.

Холодный фронт 1 рода чаще формируется в холодное полугодие. В восходящем теплом воздухе процесс конденсации не носит бурного характера и его облачная система сходна с ТФ, но ширина фронта 300-400 км, осадки обложные шириной 150-200 км, в/г облачной системы 4-5 км. В зоне ХФ 1 рода значительно усложнены полеты на малых высотах в связи с ограниченной видимостью и образованием низкой подфронтальной разорвано-дождевой облачности, которая иногда переходит во фронтальный туман (Рис. 8).


Рис. 8 Холодный фронт 1 рода в зимнее время

Летом в передней части фронта за счет развития конвекции образуются СВ с грозами, ливневыми осадками и шквалистым усилением ветра.

Конвективная облачность на ХФ 1 рода представляет собой ограниченную по ширине зону в виде отдельных очагов.

За фронтом СВ переходят в слоисто-дождевые, а затем в высокослоистые. Ливневые осадки сменяются обложными, полет сопровождается болтанкой (Рис. 9).


Рис. 9 Холодный фронт 1 рода в летнее время

Холодный фронт 2 рода представляет наибольшую опасность для полетов. Он характерен для молодого развивающего циклона. С этим фронтом связана узкая зона мощной кучево-дождевой облачности и интенсивных ливневых осадкой, которая располагается в основном на линии фронта шириной 50-100 км. Впереди фронта, под кучево-дождевыми, часто образуется вал низких разорвано-дождевых облаков, вращающихся вокруг горизонтальной оси, шквальный воротник, который очень опасен при попытке пересечения фронта. Летом сопровождается сильными шквалами, грозами, выпадением интенсивного града и возникновения пыльных бурь, сдвигов ветра, интенсивной болтанки, что резко усложняет условия полетов для всех типов самолетов (Рис. 10).


Рис. 10 Холодный фронт 2 рода а летнее время

Кучево-дождевые облака обычно на локаторе представляют из себя непрерывную цепь засветов с небольшими просветами. При полете навстречу фронту, вблизи от него, как правило будет наблюдаться гряда кучево-дождевых с полосами ливневых осадков и грозовыми очагами. Предвестником ХФ 2 рода являются высококучевые чечевицеобразные облака, которые появляются впереди фронта за 200-300 км. Зимой ХФ 2 рода вызывает резкое похолодание, усиление ветра, снежные заряды, метели (Рис. 11).


Рис. 11 Холодный фронт 2 рода в зимнее время

2.5 Фронты окклюзии

Холодный фронт, как более активный, имеет и большую скорость, чем теплый фронт, в результате происходит слияние. Образуется новый сложный фронт – фронт окклюзии. При процессе слияния фронтов теплый воздух вытесняется вверх, а в приземном слое встречаются холодные массы. Если тыловой ХФ оказывается более холодным, образуется фронт окклюзии по типу ХФ (Рис. 12, 13).


Рис. 12 Холодный фронт окклюзии зимой


Рис. 13 Холодный фронт окклюзии летом

Если же ХФ будет теплее отступающего, то образуется окклюзия по типу ТФ (Рис. 14, 15).


Рис. 14 Теплый фронт окклюзии зимой


Рис. 15 Теплый фронт окклюзии летом

Погодные условия типичны на фронтах окклюзии по типу ТФ или ХФ. Наиболее сложные условия погоды и полетов у точки окклюзии.

Здесь зимой низкая облачность, слоисто-дождевые и разорванно-дождевые облака, осадки, обледенение, гололед, туманы. Летом кучево-дождевые облака, грозы, ливни, болтанка. Условия погоды на окклюзиях зависят от степени устойчивости ВМ, их влагосодержания, рельефа местности, времени года и суток. Для облачной системы фронтов окклюзии характерна значительная расслоенность, до 5-7 слоев. Толщина слоев и прослоек между ними достигает 1 км, что дает возможность пересекать эти разделы, а также производить полеты в их зоне, но однако наличие на фронтах окклюзии кучево-дождевых требует повышенного внимания летного состава при полетах в облаках.

2.6 Вторичный холодный фронт

Вторичный холодный фронт является разделом между различными порциями одной и той же воздушной массы. Возникают в неустойчивых холодных воздушных массах за счет неоднородного прогрева ее от подстилающей поверхности в тыловой части циклона. Контрасты температуры в ео зоне порядка 3-5 0 С. Не следует недооценивать значение этих фронтов для производства полетов. С происхождением вторичного фронта летом наблюдаются кучево-дождевые облака с верхней границей 7-9 км, ливневые осадки, грозы, шквалистые усиления ветра. Ширина зоны влияния этого фронта 50-70 км. В холодное время года на этом фронте отмечается низкая облачность, плохая видимость за счет снеженных зарядов, метелей. Они проходят обычно за основными холодными фронтами.

2.7 Стационарные фронты

Фронт, который не испытывает заметного смещения ни в сторону ТВМ, ни в сторону ХВМ, называется стационарным. Такие фронты возникают в барических седловинах, на периферии области высокого давления и располагаются параллельно ветровому потоку. Ширина зоны фронта 50-100 км. Зимой полеты усложнены из-за низких слоистых, слоисто-кучевых, слоисто-дождевых облаков с моросью и обложным дождем, туманов, гололедом. Летом по фронту образуются отдельные очаги кучево-дождевых облаков с грозами и ливнями.

2.8 Высотные фронтальные зоны (ВФЗ)

ВФЗ - переходная зона между теплым антициклоном и холодным циклоном в средней или верхней тропосфере, обнаруживаемая по сгущению изогипс на картах абсолютной топографии. ВФЗ имеет вход и дельту, характеризуется большими значениями горизонтальных градиентов температуры и давления. Высотная фронтальная зона связана с атмосферными фронтами, которые выражены вплоть до тропопаузы, ширина переходной зоны между ВМ при этом увеличивается. Переход более плавный. Фронтальной облачности и других явлений, характерных для фронтов у поверхности земли, здесь может не быть. В верхней тропосфере сгущение изогипс и усиление ветра может наблюдаться и без связи с атмосферными фронтами. С ВФЗ связаны участки атмосферы с большими скоростями ветра более 100 км/час - струйными течениями, вызывающими опасную для полетов болтанку самолетов.

Все виды фронтов при подходе к горным хребтам и при их переваливании обостряются, изменяется конфигурация и вертикальная структура фронтов, замедляется скорость их перемещения, увеличивается мощность облаков, интенсивность осадков, что необходимо учитывать при полетах по горным маршрутам.

