Молния - одно из тех природных явлений, которые издавна внушали страх человеческому роду. Понять её сущность стремились величайшие умы, такие как Аристотель или Лукреций. Они считали, что это шар, состоящий из огня и зажатый в водяных парах туч, и, увеличиваясь в размере, он прорывает их и стремительной искрой падает на землю.

Понятие молнии и ее зарождение

Чаще всего молния образуется в которые имеют достаточно большой размер. Верхняя часть может располагаться на высоте 7 километров, а нижняя - всего лишь в 500 метрах над поверхностью земли. Учитывая атмосферную температуру воздуха, можно прийти к выводу, что на уровне 3-4 км вода замерзает и превращается в льдинки, которые, сталкиваясь между собой, электризуются. Те, что обладают наибольшим размером, получают отрицательный заряд, а наименьшие - положительный. Исходя из своего веса, они равномерно распределяются в облаке по слоям. Сближаясь между собой, они образуют плазменный канал, из которого и получается электрическая искра, именуемая молнией. Свою ломаную форму она получила из-за того, что на пути к земле часто встречаются различные воздушные частицы, которые образуют преграды. И чтобы их обойти, приходится менять траекторию.

Физическое описание молнии

Разряд молнии выделяет от 109 до 1010 джоулей энергии. Такое колоссальное количество электричества в большей степени расходуется на создание световой вспышки и которая иначе называется громом. Но даже маленькой части молнии хватит, чтобы творить немыслимые вещи, например, ее разряд может убить человека или разрушить здание. Еще один интересный факт говорит о том, что это природное явление способно плавить песок, образуя полые цилиндры. Такой эффект достигается из-за высокой температуры внутри молнии, она может достигать 2000 градусов. Время удара о землю также различно, оно не может быть больше секунды. Что же касается мощности, то амплитуда импульса может достичь сотни киловатт. Соединяя все эти факторы, получается наисильнейший природный разряд тока, который несет в себе гибель всему тому, к чему прикоснется. Все существующие виды молний очень опасны, и встреча с ними крайне нежелательна для человека.

Образование грома

Все виды молний невозможно представить себе без раската грома, который не несет в себе такой же опасности, но в некоторых случаях может привести к сбою работы сети и к другим техническим неполадкам. Он возникает из-за того, что теплая волна воздуха, нагретая молнией до температуры горячее, чем солнце, сталкивается с холодной. Звук, получающийся при этом, - не что иное, как волна, вызванная колебаниями воздуха. В большинстве случаев громкость увеличивается к концу раската. Это происходит из-за отражения звука от облаков.

Какие бывают молнии

Оказывается, все они разные.

1. Линейные молнии - наиболее часто встречающаяся разновидность. Электрический раскат выглядит как перевернутое вверх тормашками, разросшееся дерево. От главного канала отходит несколько более тонких и коротких "отростков". Длина такого разряда может достигать 20 километров, а сила тока - 20 000 ампер. Скорость движения составляет 150 километров в секунду. Температура плазмы, наполняющей канал молнии, доходит до 10 000 градусов.

2. Внутриоблачные молнии - происхождение данного вида сопровождается изменением электрических и магнитных полей, также излучаются радиоволны. Такой раскат с наибольшей вероятностью можно встретить ближе к экватору. В умеренных широтах он появляется крайне редко. Если в облаке находится молния, то побудить ее выбраться наружу может и посторонний объект, нарушающий целостность оболочки, например наэлектризованный самолет или металлический трос. По длине может колебаться от 1 до 150 километров.

3. Наземные молнии - данный вид проходит несколько стадий. На первой из них начинается ударная ионизация, которая создается в начале свободными электронами, они всегда присутствует в воздухе. Под действием электрического поля элементарные частицы приобретают высокие скорости и направляются к земле, сталкиваясь с молекулами, составляющими воздух. Таким образом, возникают электронные лавины, по-другому называющиеся стримеры. Они представляют собой каналы, которые, сливаясь между собой, служат причиной яркой, термоизолированной молнии. Она достигает земли в форме небольшой лестницы, потому что на ее пути встречаются преграды, и чтобы их обойти, она меняет направление. Скорость движения составляет примерно 50000 километров в секунду.

