Многих будоражат, в том числе и меня, снимки такого природного явления, как молнии. Необузданная сила природы, которая на одних действует устрашающе, а кого-то восхищает. У каждого реакция своя. Но независимо от этого мало кому не нравится смотреть на завораживающие фотографии с молниями, я еще таких людей не встречал. Даже те люди, которые страшно боятся молний и грома, с большим удовольствием и восхищением смотрят на фотографии той стихии, которая вводит их в ужас. Фотография безопаснее, но «правильная» фотография так же может вызвать эмоции восхищения, страха и удивления. Наверное, сложно найти фотографа, который не хотел сфотографировать молнии и я постараюсь помочь новичкам понять некоторые нюансы в такой съемке. Более продвинутые фотографы наверняка догадываются и сами, что нужно сделать. Поэтому данная заметка больше ориентирована на тех, кто недавно стал обладателем фотоаппарата. Меня спрашивают о технологии съемки молний, опишу СВОЙ метод. Я абсолютно не претендую на то, что моя заметка самая правильная и если вы не будете следовать моим советам - у вас ничего не получится. Я повторюсь: все, что тут описано - это следствие моих проб и ошибок. Так же это касается моих снимков, я не претендую на лавры первенства. Кому-то они нравятся, кому-то нет… Начнем, важные моменты. Первое, что вы должны иметь - это устойчивый штатив, чем он устойчивей - тем лучше! Не забывайте, что при грозе довольно часто сильный ветер! Чтобы устранить «шевеленку» нам и нужен крепкий и устойчивый штатив. Если у вас штатив из бюджетных моделей - не отчаивайтесь, с ним тоже можно работать. По возможности не раскладывайте его на всю длину ног, это позволит вам убрать лишние прогибы в ногах штатива, а так же повысит жесткость. Не трогайте штатив во время съемки, это так же может привести к шевеленке или еще хуже - сбить ориентацию фотоаппарата. Т.к. снимать нужно в одной позиции - это приведет к осложнениям при сложении снимков. Для дополнительной устойчивости можно повешать на штатив дополнительный груз. Второй важный момент - это пульт. Без пульта сложно нажать кнопку спуска и при этом не получить смазанный кадр. Пульты есть нескольких типов. Программируемые и не программируемые. Программируемые пульты: особенность их в том, что они позволяют выставить определенную выдержку, количество кадров и интервал между следующим кадром. Это очень облегчает работу фотографа. Выставил выдержку 2 минуты (как пример), количество кадров и интервал, чтобы был чуть больше того времени, пока сохраняется фотография на флешку, нажал кнопку и сиди, любуйся молниями. Пульт не программируемый - этот пульт позволяет просто нажать кнопку или зафиксировать ее. Отсчет выдержки нужно вести самому. С этим пультом не будет тряски фотоаппарата, а все остальное, увы, придется делать самому. Третий и самый важный момент. Фотоаппарат. Молнии я снимаю на зеркалку, т.к. мыльницы у меня нет, да и я знаю, что такое попытаться на мыльницу поймать хороший кадр. Для этого нужно 99% везения. С зеркалкой или любым фотоаппаратом, у которого есть полностью ручной режим - это не составляет особого труда. Я использую длинные выдержки - это самый верный способ поймать молнии. На обычной мыльнице кадр с длительной выдержкой не получится, да и шумят мыльницы намного сильнее. По поводу объектива - чем больше у него угол - тем лучше. По умолчанию в зеркалках начального уровня объектив с фокусным 18-55 мм. Иногда вполне достаточно и 18 мм. В моем арсенале: . Canon 1000D . объектив 18-55 (обязательно с защитным фильтром и блендой) . штатив (чем жестче, тем лучше) . ноутбук c установленным ПО. кабель ЮСБ от фотоаппарата. пульт для длительных выдержек. блок питания (БП) для фотоаппарата. запасные аккумуляторы Я специально выбрал самый бюджетный фотоаппарат, чтобы владельцы таковых знали и не тушевались перед дорогущими профи камерами и объективами. На бюджетную технику так же получаются прекрасные снимки. От места съемки зависит то, как я использую свое оборудование. Иногда я снимаю с балкона\крыши, иногда в поле, где нет электричества. Если фотографирую с балкона, то вместо аккумулятора я использую блок питания (БП), чтобы не переживать о том, что в самый нужный момент разрядится аккумулятор. Фотоаппарат я подключаю через кабель ЮСБ к ноутбуку, где у меня установлена программа EOS Utility. С помощью нее я могу управлять фотоаппаратом полностью: выдержка, диафрагма, ИСО и конечно сохранение кадров на компьютер (не нужно думать о том, есть ли место на карточке). Эта программа шикарна тем, что можно выставить серию снимков с любой выдержкой! Пока оно щелкает шедевры - можно пойти попить кофе, или фильм посмотреть. Думаю, аналогичные программы есть и у других производителей. Вариант второй, где нет розеток. Тут БП уже не подойдет. Поэтому я запасся 2 аккумуляторами, на случай, если один разрядится. Оборудование в таком случае: штатив, фотик, и пульт управления. Теперь о настройках фотоаппарата: - Для начала перевожу фотоаппарат на полностью ручной режим. На Canon-ах это режим "M" - Выдержку ставлю на BULB (по-старому это "Вольно"). Для тех, у кого нет пульта макс. значение это 30 сек. (Для Canon, у других производителей может отличаться) - Чувствительность или ISO ставлю минимальное, у меня это значение = 100. Чем меньше эта цифра - тем меньше шумы, но и меньше света фиксирует сенсор, но т.к. у нас длительные выдержки - количество света нас не беспокоит, главное меньше шумов. - На объективе обязательно отключаю автофокус и стабилизатор изображения (если есть). Они нам не нужны. Фокусируюсь ручками на бесконечность и больше не трогаю фокусировочное кольцо. Если автофокус не отключить - то при следующем снимке он попытается сфокусироваться. Как вы догадываетесь в темноте, да и еще по небу сфокусироваться он не сможет - а значит, снимок не получиться сделать вообще. Стабилизатор в этом случае бесполезен, т.к. я использую штатив. Лишнее потребление драгоценной энергии аккумулятора нам не нужно (это для тех, кто снимает с аккумулятора). - Диафрагма. Я поджимаю до значения 11 (это для 2-х минутных выдержек и больше). Но больше 11 я не рекомендую ставить. Кто не знает - чем больше цифра - тем резче кадр и больший ГРИП, но темнее кадр. Значит, выдержку нужно подбирать, чтобы не было совсем темных фото. - RAW. Я всегда снимаю в РАВе. Это дает больше возможностей при обработке фото. Но не забывайте в РАВе размер фото в 2 или 3 раза больше. Значит, карточка должна быть большого объема. Все. Фотоаппарат настроен, установлен на штатив, и готов к работе. Осталось выбрать хороший ракурс и начать съемку шедевров. Обработка. В ФШ складываю несколько кадров в один, меняя тип наложения слоя. Суммированный кадр немного кадрирую, тягаю уровнями, чтобы вытянуть темные участки и убрать пересветы, добавляю немного шарпа (совсем чуть-чуть!!) и если нужно прохожусь шумодавом. Если на каком-то кадре получилась подвижка, но сами молнии вышли четкими и без смазов - можно пройтись маской. Не хочу вдаваться в детали обработки, т.к. вариантов обработки множество и найти в интернете не составит труда. Все.