2.9. Барические системы

В формировании погоды и в общей циркуляции атмосферы большую роль играют циклоны и антициклоны, представляющие собой гигантские воздушные вихри, вовлекающие огромные массы воздуха, обладающие колоссальными запасами кинетической энергии. Метеоусловия, которые может встретить пилот при полете в той или иной барической системе, зависит от многих факторов: стадии развития данной барической системы, времени года и суток, положение маршрута полета относительно центра барического образования. Однако, несмотря на большое разнообразие погодных условий, все же можно указать характерные особенности в различных частях барических образований.

Циклоны.

В своем развитии циклоны проходят четыре стадии: волна, молодой циклон, окклюдированный циклон, достигающий максимального развития, и заполняющийся циклон (Рис. 16).


Рис. 16 Стадии циклона

Циклон сформирован из нескольких ВМ, разделенных атмосферными фронтами, поэтому характер погоды в нем весьма разнообразен. Циклон условно делят на четыре погодных зоны, где условия полетов будут различны (Рис. 17).


Рис. 17 Погода в циклоне

1. Центральная часть охватывает территорию в радиусе 300-500 км, характеризуется наиболее неблагоприятными условиями погоды для полетов. В центре развивающегося циклона (стадия волны и молодого циклона), как правило, наблюдается хорошо развитая по вертикали облачность до 6-9 км и выше без прослоек типа слоисто-дождевых, кучево-дождевых, с разорванно-дождевыми с высотой 50-100 м, интенсивные осадки, ухудшение видимости до 1-2 км и менее, гололед, в осадках и облаках интенсивное обледенение самолетов, летом грозы, ливни, возможны броски самолета. В центре заполняющегося циклона облачность постепенно размывается, расслаивается и осадки прекращаются.

2. Передняя часть – характеризуется сплошной облачностью и погода этой части зависит от активности ТФ. Облака перистые, перисто-слоистые, высокослоистые, слоисто-дождевые, нижняя кромка понижается к центру циклона, обложные осадки, ухудшающие видимость, фронтальные туманы, гололед.

Ветры преобладают ЮВ и В. Полеты на всех эшелонах ниже 6-8 км, как правило, в облаках с обледенением. Возникают иногда летом замаскированные очаги кучево-дождевых облаков.

3. Тыловая часть циклона. Погода определяется циркуляцией холодных неустойчивых ВМ, преобладает переменная облачность, кучевые, кучево-дождевые с кратковременными осадками, летом внутримассовые грозы, ветер сильный, порывистый северного и северо-западного направления. Полет всегда сопровождается болтанкой.

4. Теплый сектор – в нем циркулируют теплые устойчивые ВМ. В холодное полугодие наблюдается сплошная низкая облачность (слоисто-кучевые, слоистые) с моросящими осадками и адъективными туманами. Вся эта погода наблюдается в приземных слоях до 500-1500 м, выше ясно.

Усложняются визуальные полеты, а также взлет и посадка ВС, на эшелонах сложности в полетах не наблюдается. Летом – малооблачно.

При полетах в области циклонов следует помнить, что наиболее активны фронты и велика скорость восходящих движений и сложнее погода – это ближе к центру циклона, а наиболее благоприятные условия полета на периферии.

Ложбина – это узкая вытянутая полоса пониженного давления, направленная от центра циклона. Погода в ее области имеет циклонический характер и определяется тем типом фронта, с которым она связана. В приземном слое наблюдается сходимость воздушных течений, что создает условия для возникновения по оси восходящих движений воздуха. Последние проводят к образованию облаков и выпадению осадкой, к болтанке самолетов при пересечении ложбины (Рис. 18).

Рис. 18 Ложбина

Антициклоны – метеоусловия полетов в антициклоне в целом значительно лучше, чем в циклоне. Это относится, в первую очередь, к теплому времени года, когда по всей площади его преобладает малооблачная погода. В центре антициклона в утренние часы, при достаточном влагосодержании воздуха, местами образуются радиационные туманы. Если антициклон сформирован в массах неустойчивого влажного воздуха, то во вторую половину дня в нем могут развиваться мощно-кучевые и кучево-дождевые облака с грозами, особенно на его восточной периферии. В холодное время года для полетов на малых высотах сложность представляет адъективные туманы, низкие подинверсионные облака, густые дымки, моросящие осадки, гололед, особенное такие условия наблюдаются на западной и юго-западной периферии антициклонов, где наблюдается вынос теплых устойчивых ВМ (Рис. 19).


Рис. 19 Погода в антициклоне

Гребень – это вытянутая область повышенного давления, ориентированная от центра антициклона и расположенная между двумя областями низкого давления. В гребне наблюдается расходимость воздушных течений от оси его, поэтому по оси гребня ветры слабые, усиления ветра происходит на его периферии. Погода малооблачная, но в утренние часы может возникать подинверсионная низкая облачность (слоистая) и радиационные туманы.

Рис. 20 Гребень

Седловина – это барическая система, заключенная между двумя областями высокого давления и двумя областями низкого давления, расположенными крест-накрест. Погода седловины определяется влагосодержанием ВМ, если она сформирована сухими ВМ погода малооблачная. В седловине при достаточном влагосодержании летом развиваются мощно-кучевые и кучево-дождевые облака с грозами и ливнями, зимой радиационно-адвективные туманы, низкая слоистая облачность с моросящими осадками, гололед (Рис. 21).


Рис. 21 Седловина

2.10 Перемещение и эволюция барических систем

Для определения направления и скорость перемещения барических систем используются методы:

1. метод экстраполяции, т.е. путем сравнения приземных карт за разные сроки.

2. Циклон перемещается в направлении изобар его теплого сектора, оставляя сектор справа (Рис. 22а).

3. Центр циклона движется параллельно линии, соединяющей очаги падения и роста давления в сторону падения давления (Рис. 22б).

4. Два циклона, имеющие общие замкнутые изобары, совершают вращательное движение друг относительно друга против часовой стрелки (Рис. 22в).

5. Ложбина перемещается вместе с циклоном, с которым она соединена и вращается вокруг него против часовой стрелки.

6. Антициклон перемещается параллельно линии, соединяющей очаги роста и падения, в направлении очага роста давления (рис. 22г).

7. Гребень перемещается вместе с антициклоном, с которым он связан, и вращается вокруг него по часовой стрелке.