После того как молния пройдет свой путь, она заканчивает движение на несколько десятков микросекунд, при этом свет ослабевает. После этого начинается следующая стадия: повторение пройденного пути. Самый последний разряд превосходит по яркости все предыдущие, сила тока в нем может достигать сотен тысяч ампер. Температура же внутри канала колеблется в районе 25 000 градусов. Такой вид молний самый продолжительный, поэтому последствия могут быть разрушительными.

Жемчужные молнии

Отвечая на вопрос о том, какие бывают молнии, нельзя упустить из виду такое редкое природное явление. Чаще всего разряд проходит после линейного и полностью повторяет его траекторию. Только вот на вид он представляет собой шары, находящиеся на расстоянии друг от друга и напоминающие собой бусы из драгоценного материала. Такая молния сопровождается самыми громкими и раскатистыми звуками.

Шаровая молния

Природное явление, когда молния принимает форму шара. В этом случае траектория ее полета становится непредсказуемой, что делает ее еще опаснее для человека. В большинстве случаев такой электрический ком возникает совместно с другими видами, но зафиксирован факт его появления даже в солнечную погоду.

Как образуется Именно этим вопросом чаще всего задаются люди, столкнувшиеся с этим феноменом. Как всем известно, некоторые вещи являются прекрасными проводниками электричества, так вот именно в них, накапливая свой заряд, и начинает зарождаться шар. Также он может появиться из основной молнии. Очевидцы же утверждают, что она возникает просто из ниоткуда.

Диаметр молнии колеблется от нескольких сантиметров до метра. Что же касается цвета, то существует несколько вариантов: от белого и желтого до ярко-зеленого, крайне редко можно встретить черный электрический шар. После стремительного спуска он движется горизонтально, примерно в метре от поверхности земли. Такая молния может неожиданно менять траекторию и так же неожиданно исчезнуть, высвободив при этом огромную энергию, из-за которой происходит плавление или же вовсе разрушение различных предметов. Живет она от десяти секунд до нескольких часов.

Спрайт-молния

Совсем недавно, в 1989 году, ученые обнаружили еще один вид молнии, который получил название спрайт . Открытие произошло совершенно случайно, потому что феномен наблюдается крайне редко и длится лишь десятые доли секунды. От других их отличает высота, на которой они появляются - примерно 50-130 километров, в то время как другие подвиды не преодолевают 15-километровый рубеж. Также спрайт-молния отличается огромным диаметром, который достигает 100 км. Они выглядят как вертикальные и вспыхивают группами. Их цвет различается в зависимости от состава воздуха: ближе к земле, где больше кислорода, они зеленые, желтые или белые, а вот под влиянием азота, на высоте более 70 км, они приобретают ярко-красный оттенок.

Поведение во время грозы

Все виды молний несут в себе необычайную опасность для здоровья и даже жизни человека. Чтобы избежать электрического удара, на открытой местности следует придерживаться следующих правил:

  1. В данной ситуации в группу риска попадают самые высокие объекты, поэтому стоит избегать открытых местностей. Чтобы стать ниже, лучше всего присесть и положить голову и грудь на колени, в случае поражения эта поза защитит все жизненно важные органы. Ни в коем случае нельзя ложиться плашмя, чтобы не увеличивать площадь возможного попадания.
  2. Также не стоит прятаться под высокими деревьями и Нежелательным укрытием будут и незащищенные конструкции или металлические объекты (например, навес для пикника).
  3. Во время грозы нужно немедленно выйти из воды, потому что она является хорошим проводником. Попадая в нее, разряд молнии может с легкостью распространиться и на человека.
  4. Ни в коем случае нельзя пользоваться мобильным телефоном.
  5. Для оказания первой помощи пострадавшему лучше всего произвести сердечно-легочную реанимацию и немедленно вызвать службу спасения.

Правила поведения в доме

Внутри помещений тоже существует опасность поражения.

  1. Если на улице началась гроза, первым делом нужно закрыть все окна и двери.
  2. Необходимо отключить все электрические приборы.
  3. Не приближаться к проводным телефонам и прочим кабелям, они являются прекрасными проводниками электричества. Таким же эффектом обладают и металлические трубы, поэтому не стоит находиться рядом с сантехникой.
  4. Зная, как образуется шаровая молния и как непредсказуема ее траектория, если она все-таки попала в помещение, необходимо немедленно его покинуть и закрыть все окна и двери. Если же эти действия невозможны, лучше стоять неподвижно.