Молния - одно из тех природных явлений, которые издавна внушали страх человеческому роду. Понять её сущность стремились величайшие умы, такие как Аристотель или Лукреций. Они считали, что это шар, состоящий из огня и зажатый в водяных парах туч, и, увеличиваясь в размере, он прорывает их и стремительной искрой падает на землю.

Понятие молнии и ее зарождение

Чаще всего молния образуется в которые имеют достаточно большой размер. Верхняя часть может располагаться на высоте 7 километров, а нижняя - всего лишь в 500 метрах над поверхностью земли. Учитывая атмосферную температуру воздуха, можно прийти к выводу, что на уровне 3-4 км вода замерзает и превращается в льдинки, которые, сталкиваясь между собой, электризуются. Те, что обладают наибольшим размером, получают отрицательный заряд, а наименьшие - положительный. Исходя из своего веса, они равномерно распределяются в облаке по слоям. Сближаясь между собой, они образуют плазменный канал, из которого и получается электрическая искра, именуемая молнией. Свою ломаную форму она получила из-за того, что на пути к земле часто встречаются различные воздушные частицы, которые образуют преграды. И чтобы их обойти, приходится менять траекторию.

Физическое описание молнии

Разряд молнии выделяет от 109 до 1010 джоулей энергии. Такое колоссальное количество электричества в большей степени расходуется на создание световой вспышки и которая иначе называется громом. Но даже маленькой части молнии хватит, чтобы творить немыслимые вещи, например, ее разряд может убить человека или разрушить здание. Еще один интересный факт говорит о том, что это природное явление способно плавить песок, образуя полые цилиндры. Такой эффект достигается из-за высокой температуры внутри молнии, она может достигать 2000 градусов. Время удара о землю также различно, оно не может быть больше секунды. Что же касается мощности, то амплитуда импульса может достичь сотни киловатт. Соединяя все эти факторы, получается наисильнейший природный разряд тока, который несет в себе гибель всему тому, к чему прикоснется. Все существующие виды молний очень опасны, и встреча с ними крайне нежелательна для человека.

Образование грома

Все виды молний невозможно представить себе без раската грома, который не несет в себе такой же опасности, но в некоторых случаях может привести к сбою работы сети и к другим техническим неполадкам. Он возникает из-за того, что теплая волна воздуха, нагретая молнией до температуры горячее, чем солнце, сталкивается с холодной. Звук, получающийся при этом, - не что иное, как волна, вызванная колебаниями воздуха. В большинстве случаев громкость увеличивается к концу раската. Это происходит из-за отражения звука от облаков.

Какие бывают молнии

Оказывается, все они разные.

1. Линейные молнии - наиболее часто встречающаяся разновидность. Электрический раскат выглядит как перевернутое вверх тормашками, разросшееся дерево. От главного канала отходит несколько более тонких и коротких "отростков". Длина такого разряда может достигать 20 километров, а сила тока - 20 000 ампер. Скорость движения составляет 150 километров в секунду. Температура плазмы, наполняющей канал молнии, доходит до 10 000 градусов.

2. Внутриоблачные молнии - происхождение данного вида сопровождается изменением электрических и магнитных полей, также излучаются радиоволны. Такой раскат с наибольшей вероятностью можно встретить ближе к экватору. В умеренных широтах он появляется крайне редко. Если в облаке находится молния, то побудить ее выбраться наружу может и посторонний объект, нарушающий целостность оболочки, например наэлектризованный самолет или металлический трос. По длине может колебаться от 1 до 150 километров.

3. Наземные молнии - данный вид проходит несколько стадий. На первой из них начинается ударная ионизация, которая создается в начале свободными электронами, они всегда присутствует в воздухе. Под действием электрического поля элементарные частицы приобретают высокие скорости и направляются к земле, сталкиваясь с молекулами, составляющими воздух. Таким образом, возникают электронные лавины, по-другому называющиеся стримеры. Они представляют собой каналы, которые, сливаясь между собой, служат причиной яркой, термоизолированной молнии. Она достигает земли в форме небольшой лестницы, потому что на ее пути встречаются преграды, и чтобы их обойти, она меняет направление. Скорость движения составляет примерно 50000 километров в секунду.