8. Приземные центры барических систем смещаются в направлении воздушных течений (ведущего потока), наблюдающихся над этими центрами на высотах 3-6 км, т.е. в направлении изогипс на карте АТ 700 со скоростью 0,8 на этом уровне и на карте АТ 500 со скоростью 0,5 на этом уровне (рис. 22д).

9. Высокие циклоны и антициклоны с вертикальной пространственной осью остаются малоподвижными (рис. 22е). Большой наклон пространственной оси указывает на быстрое перемещение барического образования.

10. Циклон углубляется, если падение давления захватывает центр и его теплый сектор, рост давления указывает на его заполнение. Циклон и ложбина углубляются, если на картах АТ 700 и АТ 500, АТ 400 наблюдается расходимость потоков и заполняется, если сходимость потоков.

11. Если в центре антициклона наблюдается положительные тенденции (рост давления), то это указывает на усиление его, давление в центре падает - антициклон разрушается.

Антициклоны и гребни усиливаются, если па АТ 700, АТ 500 и АТ 400 наблюдается сходимость потоков, и разрушается, если есть расходимость потоков.


Высотные фронтальные зоны

Зоны относительно повышенных горизонтальных градиентов температуры (и давления), прослеживаемые на картах барической топографии, называют высотными фронтальными зонами (ВФЗ).

Прохождение ВФЗ вызывает значительные локальные изменения метеорологических величин не только в нижней и средней тропосфере, но и в верхней тропосфере и нижней части стратосферы.

Тропопауза в ВФЗ или сильно наклонена, или разорвана. Стратосфера в холодном воздухе начинается на меньшей высоте, чем в теплом. Таким образом, когда в холодной стороне ВФЗ понижение температуры с высотой прекращается, на противоположной ее стороне температура еще продолжает понижаться. Вследствие этого выше уровня тропопаузы в холодном воздухе горизонтальный градиент температуры быстро уменьшается. Затем его направление меняется на противоположное, а значение постепенно возрастает и достигает максимума в большинстве случаев на уровне тропопаузы теплого воздуха. Выше этого уровня горизонтальные градиенты температуры обычно снова уменьшаются.

В результате при большой разности высот тропопаузы с разных сторон тропосферной фронтальной зоны в нижней части стратосферы также возникает фронтальная зона. Она наклонена в противоположную сторону по сравнению с наклоном фронтальной зоны в тропосфере и отделена от нее слоем с малыми горизонтальными градиентами температуры. В стратосфере могут возникнуть зоны больших горизонтальных градиентов температуры, явно не связанные с тропосферными фронтальными зонами. Главную роль в их образовании играют радиационные факторы.

В ВФЗ направление изотерм с высотой изменяется мало; ветер стремится принять направление, параллельное изотермам средней температуры нижележащего слоя воздуха, и усиливается, переходя в верхней части тропосферы в струйные течения. Таким образом, фронтальные зоны характеризуются как большими горизонтальными градиентами температуры, так и значительными скоростями ветра. Однозначной связи между фронтальными зонами на высотах и атмосферными фронтами не существует. Нередко два примерно параллельных друг другу фронта, хорошо выраженных внизу, сливаются в верхних слоях в. Одну широкую фронтальную зону. В то же время не всегда при наличии фронтальной зоны на высотах существует фронт у поверхности Земли. Фронт в нижних слоях отмечается, как правило, там, где наблюдается приземная конвергенция трения. При дивергенции ветра признаки существования фронта обычно отсутствуют.

Таким образом, фронтальная зона, непрерывная на большом протяжении на высотах, в нижнем слое тропосферы часто разделяется на отдельные участки -- существует в циклонах и отсутствует в антициклонах. В средней и верхней тропосфере высотные фронтальные зоны часто опоясывают все полушарие Земли. Такие фронтальные зоны называются планетарными.

Изменение контраста температуры в области фронтальной зоны определяется в первую очередь характером горизонтального переноса воздуха с различной температурой. Существенную роль играют также вертикальные движения и трансформация воздуха. В обширных горных районах с высокими горными цепями на изменение контраста температуры сильно влияет рельеф.

В фронтальных зонах концентрируются большие запасы энергии, поэтому в них, как правило, сильно изменяется давление и происходят процессы цикло- и антициклогенеза. Здесь развиваются интенсивные вертикальные движения. С планетарными фронтальными зонами неразрывно связаны струйные течения.

Пространственная структура атмосферных фронтов

Атмосферный фронт не является геометрической поверхностью, не имеющей толщины, а представляет собой некоторый переходный слой, в котором происходит изменение основных метеорологических величин (температуры, ветра, влажности, давления), существенное для динамики атмосферы.

Рис. 1

На любом уровне фронт представляет собой не линию, а некоторую переходную зону, а условная линия фронта находится посреди этой зоны.

Переходная зона у поверхности Земли имеет ширину несколько десятков километров, а толщина переходного слоя в вертикальной плоскости составляет несколько сотен метров. Горизонтальная протяженность линии фронта составляет сотни и тысячи километров. При анализе синоптических карт фронт проводится в виде одной линии. Лишь на вертикальных разрезах атмосферы крупного масштаба иногда удается разделить нижнюю и верхнюю границы переходного слоя. Угол наклона фронтальной поверхности к горизонту составляет примерно 1°. Установлено, что тангенс угла наклона фронта имеет порядок 0,01--0,03, а для катафронтов -- около 0,001.

Известные теоретические формулы наклона фронтальной поверхности неприменимы к пограничному слою атмосферы, так как при их получении не учитывались особенности распределения ветра в этом слое: здесь при прочих равных условиях в холодных фронтах профиль является более крутым, чем в теплых фронтах.

При сильных ветрах фронтальная поверхность вблизи линии приземного фронта в связи с турбулентным перемешиванием выражена нечетко и определение наклона ее затруднено.

Еще более важным следствием отклонения приземного ветра от геострофического является конвергенция ветра вдоль линии фронта. Вследствие конвергенции замедляется движение фронта и усиливается восходящее движение теплого воздуха вдоль фронтальной поверхности. По этой же причине в действительности отсутствуют абсолютно стационарные фронты. Если линия фронта параллельна изобарам, то все же происходит хотя бы и небольшое перемещение линии фронта. На наличие восходящих движений вдоль поверхностей малоподвижных фронтов, в частности, указывают наблюдающиеся здесь зоны облачности и осадков.