Природа все еще неподвластна человеку и несет многие опасности. Все виды молний - это, по своей сути, мощнейшие электрические разряды, которые в несколько раз превышают по мощности все искусственно созданные человеком источники тока.

Введение................................................................................................. 3

1. Исторические воззрения на молнии............................................... 4

2. Молнии............................................................................................... 6

Виды молний....................................................................................... 9

Физика линейной молнии.................................................................... 9

Загадка шаровой молнии ……………………………………………...13

3. Разряды............................................................................................. 26

Виды разрядов.................................................................................. 26

Искровой разряд.............................................................................. 26

4. Молниезащита................................................................................. 33

Заключение......................................................................................... 37

Список использованной литературы.................................... 39

Выбор темы моего реферата обусловлен не только личным интересом, но и актуальностью. Природа молнии таит немало загадок. При описании этого редкостного феномена ученые вынуждены полагаться лишь на разрозненные свидетельства очевидцев. Эти скупые рассказы, да горстка фотографий - вот все, чем располагает наука. Как заявил один из ученых, мы знаем о молнии не больше, чем древние египтяне ведали о природе звезд.

Молния представляет большой интерес не только как своеобразное явление природы. Она дает возможность наблюдать электрический разряд в газовой среде при напряжении в несколько сотен миллионов вольт и расстоянии между электродами в несколько километров. Целью данного реферата является рассмотрение причин возникновения молнии, изучение различных видов электрических зарядов. Также в реферате рассмотрен вопрос молниезащиты. Люди давным-давно поняли, какой вред может принести удар молнии, и придумали от нее защиту.

Молнии издавна интересуют ученых, но и в наше время об их природе мы знаем лишь немного больше, чем 250 лет тому назад, хотя смогли их обнаружить даже на других планетах.

2. Исторические воззрения на молнии

Молния и гром первоначально воспринимались людьми как выражение воли богов и, в частности, как проявление божьего гнева. Вместе с тем пытливый человеческий ум с давних времен пытался постичь природу молний и грома, понять их естественные причины. В древние века над этим размышлял Аристотель. Над природой молний задумывался Лукреций. Весьма наивно представляются его попытки объяснить гром как следствие того, что "тучи сшибаются там под натиском ветров".

Многие столетия, включая и средние века, считалось, что молния - это огненный пар, зажатый в водяных парах туч. Расширяясь, он прорывает их в наиболее слабом месте и быстро устремляется в низ, к поверхности земли.

В 1752 г Бенджамин Франклин (рис. 1) экспериментально доказал, что молния - это сильный электрический разряд. Ученый выполнил знаменитый опыт с воздушным змеем, который был запущен в воздух при приближении грозы.

Опыт: На крестовине змея была укреплена заостренная проволочка, к концу веревки привязаны ключ и шелковая лента, которую он удерживал рукой. Как только грозовая туча оказалась над змеем, заостренная проволока стала извлекать из нее электрический заряд, и змей вместе с бечевой наэлектризуется. После того, как дождь смочит змея вместе с бечевкой, сделав их тем самым свободными проводить электрический заряд, можно наблюдать как электрический заряд будет "стекать" при приближении пальца.

Одновременно с Франклином исследованием электрической природы молнии занимались М.В. Ломоносов и Г.В. Рихман.

Благодаря их исследованиям в середине 18 века была доказана электрическая природа молнии. С этого времени стало ясно, что молния представляет собой мощный электрический разряд, возникающий при достаточно сильной электризации туч.

Молния - вечный источник подзарядки электрического поля Земли. В начале XX века с помощью атмосферных зондов измерили электрическое поле Земли. Его напряженность у поверхности оказалась равной примерно 100 В/м, что соответствует суммарному заряду планеты около 400 000 Кл. Переносчиком зарядов в атмосфере Земли служат ионы, концентрация которых увеличивается с высотой и достигает максимума на высоте 50 км, где под действием космического излучения образовался электропроводящий слой - ионосфера. Поэтому электрическое поле Земли - это поле сферического конденсатора с приложенным напряжением около 400 кВ. Под действием этого напряжения из верхних слоев в нижние все время течет ток силой 2-4 кА, плотность которого составляет 1-12 А/м2, и выделяется энергия до 1,5 ГВт. И это электрическое поле исчезло бы, если бы не было молний! Поэтому в хорошую погоду электрический конденсатор - Земля - разряжается, а при грозе заряжается.