После того как молния пройдет свой путь, она заканчивает движение на несколько десятков микросекунд, при этом свет ослабевает. После этого начинается следующая стадия: повторение пройденного пути. Самый последний разряд превосходит по яркости все предыдущие, сила тока в нем может достигать сотен тысяч ампер. Температура же внутри канала колеблется в районе 25 000 градусов. Такой вид молний самый продолжительный, поэтому последствия могут быть разрушительными.

Жемчужные молнии

Отвечая на вопрос о том, какие бывают молнии, нельзя упустить из виду такое редкое природное явление. Чаще всего разряд проходит после линейного и полностью повторяет его траекторию. Только вот на вид он представляет собой шары, находящиеся на расстоянии друг от друга и напоминающие собой бусы из драгоценного материала. Такая молния сопровождается самыми громкими и раскатистыми звуками.

Шаровая молния

Природное явление, когда молния принимает форму шара. В этом случае траектория ее полета становится непредсказуемой, что делает ее еще опаснее для человека. В большинстве случаев такой электрический ком возникает совместно с другими видами, но зафиксирован факт его появления даже в солнечную погоду.

Как образуется Именно этим вопросом чаще всего задаются люди, столкнувшиеся с этим феноменом. Как всем известно, некоторые вещи являются прекрасными проводниками электричества, так вот именно в них, накапливая свой заряд, и начинает зарождаться шар. Также он может появиться из основной молнии. Очевидцы же утверждают, что она возникает просто из ниоткуда.

Диаметр молнии колеблется от нескольких сантиметров до метра. Что же касается цвета, то существует несколько вариантов: от белого и желтого до ярко-зеленого, крайне редко можно встретить черный электрический шар. После стремительного спуска он движется горизонтально, примерно в метре от поверхности земли. Такая молния может неожиданно менять траекторию и так же неожиданно исчезнуть, высвободив при этом огромную энергию, из-за которой происходит плавление или же вовсе разрушение различных предметов. Живет она от десяти секунд до нескольких часов.

Спрайт-молния

Совсем недавно, в 1989 году, ученые обнаружили еще один вид молнии, который получил название спрайт . Открытие произошло совершенно случайно, потому что феномен наблюдается крайне редко и длится лишь десятые доли секунды. От других их отличает высота, на которой они появляются - примерно 50-130 километров, в то время как другие подвиды не преодолевают 15-километровый рубеж. Также спрайт-молния отличается огромным диаметром, который достигает 100 км. Они выглядят как вертикальные и вспыхивают группами. Их цвет различается в зависимости от состава воздуха: ближе к земле, где больше кислорода, они зеленые, желтые или белые, а вот под влиянием азота, на высоте более 70 км, они приобретают ярко-красный оттенок.

Поведение во время грозы

Все виды молний несут в себе необычайную опасность для здоровья и даже жизни человека. Чтобы избежать электрического удара, на открытой местности следует придерживаться следующих правил:

  1. В данной ситуации в группу риска попадают самые высокие объекты, поэтому стоит избегать открытых местностей. Чтобы стать ниже, лучше всего присесть и положить голову и грудь на колени, в случае поражения эта поза защитит все жизненно важные органы. Ни в коем случае нельзя ложиться плашмя, чтобы не увеличивать площадь возможного попадания.
  2. Также не стоит прятаться под высокими деревьями и Нежелательным укрытием будут и незащищенные конструкции или металлические объекты (например, навес для пикника).
  3. Во время грозы нужно немедленно выйти из воды, потому что она является хорошим проводником. Попадая в нее, разряд молнии может с легкостью распространиться и на человека.
  4. Ни в коем случае нельзя пользоваться мобильным телефоном.
  5. Для оказания первой помощи пострадавшему лучше всего произвести сердечно-легочную реанимацию и немедленно вызвать службу спасения.

Правила поведения в доме

Внутри помещений тоже существует опасность поражения.

  1. Если на улице началась гроза, первым делом нужно закрыть все окна и двери.
  2. Необходимо отключить все электрические приборы.
  3. Не приближаться к проводным телефонам и прочим кабелям, они являются прекрасными проводниками электричества. Таким же эффектом обладают и металлические трубы, поэтому не стоит находиться рядом с сантехникой.
  4. Зная, как образуется шаровая молния и как непредсказуема ее траектория, если она все-таки попала в помещение, необходимо немедленно его покинуть и закрыть все окна и двери. Если же эти действия невозможны, лучше стоять неподвижно.

Природа все еще неподвластна человеку и несет многие опасности. Все виды молний - это, по своей сути, мощнейшие электрические разряды, которые в несколько раз превышают по мощности все искусственно созданные человеком источники тока.

Помните мы тут рассматривали ! А теперь поговорим об обычных молниях. Вот скажите мне, как их снимают фотографы? Понятно, что успеть щелкнуть во время разряда нельзя. Да и даже серию снимков начинать делать заранее тоже не много шансов. Не уж то врубают почти как видеозапись, а потом тупо вырезают кадр молнии?

Давайте посмотрим на красивые молнии. Почти все картинки кликабельны до 1920рх - выбирайте себе на стол!

Молния — электрический искровой разряд, проявляющийся, обычно, яркой вспышкой света и сопровождающим её громом. Электрическая природа молнии была раскрыта в исследованиях американского физика Б. Франклина, по идее которого был проведён опыт по извлечению электричества из грозового облака. Молнии также были найдены на Венере, Юпитере, Сатурне и Уране.


Средняя длина молнии 2,5 км, некоторые разряды простираются в атмосфере на расстояние до 20 км.

В июле 2005 года агентство РИА «Новости» передало следующее сообщение:
«В Японии девять человек пострадали от удара молнии, сообщило Главное полицейское управление страны, это произошло на пляже в префектуре Эба, в 50 километрах к северу от Токио.
По свидетельству очевидцев, при ясной погоде прозвучал раскат грома, в воду ударила молния, поразившая нескольких купающихся. Все они доставлены в больницу. Двое до сих пор находятся в бессознательном состоянии, а семеро получили ожоги разной степени тяжести...