Атмосферные фронты

Фрагмент из руководства по краткосрочным прогнозам погоды под редакцией редакцией д-ра физ.мат. наук Н. Ф. Вельтищева

Классификация фронтов. Атмосферные фронты - переходные зоны или поверхности раздела между различными по свойствам воздушными массами, как правило, характеризующиеся относительно повышенными значениями горизонтальных градиентов температуры воздуха и давления, а также особенностями в полях ветра и влажности воздуха. С атмосферными фронтами связаны наиболее сложные условия погоды, опасные и особо опасные явления.
Атмосферные фронты разделены на группы в зависимости от различных условий и признаков:
а) по их перемещению относительно расположения разделяемых фронтами воздушных масс;
б) по пространственной (вертикальной и горизонтальной) протяженности и циркуляционной значимости;
в) по географическим признакам.
По относительному перемещению фронты разделяют на теплые, холодные, малоподвижные, фронты окклюзии (теплые, холодные и нейтральные).
По пространственной протяженности и циркуляционной значимости фронты разделяются на основные (тропосферные, высокие), вторичные (приземные, низкие) и верхние.
По географическим признакам фронты разделяются на арктические и полярные (фронты умеренных широт). Выделяется также внутритропическая зона конвергенции (ВЗК), называемая ранее тропическим фронтом.
Вертикальную протяженность фронтов определяют по полю температуры, используя для этого, в первую очередь, карту Вертикальную протяженность фронтов определяют по полю температуры, используя для этого, в первую очередь, карту ОТ5001000. Если по карте ОТ5001000 четко видна фронтальная зона, соответствующая фронту у поверхности Земли, то какой фронт называют основным (тропосферным, высоким). У основных фронтов скачок температуры при переходе через линию фронта у поверхности Земли обычно превышает 5°С. В высотной фронтальной зоне, связанной с основным фронтом, контрасты температуры в средней тропосфере обычно превышают 8°С/1000 км (градиент относительного геопотенциала ОТ5001000 более 16 гп. дам/1000 км). Фронты, определяемые по географическому признаку (арктические, полярные, а также ВЗК) являются основными.
Фронты, которые существуют у поверхности Земли, но в поле температуры на высотах либо совсем не обнаруживаются, либо прослеживаются до небольшой высоты (часто не видны уже на поверхности 850 гПа), относятся ко вторичным (приземным, низким). Холодные вторичные фронты чаще всего образуются в тылу циклонов при возникновении сходимости потоков в нижних слоях атмосферы.
Верхними называются фронты, отсутствующие у поверхности Земли, но достаточно хорошо выраженные на высотах. Они могут быть обнаружены только по характеру облачности и осадкам или одновременно и в поле температуры на каком-либо уровне. Причины образования верхних фронтов различны. Например, они могут образовываться вследствие фронтогенеза, возникшего лишь в верхних слоях тропосферы, или вследствие размывания фронта у поверхности Земли, но еще сохранившегося на высотах. Верхний фронт возникает также в процессе окклюдирования как один из компонентов фронта окклюзии. Наконец, зимой верхним может быть замаскированный у поверхности Земли фронт, перемещающийся над тонким приземным слоем сильно выхоложенного воздуха. Такой слой в течение длительного времени может сохраняться над одним и тем же районом, не участвуя в общем движении воздуха. В ряде случаев по данным на синоптических картах крупного масштаба, также по данным спутниковых и радиолокационных наблюдений обнаруживаются узкие зоны конвективной облачности, часто с грозами и шквалами (линии неустойчивости, линии шквалов), а также другие циркуляционные разделы (разделы вдоль берега моря, кромки арктических льдов и т.п.), по ряду признаков сходные с атмосферными фронтами, но не являющиеся ими. О линиях неустойчивости несколько подробнее будет сказано далее.

Высотные фронтальные зоны. Зоны относительно повышенных горизонтальных градиентов температуры (и давления), прослеживаемые на картах барической топографии, называют высотными фронтальными зонами (ВФЗ).
Прохождение ВФЗ вызывает значительные локальные изменения метеорологических величин не только в нижней и средней тропосфере, но и в верхней тропосфере и нижней части стратосферы.
Тропопауза в ВФЗ или сильно наклонена, или разорвана. Стратосфера в холодном воздухе начинается на меньшей высоте, чем в теплом. Таким образом, когда в холодной стороне ВФЗ понижение температуры с высотой прекращается, на противоположной ее стороне температура еще продолжает понижаться. Вследствие этого выше уровня тропопаузы в холодном воздухе горизонтальный градиент температуры быстро уменьшается. Затем его направление меняется на противоположное, а значение постепенно возрастает и достигает максимума в большинстве случаев на уровне тропопаузы теплого воздуха. Выше этого уровня горизонтальные градиенты температуры обычно снова уменьшаются.
В результате при большой разности высот тропопаузы с разных сторон тропосферной фронтальной зоны в нижней части стратосферы также возникает фронтальная зона. Она наклонена в противоположную сторону по сравнению с наклоном фронтальной зоны в тропосфере и отделена от нее слоем с малыми горизонтальными градиентами температуры. В стратосфере могут возникнуть зоны больших горизонтальных градиентов температуры, явно не связанные с тропосферными фронтальными зонами. Главную роль в их образовании играют радиационные факторы.
В ВФЗ направление изотерм с высотой изменяется мало; ветер стремится принять направление, параллельное изотермам средней температуры нижележащего слоя воздуха, и усиливается, переходя в верхней части тропосферы в струйные течения. Таким образом, фронтальные зоны характеризуются как большими горизонтальными градиентами температуры, так и значительными скоростями ветра. Однозначной связи между фронтальными зонами на высотах и атмосферными фронтами не существует. Нередко два примерно параллельных друг другу фронта, хорошо выраженных внизу, сливаются в верхних слоях в. одну широкую фронтальную зону. В то же время не всегда при наличии фронтальной зоны на высотах существует фронт у поверхности Земли. Фронт в нижних слоях отмечается, как правило, там, где наблюдается приземная конвергенция трения. При дивергенции ветра признаки существования фронта обычно отсутствуют.
Таким образом, фронтальная зона, непрерывная на большом протяжении на высотах, в нижнем слое тропосферы часто разделяется на отдельные участки - существует в циклонах и отсутствует в антициклонах. В средней и верхней тропосфере высотные фронтальные зоны часто опоясывают все полушарие Земли. Такие фронтальные зоны называются планетарными.
Изменение контраста температуры в области фронтальной зоны определяется в первую очередь характером горизонтального переноса воздуха с различной температурой. Существенную роль играют также вертикальные движения и трансформация воздуха. В обширных горных районах с высокими горными цепями на изменение контраста температуры сильно влияет рельеф.
В фронтальных зонах концентрируются большие запасы энергии, поэтому в них, как правило, сильно изменяется давление и происходят процессы цикло- и антициклогенеза. Здесь развиваются интенсивные вертикальные движения. С планетарными фронтальными зонами неразрывно связаны струйные течения.