Молния - природный разряд больших скоплений электрического заряда в нижних слоях атмосферы. Одним из первых это установил американский государственный деятель и ученый Б.Франклин. В 1752 году он провел опыт с бумажным змеем, к шнуру которого был прикреплён металлический ключ, и получил от ключа искры во время грозы. С тех пор молния интенсивно изучалась как интересное явление природы, а также из-за серьезных повреждений линий электропередачи, домов и других строений, вызываемых прямым ударом молнии или наведенным ею напряжением.

Как вызвать разряд молнии? Изучать то, что произойдет непонятно где и когда, очень сложно. А именно так в течение долгих лет работали ученые, исследующие природу молний. Считается, что грозой на небе руководит Илья-пророк и нам не дано знать его планы. Однако ученые давно пытались заменить Илью-пророка, создавая проводящий канал между грозовой тучей и землей. Б. Франклин для этого во время грозы запускал воздушный змей, оканчивающийся проволокой и связкой металлических ключей. Этим он вызывал слабые разряды, стекающие вниз по проволоке, и первым доказал, что молния - это отрицательный электрический разряд, стекающий с облаков на землю. Опыты Франклина были чрезвычайно опасными, и один из тех, кто их пытался повторить, - российский академик Г. В. Рихман - в 1753 году погиб от удара молнии.

В 1990-х годах исследователи научились вызывать молнии, не подвергая опасности свою жизнь. Один из способов вызвать молнию - запустить с земли небольшую ракету прямо в грозовую тучу. Вдоль всей траектории ракета ионизирует воздух и создает таким образом проводящий канал между тучей и землей. И если отрицательный заряд низа тучи достаточно велик, то вдоль созданного канала происходит разряд молнии, все параметры которого регистрируют приборы, расположенные рядом со стартовой площадкой ракеты. Чтобы создать еще лучшие условия для разряда молнии, к ракете присоединяют металлический провод, соединяющий ее с землей.

Облако - фабрика по производству электрических зарядов. Однако на телах может оказаться различная "заряженная" пыль, даже если они сделаны из одного того же материала, - достаточно, чтобы микроструктура поверхности отличалась. Например, при трении гладкого тела о шероховатое оба будут электризовываться.

Грозовое облако - это огромное количество пара, часть которого конденсировалось в виде мельчайших капелек или льдинок. Верх грозового облака может находиться на высоте 6-7 км, а низ нависать над землей на высоте 0,5-1 км. Выше 3-4 км облака состоят из льдинок разного размера, так как температура там всегда ниже нуля. Эти льдинки находятся в постоянном движении, вызванном восходящими потоками теплого воздуха от нагретой поверхности земли. Мелкие льдинки легче, чем крупные, увлекаются восходящими потоками воздуха. Поэтому "шустрые" мелкие льдинки, двигаясь в верхнюю часть облака, все время сталкиваются с крупными. При каждом таком столкновении происходит электризация, при которой крупные льдинки заряжаются отрицательно, а мелкие - положительно. Со временем положительно заряженные мелкие льдинки оказываются в верхней части облака, а отрицательно заряженные крупные - внизу. Другими словами, верхушка грозы заряжена положительно, а низ - отрицательно. Все готово для разряда молнии, при котором происходит пробой воздуха и отрицательный заряд с нижней части грозовой тучи перетекает на Землю.

Молния – «привет» из космоса и источник рентгеновского излучения. Однако само облако не в состоянии так наэлектризовать себя, чтобы вызвать разряд между своей нижней частью и землей. Напряженность электрического поля в грозовом облаке никогда не превышает 400 кВ/м, а электрический пробой в воздухе происходит при напряженности больше 2500 кВ/м. Поэтому для возникновения молнии необходимо что-то еще кроме электрического поля. В 1992 году российский ученый А. Гуревич из Физического института им. П. Н. Лебедева РАН (ФИАН) предположил, что своеобразным зажиганием для молнии могут быть космические лучи - частицы высоких энергий, обрушивающиеся на Землю из космоса с околосветовыми скоростями. Тысячи таких частиц каждую секунду бомбардируют каждый квадратный метр земной атмосферы.