Разряды молний могут происходить между соседними наэлектризованными облаками или между наэлектризованным облаком и землей. Разряду предшествует возникновение значительной разности электрических потенциалов между соседними облаками или между облаком и землей вследствие разделения и накопления атмосферного электричества в результате таких природных процессов, как дождь, снегопад и т.д. Возникшая таким образом разность потенциалов может достигать миллиарда вольт, а последующий разряд накопленной электрической энергии через атмосферу может создавать кратковременные токи от 3 до 200 кА.

Для объяснения электризации грозовых облаков был разработан ряд теорий. В 1929 Дж.Симпсон предложил теорию, которая объясняет электризацию дроблением дождевых капель потоками воздуха. В результате дробления падающие более крупные капли заряжаются положительно, а остающиеся в верхней части облака более мелкие - отрицательно. В основе индукционной теории, предложенной в 1885, лежит предположение о том, что электрические заряды разделяются электрическим полем Земли, имеющей отрицательный заряд. В теории свободной ионизации Ч.Вильсона предполагается, что электризация возникает как результат избирательного накопления ионов находящимися в атмосфере капельками разных размеров. Возможно, что электризация грозовых облаков осуществляется совместным действием всех этих механизмов, а основным из них является падение достаточно крупных частиц, электризуемых трением об атмосферный воздух.

На открытой местности разряды положительной и отрицательной полярности наблюдаются одинаково часто, но около 95% ударов в линии электропередачи и антенны исходят из отрицательно заряженных облаков. Разряд молнии характеризуется чрезвычайно быстрым нарастанием тока до пикового значения, как правило, достигаемого за время от 1 до 80 мкс (миллионных долей секунды), и последующим падением тока обычно за 3-200 мкс после пикового значения.

Многократные молнии - обычное явление, они могут насчитывать до 40 разрядов с интервалами от 500 мкс до 0,5 с, а полная продолжительность многократного разряда может достигать 1 с. С помощью фоторегистратора с временной разверткой было детально изучено развитие разряда молнии от облака до земли. Разряд развивается лавинообразно, сначала в виде ионизованного канала, получившего название лидера молнии, который ступенчато продвигается от облака к земле. Скорость ступенчатого движения лидера к земле равна приблизительно 45·10 6 м/с, причем интервал между ступенями составляет около 100 мкс. Длина каждой ступени лидера - около 45 м, так что полное время движения до земли может достигать 0,02 с. Затем по этому ионизованному каналу от земли к облаку движется основной разряд со скоростью от 2·10 7 м/с до 15·10 7 м/с. Он обычно глубоко проникает внутрь облака, образуя множество разветвленных каналов. Свечение этого яркого разряда, обусловленное рекомбинацией ионизованных атомов, может продолжаться более секунды.

Канал молнии определяется электрическим полем на конце движущегося лидера и локальной ионизацией. Вблизи земли его движение определяется земными стримерами или коронным разрядом, возникающим над заостренными проводящими предметами, выступающими над поверхностью земли. Молния с большой вероятностью повторно ударяет в ту же самую точку, если только объект не разрушен предыдущим ударом. Диаметр ядра светящегося разряда - от 1 до 2 см, а наэлектризованная зона вокруг ядра составляет, по-видимому, несколько метров в диаметре. Разветвленность разряда молнии между облаками обусловлена ступенчатым характером движения лидера, направление каждого шага которого определяется локальными условиями ионизации и потому носит в значительной мере случайный характер.

Американский физик Алистер Лесли внес существенные коррективы в выводы японских специалистов: «Климатические условии не всегда определяют поведение этого грандиозного явления. В данном случае длина небесной искры равнялась 140 километрам. Сила тока достигала 600 килоампер. Температура 30 000 градусов по Кельвину. Интенсивность излучения перекрыла естественный солнечный свет при ничтожно малом канале разрядного шнура 2,5-3 сантиметра.
Купающиеся, таким образом, оказались погруженными в электролит гигантского конденсатора,

пластины которого - крайне разряженные облака и обширная береговая линия. Генезис этого явления, приведшего к трагедии, тщательно изучается. Вместе с тем преждевременно рапортовать о том, что у нас есть стройная, объясняющая все теория.»

Ученый прав. Современная наука, к сожалению, смоглаа преуспеть разве что в измерениях электрических составляющих грозовых фронтов, подсчетах ущерба планетарного масштаба, ежегодно наносимого ими.

Очень мало известно о физике молнии. Господствуют выводы, сделанные еще Михаилом Ломоносовым: злектрическая искра проскакивает либо между разнозаряженными знаками облаков, либо их отрицательной зоной и землей. 3

Наиболее часто молния возникает в кучево-дождевых облаках, тогда они называются грозовыми; иногда молния образуются в слоисто-дождевых облаках, а также при вулканических извержениях, торнадо и пылевых бурях.

Обычно наблюдаются линейные молнии, которые относятся к так называемым безэлектродным разрядам, так как они начинаются (и кончаются) в скоплениях заряженных частиц. Это определяет их некоторые до сих пор не объяснённые свойства, отличающие молнии от разрядов между электродами.

ак, молнии не бывают короче нескольких сотен метров; они возникают в электрических полях значительно более слабых, чем поля при межэлектродных разрядах; сбор зарядов, переносимых молнией, происходит за тысячные доли секунды с мириадов мелких, хорошо изолированных друг от друга частиц, расположенных в объёме несколько км 3 .
Наиболее изучен процесс развития молнии в грозовых облаках, при этом молнии могут проходить в самих облаках — внутриоблачные молнии, а могут ударять в землю — наземные молнии.