Пространственная структура атмосферных фронтов. Атмосферный фронт не является геометрической поверхностью, не имеющей толщины, а представляет собой некоторый переходный слой, в котором происходит изменение основных метеорологических величин (температуры, ветра, влажности, давления), существенное для динамики атмосферы.

Вертикальный разрез фронтального переходного слоя (масштаб по вертикали и горизонтали различен). L - ширина переходной зоны, h - толщина переходного слоя.

На любом уровне фронт представляет собой не линию, а некоторую переходную зону, а условная линия фронта находится посреди этой зоны.
Переходная зона у поверхности Земли имеет ширину несколько десятков километров, а толщина переходного слоя в вертикальной плоскости составляет несколько сотен метров. Горизонтальная протяженность линии фронта составляет сотни и тысячи километров. При анализе синоптических карт фронт проводится в виде одной линии. Лишь на вертикальных разрезах атмосферы крупного масштаба иногда удается разделить нижнюю и верхнюю границы переходного слоя. Угол наклона фронтальной поверхности к горизонту составляет примерно 1°. Установлено, что тангенс угла наклона фронта имеет порядок 0,01-0,03, а для катафронтов - около 0,001.
Известные теоретические формулы наклона фронтальной поверхности неприменимы к пограничному слою атмосферы, так как при их получении не учитывались особенности распределения ветра в этом слое: здесь при прочих равных условиях в холодных фронтах профиль является более крутым, чем в теплых фронтах.
При сильных ветрах фронтальная поверхность вблизи линии приземного фронта в связи с турбулентным перемешиванием выражена нечетко и определение наклона ее затруднено.
Еще более важным следствием отклонения приземного ветра от геострофического является конвергенция ветра вдоль линии фронта. Вследствие конвергенции замедляется движение фронта и усиливается восходящее движение теплого воздуха вдоль фронтальной поверхности. По этой же причине в действительности отсутствуют абсолютно стационарные фронты. Если линия фронта параллельна изобарам, то все же происходит хотя бы и небольшое перемещение линии фронта. На наличие восходящих движений вдоль поверхностей малоподвижных фронтов, в частности, указывают наблюдающиеся здесь зоны облачности и осадков.

Зоны относительно повышенных горизонтальных градиентов температуры (и давления), прослеживаемые на картах барической топографии, называют высотными фронтальными зонами (ВФЗ).

Прохождение ВФЗ вызывает значительные локальные изменения метеорологических величин не только в нижней и средней тропосфере, но и в верхней тропосфере и нижней части стратосферы. Телепрограмма канал пятница на http://www.awtv.ru/pyatniza/ .

Тропопауза в ВФЗ или сильно наклонена, или разорвана. Стратосфера в холодном воздухе начинается на меньшей высоте, чем в теплом. Таким образом, когда в холодной стороне ВФЗ понижение температуры с высотой прекращается, на противоположной ее стороне температура еще продолжает понижаться. Вследствие этого выше уровня тропопаузы в холодном воздухе горизонтальный градиент температуры быстро уменьшается. Затем его направление меняется на противоположное, а значение постепенно возрастает и достигает максимума в большинстве случаев на уровне тропопаузы теплого воздуха. Выше этого уровня горизонтальные градиенты температуры обычно снова уменьшаются.

В результате при большой разности высот тропопаузы с разных сторон тропосферной фронтальной зоны в нижней части стратосферы также возникает фронтальная зона. Она наклонена в противоположную сторону по сравнению с наклоном фронтальной зоны в тропосфере и отделена от нее слоем с малыми горизонтальными градиентами температуры. В стратосфере могут возникнуть зоны больших горизонтальных градиентов температуры, явно не связанные с тропосферными фронтальными зонами. Главную роль в их образовании играют радиационные факторы.

В ВФЗ направление изотерм с высотой изменяется мало; ветер стремится принять направление, параллельное изотермам средней температуры нижележащего слоя воздуха, и усиливается, переходя в верхней части тропосферы в струйные течения. Таким образом, фронтальные зоны характеризуются как большими горизонтальными градиентами температуры, так и значительными скоростями ветра. Однозначной связи между фронтальными зонами на высотах и атмосферными фронтами не существует. Нередко два примерно параллельных друг другу фронта, хорошо выраженных внизу, сливаются в верхних слоях в. Одну широкую фронтальную зону. В то же время не всегда при наличии фронтальной зоны на высотах существует фронт у поверхности Земли. Фронт в нижних слоях отмечается, как правило, там, где наблюдается приземная конвергенция трения. При дивергенции ветра признаки существования фронта обычно отсутствуют.

Таким образом, фронтальная зона, непрерывная на большом протяжении на высотах, в нижнем слое тропосферы часто разделяется на отдельные участки - существует в циклонах и отсутствует в антициклонах. В средней и верхней тропосфере высотные фронтальные зоны часто опоясывают все полушарие Земли. Такие фронтальные зоны называются планетарными.

Изменение контраста температуры в области фронтальной зоны определяется в первую очередь характером горизонтального переноса воздуха с различной температурой. Существенную роль играют также вертикальные движения и трансформация воздуха. В обширных горных районах с высокими горными цепями на изменение контраста температуры сильно влияет рельеф.

В фронтальных зонах концентрируются большие запасы энергии, поэтому в них, как правило, сильно изменяется давление и происходят процессы цикло- и антициклогенеза. Здесь развиваются интенсивные вертикальные движения. С планетарными фронтальными зонами неразрывно связаны струйные течения.


Человеческий потенциал республики Удмуртия
Численность населения к 2010 году составила - 1 526 304. Удмуртия занимает 29 место по численности населения. Плотность населения - 36,3 чел./км², удельный вес городского населения - 67,8 %. Национальный состав В республике проживают представители более ста национальностей. Для приграничных ра...

Демографическая ситуация в России
По численности населения (142,2 млн. человек на 1 января 2007 г.) Российская Федерация занимает седьмое место в мире после Китая, Индии, США, Индонезии, Бразилии и Пакистана. Таблица 1.1. Численность населения Годы Все население, млн. человек в том числе В общей численности населения, процентов...