Согласно теории Гуревича, частица космического излучения, сталкиваясь с молекулой воздуха, ионизирует ее, в результате чего образуется огромное число электронов, обладающих высокой энергией. Попав в электрическое поле между облаком и землей, электроны ускоряются до околосветовых скоростей, ионизируя путь своего движения и, таким образом, вызывая лавину электронов, движущихся вместе с ними к земле. Ионизированный канал, созданный этой лавиной электронов, используется молнией для разряда.

Недавние исследования показали, что молния служит довольно мощным источником рентгеновского излучения, интенсивность которого может составлять до 250 000 электронвольт, что примерно в два раза превышает ту, которую используют при рентгене грудной клетки.

a) Большинство молний возникает между тучей и земной поверхностью, однако, есть молнии, возникающие между тучами. Все эти молнии принято называть линейными. Длина отдельной линейной молнии может измеряться километрами.

б) Еще одним видом молний является ленточная молния (рис. 2). При этом следующая картина, как если бы возникли несколько почти одинаковых линейных молний, сдвинутых относительно друг друга.

в) Было замечено, что в некоторых случаях вспышка молний распадается на отдельные святящиеся участки длиной в несколько десятков метров. Это явление получило название четочной молнии. Согласно Малану (1961) такой вид молний объясняется на основе затяжного разряда, после свечения которого казалось бы более ярким в том месте, где канал изгибается в направлении наблюдателя, наблюдающего его концом к себе. А Юман (1962) считал, что это явление стоит рассматривать как пример "пинг-эффекта", который заключается в периодическом изменении радиуса разрядного столба с периодом в несколько микросекунд.

г) Шаровая молния, которая является наиболее загадочным природным явлением.

Линейная молния представляет собой несколько импульсов, быстро следующих друг за другом. Каждый импульс - это пробой воздушного промежутка между тучей и землей, происходящий в виде искрового разряда. Вначале рассмотрим первый импульс. В его развитии есть две стадии: сначала образуется канал разряда между тучей и землей, а затем по образовавшемуся каналу быстро проходит импульс основного тока.

Первая стадия - образование канала разряда. Все начинается с того, что в нижней части тучи формируется электрическое поле очень большой напряженности - 105...106 В/м.

Свободные электроны получают в таком поле огромные ускорения. Эти ускорения направлены вниз, поскольку нижняя часть тучи заряжена отрицательно, а поверхность земли положительно. На пути от первого столкновения до другого, электроны приобретают значительную кинетическую энергию. Поэтому, сталкиваясь с атомами или молекулами, они ионизируют их. В результате рождаются новые (вторичные) электроны, которые, в свою очередь, ускоряются в поле тучи и затем в столкновениях ионизуют новые атомы и молекулы. Возникают целые лавины быстрых электронов, образующие у самого «дна» тучи, плазменные «нити» – стример.

Сливаясь друг с другом, стримеры дают начало плазменному каналу, по которому впоследствии пройдет импульс основного тока.

Этот развивающийся от «дна» тучи к поверхности земли плазменный канал наполнен свободными электронами и ионами, и поэтому может хорошо проводить электрический ток. Его называют лидером или точнее ступенчатым лидером . Дело в том, что канал формируется не плавно, а скачками – «ступенями».

Почему в движении лидера наступают паузы и притом относительно регулярные – точно неизвестно. Существует несколько теорий ступенчатых лидеров.

В 1938 году Шонланд выдвинул два возможных объяснения задержки, которая вызывает ступенчатый характер лидера. Согласно одному из них, должно происходить движение электронов вниз по каналу ведущего стримера (пилота ). Однако часть электронов захватывается атомами и положительно заряженными ионами, так что требуется некоторое время для поступления новых продвигающихся электронов, прежде чем возникнет градиент потенциала, достаточный для того, чтобы ток продолжался. Согласно другой точке зрения, время требуется для того, чтобы положительно заряженные ионы скопились под головкой канала лидера и, таким образом, создали на ней достаточный градиент потенциала. А вот физические процессы, происходящие вблизи головки лидера, вполне понятны. Напряженность поля под тучей достаточно велика – она составляетB/м; в области пространства непосредственно перед головкой лидера она еще больше. В сильном электрическом поле вблизи головки лидера происходит интенсивная ионизация атомов и молекул воздуха. Она происходит за счет, во-первых, бомбардировки атомов и молекул быстрыми электронами, вылетающими из лидера (так называемая ударная ионизация ), и, во-вторых, поглощение атомами и молекулами фотонов ультрафиолетового излучения, испускаемого лидером (фотоионизация). Вследствие интенсивной ионизации встречающихся на пути лидера атомов и молекул воздуха плазменный канал растет, лидер движется к поверхности земли.