Для возникновения молнии необходимо, чтобы в относительно малом (но не меньше некоторого критического) объёме облака образовалось электрическое поле с напряжённостью, достаточной для начала электрического разряда (~ 1 МВ/м), а в значительной части облака существовало бы поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~ 0,1-0,2 МВ/м). В молнии электрическая энергия облака превращается в тепловую и световую.
Процесс развития наземной молнии состоит из несколько стадий.

На первой стадии в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными электронами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с молекулами, составляющими воздух, ионизуют их.

Таким образом возникают электронные лавины, переходящие в нити электрических разрядов — стримеры, представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью — ступенчатому лидеру молнии.

Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью ~ 50 000 километров в секунду, после чего его движение приостанавливается на несколько десятков микросекунд, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров.
Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности Земли со средней скоростью 200 000 метров в секунду.

По мере продвижения лидера к земле напряжённость поля на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример, соединяющийся с лидером. Эта особенность молнии используется для создания молниеотвода.

В заключительной стадии по ионизованному лидером каналу следует обратный (снизу вверх), или главный, разряд молнии, характеризующийся токами от десятков до сотен тысяч ампер, яркостью, заметно превышающей яркость лидера, и большой скоростью продвижения, вначале доходящей до ~ 100 000 километров в секунду, а в конце уменьшающейся до ~ 10 000 километров в секунду.

Температура канала при главном разряде может превышать 25 000 °C. Длина канала молнии може быть от 1 до 10 км, диаметр — несколько сантиметров. После прохождения импульса тока ионизация канала и его свечение ослабевают.

В финальной стадии ток молнии может длиться сотые и даже десятые доли секунды, достигая сотен и тысяч ампер. Такие молнии называют затяжными, они наиболее часто вызывают пожары.

Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со скоростью в тысячи километров в секунду. Яркость его свечения близка к яркости ступенчатого лидера.

Когда стреловидный лидер доходит до поверхности Земли, следует второй главный удар, подобный первому.

Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 сек.

Смещение канала многократной молнии ветром создаёт так называемую ленточную молнию — светящуюся полосу.
При попадании молнии непосредственно в грунт возможно образование своеобразного минерала фульгурита, представляющего собой, в основном, спёкшийся кварцевый песок.

Внутриоблачные молнии включают в себя обычно только лидерные стадии; их длина колеблется от 1 до 150 км. Доля внутриоблачных молний растет по мере смещения к экватору, меняясь от 0,5 в умеренных широтах до 0,9 в экваториальной полосе.

Прохождение молнии сопровождается изменениями электрических и магнитных полей и радиоизлучением, так называемыми атмосфериками.

Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы на поверхности или на некоторой глубине (на этих факторах основано действие громоотвода). Если в облаке существует электрическое поле, достаточное для поддержания разряда, но недостаточное для его возникновения, роль инициатора молнии может выполнить длинный металлический трос или самолёт — особенно, если он сильно электрически заряжен. Таким образом иногда «провоцируются» молнии в слоисто-дождевых и мощных кучевых облаках.

Лучше всего работу естественной электрической машины наблюдать из космоса. Российский космонавт Владимир Джанибеков говорит:

Вспышки молний, прошивающие пространство над планетой, похожи на работу фотовспышек невероятной силы, отлично видных даже с Луны. Начинаешь понимать, почему люди, оказавшиеся под обстрелом молний, сравнивали свое положение с кошмаром... 3

Ежечасно на нашей планете регистрируются более миллиона грозовых разрядов, жертвами некоторых становятся люди, находящиеся на воде, в небе, на земле.
По мнению американского физика Джерри Айтмана, эти потери от поражений небесным электричеством вполне сопоставимы с потерями в локальных боевых действиях. То есть, годичная статистика смертей и увечий иногда существенно превышает невосполнимый ущерб, наносимый такими природными катастрофами, как смерчи, цунами, сели.
В довершение ко всему, оказывается, молния еще и художник!

Разновидностью молний есть шаровая молния - светящийся сгусток горячего газа, изредка появляющийся в грозовых погодных условиях.

В 1943 г. некий В. Дж. Хэмфрис в своей работе «Причуды погоды» высказывал традиционную точку зрения, что шаровая молния — это не более чем оптическая иллюзия.

Несмотря на то, что это явление пока ещё до конца не понято физикой, не стоит относиться к нему как к чему-то крайне необычному, тем более как к сверхъестественному. Это явление до конца не изучено, но активно изучается.
На сегодняшний день ясно, что шаровая молния — просто красочное атмосферное явление, проявление атмосферного электричества, и для его объяснения не потребуется привлечение каких-либо кардинально новых физических концепций.
Основной камень преткновения в этих исследованиях — отсутствие надёжной методики воспроизводимого получения шаровой молнии в управляемых, лабораторных условиях. Если бы это было достигнуто, задача была бы практически решена.

Поныне в экспериментах удавалось получить нечто, лишь отдалённо схожее с шаровой молнией. И, изучая это «нечто», экспериментаторы пока не могут сказать, изучают ли они саму шаровую молнию или какое-то другое явление. Такое состояние дел в эксперименте и позволяет теоретикам выдвигать совершенно разные (а иногда и самые фантастические) предположения и гипотезы о сущности шаровой молнии.

«К шаровой молнии прикасаться очень опасно. Любопытный малыш как-то ударил шаровую молнию ногой, и происшедший взрыв принес гибель одиннадцати животным, пасущимся неподалеку, а ребенка и его спутника швырнул на землю» 4
Там же Лейн приводит следующий случай с шаровой молнией: «Молодая девушка сидела за столом и вдруг заметила большой огненный шар, который медленно двигался по полу комнаты в ее направлении.
Когда шар приблизился к ней, он поднялся и начал двигаться по спирали вокруг нее.