Колизей
Амфитеатр строился при трех им­ператорах. Император Веспасиан начал строительство в 72 г. н.э. си­лами пленных иудеев, пригнанных из покоренного его сыном Титом Иерусалима. Для постройки амфи­театра Веспасиан выбрал террито­рию искусственного озера, выры­того когда-то в садах Золотого до­ма, гранди...

С. В. Морозова. О влпянпп планетарной высотной фронтальной зоны

перепад высот на местности и расстояние просмотра, можно рассчитать полученную глубину изображения и вертикальный масштаб стереомо-дели. Глубина изображения (А1), параллакс (р1) и расстояние просмотра (г) связаны соотношением:

А1/(г-А1)=р1/Б,

где В - глазной базис . Путем простых преобразований получим:

А1=р1Я/(Б+р1).

В нашем случае параллакс кадров в стереопаре составил 4 мм (910-0,04/9). При расстоянии просмотра 2000 мм и глазном базисе 65 мм получим глубину изображения относительно стереоокна равную115 мм. Принимая во внимание центральное положение стереоокна, перепад высот на местности составил (250-15)/2 = 117,5 м. Таким образом получим вертикальный масштаб модели приблизительно равный 1: 1 000. Следует, однако, отметить, что подобные расчеты носят приблизительный характер, поскольку восприятие стереомодели во многом зависит от индивидуальных особенностей зрителя.

Разработанная методика может быть использована для создания и визуализации стереоскопи-

ческих моделей местности в целях:

Визуальной оценки современного состояния и использования территории;

Предварительной оценки территории при проектировании;

Представления проекта застройки. Кроме того, созданные модели могут быть

использованы в качестве наглядного пособия в образовательных учреждениях.

Библиографический список

1. Аккерманн Ф. Современная техника и университетское образование // Изв. вузов. Геодезия и аэрофотосъемка. 2011. № 2. С. 8-13.

2. Тюфлин Ю. С. Информационные технологии с применением фотограмметрии // Геодезия и картография. 2002. № 2. С. 39-45

3. Тюфлин Ю. С. Фотограмметрия - вчера, сегодня и завтра // Известия вузов. Геодезия и аэрофотосъемка. 2011. № 2. С. 3-8.

4. Цифровая стереоскопическая модель местности: экспериментальные исследования / Ю. Ф. Книжников, В. И. Кравцова, Е. А. Балдина [и др.]. М. : Научный мир, 2004. 244 с.

5. Валюс Н. А. Стереоскопия. М. : АН СССР, 1962. 380 с.

О ВЛИЯНИИ ПЛАНЕТАРНОЙ ВЫСОТНОЙ ФРОНТАЛЬНОЙ ЗОНЫ НА ИЗМЕНЕНИЕ НЕКОТОРЫХ ХАРАКТЕРИСТИК КЛИМАТИЧЕСКОГО РЕЖИМА НА СЕВЕРНОМ ПОЛУШАРИИ

С. В. Морозова

Саратовский государственный университет E-mail: [email protected]

в настоящей статье рассматриваются вопросы влияния планетарной высотной фронтальной зоны (ПвФЗ) на климатический режим Северного полушария. Показана динамика площадей ПвФЗ относительно естественных климатических периодов состояния земной климатической системы (ЗкС). найдена связь динамики площадей ПвФЗ с изменением ветрового режима на полушарии.

Ключевые слова: глобальный климат, планетарная высотная фронтальная зона, климатические изменения, ветровой режим.

on the Influence of the Planetary Front High-Rise Zone to Change some Characteristics of the Climatic Regime in the Northern Hemisphere

This article considers the questions of influence of the planetary high-rise frontal zones (PVFS) on the climatic regime of the Northern hemisphere. Shows the dynamics of the areas PVFS relatively natural climatic periods state the earth"s climate system. The connection of the

speakers areas PVFS with the wind regime change in the hemisphere. Key words: global climate, planetary high-rise frontal zone, climatic changes, wind regime.

Известно, что региональные климатические изменения в первую очередь вызываются аномалиями режима общей циркуляции атмосферы (ОЦА). Климатические гребни и ложбины мигрируют в течение десятилетий, участвуя в формировании циркуляционных эпох . Однако спорным до сих пор остаётся вопрос о влиянии циркуляции на глобальный климат. Автором данной статьи опубликованы некоторые результаты исследований влияния общей циркуляции атмосферы на глобальный климат. Настоящая статья является продолжением исследований возможности влияния глобальных объектов циркуляции на климатические процессы в масштабах полушария.

В качестве исследуемой характеристики глобального объекта циркуляции - планетарной высотной фронтальной зоны - выбрана её площадь,

© Морозова С. В., 2014

ограниченная осевой линией. Исходными материалами послужили значения средних месячных площадей ПВФЗ, опубликованные в справочной монографии . На основании этих данных рассчитаны средние многолетние значения площадей в различные естественные климатические периоды состояния ЗКС.

Динамика площадей ПВФЗ относительно естественных климатических периодов состояния ЗКС - периода стабилизации (1949-1974 г.г.) и второй волны глобального потепления (19752010 гг.) - представлена в табл. 1.

На основе анализа табл. 1 заметим, что наиболее сильная изменчивость площадей ПВФЗ проявилась в период стабилизации (1949-1974 гг.). На фоне второй волны глобального потепления

наблюдаем уменьшение изменчивости площадей. Заслуживает внимания тот факт, что от первого периода ко второму произошло увеличение площади ПВФЗ, что предполагает расширение области отрицательных аномалий температур.

Поскольку исследование динамики ПВФЗ проводится статистическими методами, представляется необходимым оценить статистическую значимость полученных результатов, что можно сделать с помощью стандартных процедур математической статистики. Для каждого временного отрезка рассчитаны доверительные интервалы с использованием критерия Стьюден-та при 95%-ном уровне значимости. Доверительные интервалы для каждого периода приведены в табл. 2.