С учетом остановок по пути лидеру, чтобы достигнуть земли, потребовалось 10…20 мс при расстоянии 1 км между тучей и земной поверхностью. Теперь тучу соединяет с землей плазменный канал, прекрасно проводящий ток. Канал ионизированного газа как бы замкнул тучу с землей накоротко. На этом первая стадия развития начального импульса заканчивается.

Вторая стадия протекает быстро и мощно. По проложенному лидером пути устремляется основной ток. Импульс тока длится примерно 0,1мс. Сила тока достигает значений порядка А. Выделяется значительное количество энергии (до Дж). Температура газа в канале достигает . Именно в этот момент рождается тот необычайно яркий свет, который мы наблюдаем при разряде молнии, и возникает гром, вызванный внезапным расширением внезапно нагретого газа.

Существенно, что и свечение, и разогрев плазменного канала развиваются в направлении от земли к туче, т.е. снизу вверх . Для объяснения этого явления разобьем условно весь канал на несколько частей. Как только канал образовался (головка лидера достигла земли), вниз соскакивают прежде всего электроны, которые находились в самой нижней его части; поэтому нижняя часть канала первой начинает светиться и разогреваться. Затем к земле устремляются электроны из следующей (более высоко находящейся части канала); начинаются свечение и разогрев этой части. И так постепенно – от низа до верха – в движение к земле включаются все новые и новые электроны; в результате свечение и разогрев канала распространяются в направлении снизу вверх.

После того, как прошел импульс основного тока, наступает пауза

длительностью от 10 до 50мс. За это время канал практически гаснет, его температура падает примерно до , степень ионизации канала существенно уменьшается.

Как говорилось выше, новый лидер идет по пути, который был проторен начальным лидером. Он без остановки (1мс) пробегает весь путь сверху до низу. И снова следует мощный импульс основного тока. После очередной паузы все повторяется. В итоге высвечиваются несколько мощных импульсов, которые мы естественно, воспринимаем как единый разряд молнии, как единую яркую вспышку (рис. 3).


Загадка шаровой молнии

Шаровая молния абсолютно не похожа на обычную (линейную) молнию ни по своему виду, ни по тому, как она себя ведет. Обычная молния кратковременна; шаровая живет десятки секунд, минуты. Обычная молния сопровождается громом; шаровая почти бесшумна, в поведении ее много непредсказуемого (рис. 4).

Шаровая молния задает нам множество загадок, вопросов, на которые нет ясного ответа. В настоящее время можно лишь предполагать, делать гипотезы.

Единственным методом изучения шаровой молнии является систематизация и анализ случайных наблюдений.

Приведем наиболее достоверные сведения о шаровой молнии (ШМ)

1. ШМ - это объект шарообразной формы диаметром 5 … 30 см. Форма ШМ незначительно изменяется, принимая грушеобразные или сплюснутые шарообразные очертания. Очень редко ШМ наблюдался в форме тора.

2. ШМ светится обычно оранжевым цветом, отмечены случаи фиолетовой окраски. Яркость и характер свечения схожи со свечением раскаленных древесных углей, иногда интенсивность свечения сравнивается со слабой электрической лампочкой. На фоне однородного излучения возникают и перемещаются более ярко светящиеся области (блики).

3. Время существования ШМ от нескольких секунд до десяти минут. Существование ШМ заканчивается ее исчезновением, сопровождаемым иногда взрывом или яркой вспышкой, способной вызвать пожар.

4. ШМ обычно наблюдается во время грозы с дождем, но есть отдельные свидетельства о наблюдении ШМ во время грозы без дождя. Отмечены случаи наблюдения ШМ над водоемами при значительном удалении от берега или каких-либо предметов.

5. ШМ плавает в воздухе и перемещается вместе с воздушными потоками, но при этом может совершать "странные" активные перемещения, которые явно не совпадают с движением воздуха.

При столкновении с окружающими предметами ШМ отскакивает как слабо накачанный воздушный шарик или заканчивает свое существование.