Затем устремился к печи и поднялся по трубе вверх. Оказавшись вне трубы, он взорвался над крышей с таким грохотом, что потряс до основания весь дом». 4

Цвет: самым распространенным является желтый, оранжевый (до красного), далее белый, голубой, попадаются и зеленые, кто-то видел даже черные и прозрачные (в воздухе видна летающая линза).
Одним словом, с уверенностью сказать, что если вы увидели что-то фиолетового цвета в желтую полоску, и это не была шаровая молния, будет опрометчиво. Кстати, серьезно, в очень многих статьях отмечается, что шаровая молния бывает неоднородного цвета, пятнистой, и может даже менять цвет.

Размер: тут самым распространенным является диаметр от 10 до 20 сантиметров. Реже встречаются экземпляры от 3 до 10 и от 20 до 35. Существование шаровой молнии диаметром около метра так же не большая редкость, а еще бывают и несколько километровые гиганты. Остается только утешаться тем, что шар диаметром близким к километру вряд ли залетит вам в форточку.

Температура: о! ну тут уже дела совсем плохи. Называется температура от комнатной до звездной. Чаще всего встречается упоминание о 100-1000 градусов. Но при этом об ощутимом тепле на расстоянии вытянутой руки нигде не написано.

Как такое может быть, судить уже физикам, а мы лишь с покорностью ищем упоминаний об отрицательной температуре шаровой молнии.

Во время взрыва, если таковым заканчивается ее жизнь, шаровая молния выделяет большое количество тепла, от которого может случиться пожар или иные повреждения. Поэтому после взрыва стоит обратить внимание на возможное возгорание.

Вес: везде написано чуть ли не одинаковым шрифтом: 5-7 грамм. И это не зависит от размеров.

Интенсивность свечения: по самому распространенному мнению, увидев шаровую молнию, вы на несколько секунд совершенно бесплатно получите 100 ватную лампочку. Хотя она может совсем скоро начать портится и совсем угаснуть в конце. О свечении шаровой молнии во время взрыва ничего не известно, скорее всего это сильная вспышка.

Молния - гигантская электрическая искра. Ударяя в строения, она вызывает пожары, расщепляет крупные деревья, поражает людей. В каждый момент времени в разных точках Земли сверкают молнии более 2000 гроз. В каждую секунду около 50 молний ударяются в поверхность земли, и в среднем каждый ее квадратный километр молния поражает шесть раз за год

Молния - гигантский электрический искровой разряд в атмосфере, обычно происходит во время грозы, проявляющийся яркой вспышкой света и сопровождающим её громом. Молнии также были зафиксированы на Венере, Юпитере, Сатурне и Уране. Ток в разряде молнии достигает 10-20 тысяч ампер, поэтому мало кому из людей удается выжить после поражения их молнией.



Поверхность земного шара является более электропроводной, чем воздух. Однако, с высотой электропроводность воздуха возрастает. Воздух обычно заряжен положительно, а Земля отрицательно. Водяные капли в грозовом облаке заряжены за счет поглощения находящихся в воздухе заряженных мельчайших частиц (ионов). Капля, падающая из облака, имеет в верхней части отрицательный заряд, а в нижней - положительный. падающие капли большей частью поглощают отрицательно заряженные частицы и приобретают отрицательный заряд. В процессе завихрения в облаке капельки воды разбрызгиваются, причем мелкие брызги летят с отрицательным зарядом, а крупные - с положительным. То же происходит с кристаллами льда в верхней части облака. При раскалывании их мелкие частицы льда приобретают положительный заряд и восходящими токами уносятся в верхнюю часть облака, а крупные, заряженные отрицательно, опускаются в нижнюю часть облака.В результате разделения зарядов в грозовом облаке и в окружающем пространстве создаются электрически поля. С накоплением в грозовом облаке больших объемных зарядов между отдельными частями облака или между облаком и земной поверхностью возникают искровые разряды (молнии). Разряды молнии по внешнему виду различны. Наиболее часто наблюдается линейная разветвленная молния, иногда шаровая молния и др.


Молнияпредставляет большой интерес не только как своеобразное явление природы. Она дает возможность наблюдать электрический разряд в газовой среде при напряжении в несколько сотен миллионов вольт и расстоянии между электродами в несколько километров.


В 1750 Б.Франклин предложил Лондонскому королевскому обществу поставить опыт с железной штангой, укрепленной на изолирующем основании и установленной на высокой башне. Он ожидал, что при приближении грозового облака к башне на верхнем конце первоначально нейтральной штанги сосредоточится заряд противоположного знака, а на нижнем – заряд того же знака, что у основания облака. Если напряженность электрического поля при разряде молнии возрастет достаточно сильно, заряд с верхнего конца штанги будет частично стекать в воздух, а штанга приобретет заряд того же знака, что и основание облака.

Предложенный Франклином эксперимент не был осуществлен в Англии, однако его поставил в 1752 в Марли под Парижем французский физик Жан д"Аламбер. Он использовал вставленную в стеклянную бутылку (служившую изолятором) железную штангу длиной 12 м, но не помещал ее на башню. 10 мая его ассистент сообщил, что, когда грозовое облако находилось над штангой, при поднесении к ней заземленной проволоки возникали искры.


Сам Франклин, не зная об успешном опыте, реализованном во Франции, в июне того же года провел свой знаменитый эксперимент с воздушным змеем и наблюдал электрические искры на конце привязанной к нему проволоки. На следующий год, изучая заряды, собранные со штанги, Франклин установил, что основания грозовых облаков обычно заряжены отрицательно.

Более детальные исследования молний стали возможны в конце 19 в. благодаря совершенствованию методов фотографии, особенно после изобретения аппарата с вращающимися линзами, что позволило фиксировать быстро развивающиеся процессы. Такой фотоаппарат широко использовался при изучении искровых разрядов. Было установлено, что существует несколько типов молний, причем наиболее распространены линейные, плоские (внутриоблачные) и шаровые (воздушные разряды).