Таблица 1

Динамика площадей планетарной высотной фронтальной зоны относительно естественных климатических периодов состояния ЗКС

Период Значение площади ПВФЗ, млн км2 а2, млн км2 а, млн км2 Cv

1-й, 1949-1974 гг. (стабилизация) 56,97 13,32 3,65 0,06

2-й, 1975-2010 гг. (вторая волна глобального потепления) 57,77 (увелич. на 1,5%) 2,82 1,68 0,03

Таблица 2

Оценка статистической значимости динамики ПВФЗ

Период Доверительные интервалы

1-й, 1949-1974 гг. (стабилизация)

2-й,1975-2010 гг. (вторая волна глобального потепления)

Видим, что границы интервалов перекрываются, причём второй интервал даже входит в первый, что говорит о статистической незначимости обнаруженных изменений. Таким образом, изменение площадей на 1,5% вряд ли может приводить к каким-либо климатически значимым изменениям в ЗКС. Однако делать однозначные выводы об отсутствии влияния планетарной высотной фронтальной зоны на глобальный климат не стоит, так как применение статистических методов к природным процессам имеет известную долю условности . Иногда очень малые начальные возмущения какого-либо компонента в земной климатической системе могут получить большой резонанс и вызвать довольно заметные изменения в ней. В связи с этим интересно узнать, в каких пределах изменения площадей ПВФЗ оказываются значимыми. Для этого решалась обратная задача, условием которой было отсутствие перекрытия интервалов при самых крайних возможных положениях математического ожидания на числовой прямой. Необходимые расчёты выполнялись по формуле (1) , что позволило получить среднюю широту расположения ПВФЗ при условии неперекрытия интервалов:

S = 2nR2 (1 - sin фс.„), (1)

где п = 3,14159;

R = 6378.245 км - радиус Земли у экватора;

Фс.и - средняя широта осевой изогипсы ПВФЗ по Северному полушарию.

Оказалось, что для достижения статистической значимости изменений область локализации ПВФЗ должна находиться в пределах 30-35° северной широты. В настоящее время планетарная высотная фронтальная зона расположена в области пятидесятых широт Северного полушария. Таким образом, выявлено, что для достижения статистической значимости изменений площадей планетарная высотная фронтальная зона должна сместиться на 15-20° южнее, соответственно на столько же окажутся смещёнными траектории циклонов, что, в свою очередь, приведёт к изменению положения аридных и гумидных областей, а следовательно, и природных зон. Таким образом, статистически значимая динамика ПВФЗ соответствует климатическим изменениям в масштабах крупных геологических эпох. Климатические реконструкции, выполненные по геологическим источникам и историческим материалам, показывают, что исключительно влажные условия, господствовавшие в засушливом ныне тропическом поясе, имели место при разрушении четвертичного оледенения и в ранний период эпохи голоцена. Следовательно, траектории циклонов и область локализации ПВФЗ располагались гораздо южнее, что способствовало хорошему увлажнению этих ныне засушливых областей . Таким образом,

С В. Морозова. О влиянии планетарной высотной фронтальной зоны

при существующих климатических изменениях статистическая значимость не может быть обнаружена, но заметные климатические изменения в земной климатической системе, проявившиеся в ходе глобальной температуры, имеют место.

Важно отметить, что замеченный рост средней площади ПВФЗ, предполагающий продвижение ПВФЗ в более южные широты и расширение зоны отрицательных аномалий температур, имел место при переходе от более холодного периода к более тёплому, что представляется не совсем логичным. Одним из возможных объяснений такого необычного поведения ПВФЗ может быть то, что ее смещение к югу приводит не столько к снижению средней полушарной температуры, сколько к изменению каких-либо других характеристик климатического режима, одной из которых может быть ветровой режим. Тогда влияние ПВФЗ на глобальный климат может проявиться в изменении активности и интенсивности одного из компонентов ЗКС - общей циркуляции атмосферы. Одним из объяснений несогласованности динамики площади ПВФЗ и хода глобальной температуры в естественные климатические периоды может быть произошедшее изменение каких-либо индивидуальных параметров ПВФЗ (размеров, интенсивности, извилистости и т. п.), что, безусловно, сказывается на активности и интенсивности циркуляции и отражается на ветровом режиме. Так, продвижение ПВФЗ в более южные или более северные широты может приводить к сужению или расширению зоны локализации ПВФЗ, что, в свою очередь, ведёт к обострению или ослаблению градиентов, повышению или снижению активности циркуляции и, следовательно, усилению или ослаблению скоростей ветра.

Попытаемся выяснить, как выявленная динамика площади ПВФЗ связана с изменением её активности. Для этого рассмотрим интенсивность планетарной высотной фронтальной зоны по данным справочной монографии с 1949 по 2010 г. Авторами справочной монографии интенсивность высотной фронтальной зоны определялась как разность широт (Дф) расположения двух изогипс на меридиане южнее и севернее осевой изогипсы, при этом разность геопотенциальных высот расположения северной и южной изогипсы бралась одинаковой - 8 гп. дам. Если интенсивностью считать разность широт, то получается, что средняя интенсивность в июле (8° широты) оказывается больше, чем в январе (5° широты). Поэтому автор настоящего исследования для оценки интенсивности ПВФЗ отошёл от обратно пропорциональной зависимости активности ОЦА и разности широт, приняв для оценки интенсивности циркуляции величину геострофического ветра (У^) на среднем уровне тропосферы, рассчитав её по формуле (2):

градиент геопотенциала,

Уё I дп, где I - параметр Кориолиса (I = 2ю sinф),

ю - угловая скорость вращения Земли;

ф - широта расположения осевой изогипсы.

Однако прежде чем переходить к анализу интенсивности ОЦА на фоне естественных климатических периодов состояния ЗКС, обратим внимание на интересные факты динамики площадей ПВФЗ и изменения разности широт, между которыми располагается планетарная высотная фронтальная зона.

Известно, что интенсивность планетарной высотной фронтальной зоны определяется градиентом температур экватор - полюс. Чем больше градиент, тем активнее протекают процессы в области её локализации. Зимой, когда контраст температур экватор-полюс гораздо больше, чем летом, циркуляционные процессы протекают намного активнее. Кроме того, зимой ПВФЗ смещается к югу, летом поднимается к северу, тогда вполне логично предположить, что южное смещение ПВФЗ должно приводить к усилению её активности, при этом область её локализации должна сужаться, а северное, наоборот, - к ослаблению активности ОЦА и расширению зоны локализации ПВФЗ.

Для подтверждения или опровержения такого предположения построены графики изменения среднегодовой разницы широт локализации планетарной высотной фронтальной зоны за период с 1949 по 2010 г. . Попутно заметим, что на всех этих графиках для большей наглядности добавлена кривая линейной фильтрации, а для того, чтобы погасить высокочастотные колебания, к исходному ряду применена процедура скользящего осреднения.

Среднегодовые разности широт расположения ПВФЗ приведены на рис. 1, а. Видна непериодичность изменений, однако бросается в глаза увеличение разности широт при переходе от периода стабилизации к началу второй волны глобального потепления, после чего направленность изменений исчезает. Гораздо чётче это проявляется на рис. 1, б, где видно, что в более холодный период зона локализации ПВФЗ уже, а это указывает на обострение градиентов в области ПВФЗ, а следовательно, на увеличение её активности. В последующий более тёплый период разность широт больше, а значит, активность ПВФЗ снижается. Всё это нагляднее видно на рис. 2, где представлены рассчитанные среднегодовые значения средней скорости геострофического ветра, проведены статистические процедуры линейной фильтрации и выделены низкочастотные колебания методом скользящего осреднения.

Таким образом, имеем, что при переходе от более холодного к более тёплому периоду (от стабилизации ко второй волне глобального потепления) происходит расширение площади ПВФЗ, продвижение самой ПВФЗ к югу и снижение её активности. Выявленная особенность динамики

Изв. Сарат. ун-та. Нов. сер. Сер. Науки о Земле. 2014. Т. 14, вып. 2

Рис. 1. Изменение разности широт локализации ПВФЗ на полушарии: а -линейная фильтрация; б - скользящее осреднение

14,0 13,0 -12,0 11,0 ■ 10.0

13,0 -> 12,5 -12,0 -11,5 -11,0 ■ 10,5 -10,0

1969 1973 1 989 1 999 2009

Рис. 2. Изменение средней по полушарию скорости геострофического ветра: а - линейная фильтрация; б - скользящее осреднение

С В. Морозова. О влпянпп планетарной высотной фронтальной зоны

ПВФЗ косвенно отражает общеизвестный факт теории климата о том, что при переходе от холодных периодов к более тёплым снижается активность ОЦА .

Сравнивая особенности динамики планетарной высотной фронтальной зоны в естественные климатические периоды с её сезонной динамикой, можно обнаружить сходство изменений, проявляющееся в том, что при переходе от холодных периодов к тёплым (от зимы к лету и от стабилизации к потеплению) происходит снижение активности общей циркуляции атмосферы. Но следует указать и на существенное различие, заключающееся в том, что при климатическом переходе ЗКС от более холодного к более тёплому периоду площадь ПВФЗ растёт, в то время как при сезонных климатических изменениях от холодного периода к тёплому (от зимы к лету) ее площадь сокращается.

Таким образом, климатически значимым следствием может быть то, что при переходе климатической системы из одного качественного состояния в другое происходят изменения не только глобальной температуры, но и ветрового режима, а роль глобальных объектов циркуляции в формировании климатической изменчивости заключается в изменениях такой климатической характеристики, как планетарный ветровой режим.

По данным , на территории России произошло уменьшение скорости ветра, причину которого связывают с изменением режима общей циркуляции атмосферы. Однако выяснение причин ослабления скоростей далеко не однозначно. Так, в исследованиях Бардина , Мещерской с соавтораим показано, что в последнее время (два - три десятилетия) наблюдается увеличение числа дней с циклонической циркуляцией, следствием чего является усиление скоростей ветра в связи с частым прохождением атмосферных фронтов. Однако эти же авторы делают вывод о противоречии фактов увеличения повторяемости циклоничности и уменьшения скоростей ветра. Уменьшение скорости ветра на территории России иногда объясняют снижением повторяемости формы ^-циркуляции . Тем не менее с 70-х гг. отмечается рост повторяемости зональных процессов, что также не позволяет объяснить снижение скорости ветра этим фактором. Вполне возможно, что причиной ослабления ветра является изменение качественного состояния глобального объекта циркуляции - планетарной высотной фронтальной зоны. Как показано выше, её динамика напрямую связана с интенсивностью общей циркуляции атмосферы.

Библиографический список

1. Полянская Е. А., Морозова С. В. Характеристика барического поля на АТ-500 в первом ЕСР в 1971-1989 гг. // География в вузах России. СПб., 1994. С. 86-88.

2. Morozova S. V. Circulation of the atmosphère as a factor of régional climate variability [Электронный ресурс] // Global and régional climate changes: International Conférence, 16-19 november 2010. Kyiv, 2010. 1 электрон. опт. диск (CD-ROM)

3. Морозова С. В. Циркуляция атмосферы как фактор изменчивости регионального климата // Глобальные и региональные изменения климата. Киев, 2011. С. 96-10.

4. Морозова С. В. Роль циркуляции в формировании изменчивости глобального и регионального климата // Тез. докл. Междунар. науч. конф. по региональным проблемам гидрометеорологии и мониторинга окружающей среды. Казань, 2012. C. 172-173.

5. Мониторинг общей циркуляции атмосферы. Северное полушарие: справочная монография / А. И. Неушкин, Н. С. Сидоренков, А. Т. Санина, Т. Б. Иванова, Т. В. Бережная, Н. В. Панкратенко, М. Е. Макарова. Обнинск, 2013. 200 с.

6. Малинин В. Н. Статистические методы анализа гидрометеорологической информации. СПб., 2007. 407 с.

7. Сикан А. В. Методы статистической обработки гидрометеорологической информации. СПб., 2007. 280 с.

8. Будыко М. И. Изменение климата. Л., 1974. 280 с.

9. БудыкоМ. И. Климат в прошлом и будущем. Л., 1980. 351 с.

10. МонинА. С., ШишковЮ. А. История климата. Л., 1979. 407 с.

11. Ясаманов Н. А. Древние климаты Земли. Л., 1985. 295 с.

12. Изменения климата / под ред. Ж. Гриббина. Л., 1980, 360 с.

13. Оценочный доклад об изменениях климата и их последствиях на территории Российской Федерации: в 2 т. Т. I. Изменения климата. М., 2008. 228 с.

14. БардинМ. Ю. Изменчивость характеристик циклоничности в средней тропосфере умеренных широт Северного полушария // Метеорология и гидрология. 1995. № 11. С. 24-37.

15. Мещерская А. В., Ерёмин В. В., Баранова А. А., Май-строва В. В. Изменение скорости ветра на севере России во второй половине XX века по приземным и аэрологическим данным // Метеорология и гидрология. 2006. № 9. С. 46-58.

16. Белокрылова Т. А. Об изменении скоростей ветра на территории СССР // Тр. / ВНИМИ-МЦД. 1989. Вып. 150. С. 38-47.