Линейная молния имеет длину 2-4 км и обладает большой силой тока. Она образуется, когда напряженность электрического поля достигает критического значения и возникает процесс ионизации. Последний в начале создается свободными электронами, всегда имеющимися в воздухе. Под действием электрического поля электроны приобретают большие скорости и на пути к Земле, сталкиваясь с атомами воздуха, расщепляют и ионизируют их. Ионизация происходит в узком канале, который становится проводящим. Воздух разогревается. Через канал нагретого воздуха заряд из облака со скоростью более 150 км/ч стекает к земной поверхности. Это первая стадия процесса. Когда заряд достигает поверхности Земли между облаком и землей, создается проводящий канал, через который навстречу друг другу движутся заряды: положительные заряды от поверхности Земли и отрицательные - скопившиеся в облаке.Линейная молния сопровождается сильным раскатистым звуком - громом, напоминающим взрыв. Звук появляется в результате быстрого нагревания и расширения воздуха в канале, а затем такого же быстрого его охлаждения и сжатия.


Плоские молнии возникают внутри грозового облака и выглядят как вспышки рассеянного света.

Шаровые молнии состоят из светящейся массы в форме шара, несколько меньше футбольного мяча, движущегося с небольшой скоростью в направлении ветра. Разрываются они с большим треском или исчезают бесследно. Появляется шаровая молния после линейной. Часто она через открытые двери и окна проникает в помещения. Природа шаровой молнии еще не известна.Воздушные разряды шаровых молний, начинающиеся от грозового облака, часто направлены горизонтально и не достигают земной поверхности.




Для защиты от молнии создаются молниеотводы, с помощью которых заряд молнии уводится в землю по специально подготовленному безопасному пути.

Разряд молнии обычно состоит из трех или более повторных разрядов – импульсов, следующих по одному и тому же пути. Интервалы между последовательными импульсами очень коротки, от 1/100 до 1/10 с (этим обусловлено мерцание молнии). В целом вспышка длится около секунды или меньше. Типичный процесс развития молнии можно описать следующим образом. Сначала сверху к земной поверхности устремляется слабо светящийся разряд-лидер. Когда он ее достигнет, ярко светящийся обратный, или главный, разряд проходит от земли вверх по каналу, проложенному лидером.


Разряд-лидер, как правило, движется зигзагообразно. Скорость его распространения колеблется от ста до нескольких сотен километров в секунду. На своем пути он ионизирует молекулы воздуха, создавая канал с повышенной проводимостью, по которому обратный разряд движется вверх со скоростью приблизительно в сто раз большей, чем у разряда-лидера. Размер канала определить трудно, однако диаметр разряда-лидера оценивается в 1–10 м, а обратного разряда – в несколько сантиметров.


Разряды молнии создают радиопомехи, испуская радиоволны в широком диапазоне – от 30 кГц до сверхнизких частот. Наибольшее излучение радиоволн находится, вероятно, в диапазоне от 5 до 10 кГц. Такие низкочастотные радиопомехи «сосредоточены» в пространстве между нижней границей ионосферы и земной поверхностью и способны распространяться на расстояния в тысячи километров от источника.


Молния: подарившая жизнь и двигатель эволюции. В 1953 году биохимики С. Миллер (Stanley Miller) и Г. Юри (Harold Urey) показали, что одни из "кирпичиков" жизни - аминокислоты могут быть получены путем пропускания электрического разряда через воду, в которой растворены газы "первобытной" атмосферы Земли (метан, аммиак и водород). Спустя 50 лет другие исследователи повторили эти опыты и получили те же результаты. Таким образом, научная теория зарождения жизни на Земле отводит удару молнии основополагающую роль. При пропускании коротких импульсов тока через бактерии в их оболочке (мембране) появляются поры, через которые внутрь могут проходить фрагменты ДНК других бактерий, запуская один из механизмов эволюции.


Как можно защититься от молнии с помощью водяной струи и лазера. Недавно был предложен принципиально новый способ борьбы с молниями. Громоотвод создадут из… струи жидкости, которой будут стрелять с земли непосредственно в грозовые облака. Громоотводная жидкость представляет собой солевой раствор, в который добавлены жидкие полимеры: соль предназначена для увеличения электропроводности, а полимер препятствует "распаду" струи на отдельные капельки. Диаметр струи составит около сантиметра, а максимальная высота - 300 метров. Когда жидкий громоотвод доработают, им оснастят спортивные и детские площадки, где фонтан включится автоматически, когда напряженность электрического поля станет достаточно высокой, а вероятность удара молнии - максимальной. По струе жидкости с грозового облака будет стекать заряд, делая молнию безопасной для окружающих. Аналогичную защиту от разряда молнии можно сделать и с помощью лазера, луч которого, ионизируя воздух, создаст канал для электрического разряда вдали от скопления людей.


Может ли молния сбить нас с пути? Да, если вы пользуетесь компасом. В известном романе Г. Мелвила "Моби Дик" описан именно такой случай, когда разряд молнии, создавший сильное магнитное поле, перемагнитил стрелку компаса. Однако капитан судна взял швейную иглу, ударил по ней, чтобы намагнитить, и поставил ее вместо испорченной стрелки компаса.


Может ли вас поразить молния внутри дома или самолета? К сожалению, да! Ток грозового разряда может войти в дом по телефонному проводу от рядом стоящего столба. Поэтому при грозе старайтесь не пользоваться обычным телефоном. Считается, что говорить по радиотелефону или по мобильному безопасней. Не следует во время грозы касаться труб центрального отопления и водопровода, которые соединяют дом с землей. Из этих же соображений специалисты советуют при грозе выключать все электрические приборы, в том числе компьютеры и телевизоры.


Что касается самолетов, то, вообще говоря, они стараются облетать районы с грозовой активностью. И все-таки в среднем раз в год в один из самолетов попадает молния. Ее ток поразить пассажиров не может, он стекает по внешней поверхности самолета, но способен вывести из строя радиосвязь, навигационное оборудование и электронику.




МОЛНИЯ (явление) МОЛНИЯ (явление)

МО́ЛНИЯ, гигантский электрический искровой разряд в атмосфере, сопровождающийся обычно яркой вспышкой света и громом (см. ГРОМ) . Чаще всего наблюдаются линейные молнии - разряды между грозовыми облаками (см. ОБЛАКА) (внутриоблачные) или между облаками и земной поверхностью (наземные).Процесс развития наземной молнии состоит из несколько стадий. На первой стадии в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными электронами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с атомами воздуха, ионизуют их. Таким образом, возникают электронные лавины, переходящие в нити электрических разрядов - стримеры, представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью - ступенчатому лидеру молнии. Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью около 5·10 7 м/с, после чего его движение приостанавливается на несколько десятков мкс, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров. Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 2·10 5 м/с. По мере продвижения лидера к земле напряженность поля на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример, соединяющийся с лидером. Эта особенность молний используется для создания молниеотвода (см. МОЛНИЕОТВОД) . В заключительной стадии по ионизованному лидером каналу следует обратный, или главный, разряд молнии, характеризующийся токами от десятков до сотен тысяч А, яркостью, заметно превышающей яркость лидера, и большой скоростью продвижения, вначале доходящей до 10 8 м/с, а в конце уменьшающейся до 10 7 м/с. Температура канала при главном разряде может превышать 25 000 °С. Длина канала наземной молнии 1-10 км, диаметр - несколько см. После прохождения импульса тока ионизация канала и его свечение ослабевают. В финальной стадии ток молнии может длиться сотые и даже десятые доли секунд, достигая сотен и тысяч А. Такие молнии называют затяжными, они наиболее часто вызывают пожары.
Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со средней скоростью 10 6 м/с. Яркость его свечения близка к яркости ступенчатого лидера. Когда стреловидный лидер доходит до поверхности земли, следует второй главный удар, подобный первому. Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 секунду. Смещение канала многократной молнии ветром создает «ленточную» молнию - светящуюся полосу.
Внутриоблачные молнии включают в себя обычно только лидерные стадии; их длина от 1 до 150 км. Доля внутриоблачных молний растет по мере смещения к экватору, меняясь от 50% в умеренных широтах до 90% в экваториальной полосе. Прохождение молний сопровождается изменениями электрических и магнитных полей и радиоизлучением - атмосфериками (см. АТМОСФЕРИКИ) . Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы на поверхности или на некоторой глубине (на этих факторах основано действие молниеотвода). Если в облаке существует электрическое поле, достаточное для поддержания разряда, но недостаточное для его возникновения, роль инициатора молнии может выполнить длинный металлический трос или самолет - особенно, если он сильно электрически заряжен. Таким образом иногда «провоцируются» молнии в слоисто-дождевых и мощных кучевых облаках.
Особый вид молний - шаровая молния (см. ШАРОВАЯ МОЛНИЯ) , светящийся сфероид, обладающий большой удельной энергией, образующийся нередко вслед за ударом линейной молнии.


Энциклопедический словарь . 2009 .

Смотреть что такое "МОЛНИЯ (явление)" в других словарях:

    Молния: Молния атмосферное явление. Шаровая молния атмосферное явление. Застёжка молния вид застёжек, предназначенных для соединения или разъединения двух частей материала (обычно ткани). Молния торговая сеть, популярная… … Википедия

    Природный разряд больших скоплений электрического заряда в нижних слоях атмосферы. Одним из первых это установил американский государственный деятель и ученый Б.Франклин. В 1752 он провел опыт с бумажным змеем, к шнуру которого был прикреплен… … Географическая энциклопедия

    Стихийное явление в виде электрических разрядов между облаками и землей. М. является одним из факторов риска в страховании. Словарь бизнес терминов. Академик.ру. 2001 … Словарь бизнес-терминов

    Природный разряд больших скоплений электрического заряда в нижних слоях атмосферы. Одним из первых это установил американский государственный деятель и ученый Б. Франклин. В 1752 он провел опыт с бумажным змеем, к шнуру которого был прикреплен… … Энциклопедия Кольера

    У этого термина существуют и другие значения, см. Молния (значения). Молнии Молния гигантский электрический искровой разряд в атмосфере, обычно может происходить … Википедия

    Так называется электрический разряд между двумя облаками, или между частями одного и того же облака, или между облаком и землею. Различают три рода М.: линейную, расплывчатую, или плоскую, и шаровую. 1) Линейная М. имеет вид ослепительно яркой… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    молния - ▲ стихийное явление электрические разряды в газах, (быть) в, атмосфера молния гигантский искровой атмосферный разряд (между облаками или между облаками и земной поверхностью), проявляющийся в виде яркой вспышки света и сопровождающийся громом.… … Идеографический словарь русского языка

    Хорошо известное каждому физическое явление, особенно на Востоке, и нередко упоминаемое в св. Писании то как символ суда и гнева Божия на нечестивых (Пс.10:6), то как образ необыкновенного озаряющего света (Мат.28:3), то как подобие… … Библия. Ветхий и Новый заветы. Синодальный перевод. Библейская энциклопедия арх. Никифора.

    молния - МОЛНИЯ, и, ж Оптическое явление, представляющее собой яркую вспышку на небе, вызванную мощным искровым разрядом атмосферного электричества между облаками или между облаками и землей. Ночью, во время грозы молния ударила в одинокую старую сосну,… … Толковый словарь русских существительных

    Естественно научное и метафорическое понятие, нередко используемое в рамках описаний механизмов миросозидания и промысла Логоса, а также ассоциируемое со светом и просвещением. В большинстве религий и мифов божество спрятано от людских взоров, а… … История Философии: Энциклопедия