6. При соприкосновении со стальными предметами происходит разрушение ШМ, при этом наблюдается яркая, длящаяся несколько секунд, вспышка, сопровождаемая разлетающимися светящимися фрагментами, напоминающими сварку металлов. Стальные предметы при последующем осмотре оказываются слегка оплавленными.

7. ШМ иногда проникает в помещение через закрытые окна. Большинство свидетелей описывает процесс проникновения как переливание через небольшое отверстие, очень малая часть свидетелей утверждает, что ШМ проникает через неповрежденное оконное стекло, при этом практически не изменяя своей формы.

8. При кратком прикосновении ШМ к коже человека фиксируются незначительные ожоги. При контактах, закончившихся вспышкой или взрывом, зафиксированы сильные ожоги, и даже летальный исход.

10. Существуют свидетельства о наблюдении процесса возникновения ШМ из электрических розеток или действующих электроприборов. При этом сначала возникает светящаяся точка, которая в течение нескольких секунд увеличивается до размера порядка 10 см. Во всех подобных случаях ШМ существует несколько секунд и разрушается с характерным хлопком без существенного вреда для присутствующих и окружающих предметов.

Большинство статей и сообщений о ШМ начинаются с информации о том, что природа ШМ неизвестна, а чуть далее следует утверждение, что ШМ это плазма. Специально для авторов, которым трудно заглянуть в справочники и энциклопедии, привожу следующую подборку.

"Плазма по ряду признаков очень сходна с газом. Она и разрежена, и текуча. В целом плазма нейтральна, так как она содержит одинаковое количество отрицательно и положительно заряженных частиц."

"Плазма - нормальная форма существования вещества при температуре порядка 10 000 градусов и выше. До 100 тыс. град. это холодная плазма, а выше – горячая".

Удержание плазмы в заданном открытом объеме является сложной технической задачей.

"Эксперименты на опытных термоядерных установках идут в разных странах, но добиться нужной температуры и времени удержания плазмы пока не удалось." Речь идет о времени, не превышающем 1 с.

Совершенно очевидно, что плазма в воздухе не может создать шарообразную структуру, и тем более сохранять ее несколько минут.

Сформируем основные выводы, которые можно сделать из анализа наблюдений.

Плотность вещества шаровой молнии практически совпадает с плотностью воздуха и обычно лишь немногим превосходит ее.

Недаром шаровая молния стремится опустится вниз, разницу между силой тяжести и выталкивающей (архимедовой) силой компенсируют конвекционные воздушные потоки, а также сила, с какой действуют на молнию атмосферное электрическое поле.

Температура шаровой молнии (не считая момента "взрыва") лишь относительно ненамного превышает температуру окружающего воздуха, достигая, по-видимому, всего нескольких сотен градусов (предположительно 500-600 К).

Вещество шаровой молнии является проводником с низкой работой выхода зарядов и поэтому обладает свойством легко рассеивать электрические заряды, накопившиеся в других проводниках.

Контакт шаровой молнии с заряженными проводниками приводит к появлению кратковременных импульсов электрического тока, довольно значительных по силе и проявляющихся иногда на сравнительно большом расстоянии от места контакта. Это вызывает перегорание предохранителей, срабатывание реле, вывод из строя электроприборов и другие аналогичные явления.

Электрические заряда стекают со значительной площади через вещество шаровой молнии и рассеиваются в атмосфере.

Взрыв шаровой молнии во многих (не исключено, что почти во всех) случаях является следствием такого кратковременного электрического разряда.

Поражения шаровой молнией людей и животных также, по-видимому, связаны с импульсами тока, которые она вызывает.

Запас энергии шаровой молнии может составлять от нескольких килоджоулей до нескольких десятков килоджоулей, в некоторых случаях (особенно при больших размерах молнии), возможно, до ста килоджоулей. Плотность энергии 1-10 кДж. Однако эффекты взрыва могут определятся, по крайней мере в некоторых случаях, не энергией самой шаровой молнии, а энергией, накопленной во время грозы в заряженных проводниках и окружающих их электрических полях. Шаровая молния играет в этом случае роль триггерного механизма, включающего процесс освобождения этой энергии.

Вещество шаровой молнии образует обособленную фазу в воздухе, обладающую значительной поверхностной энергией. На существование поверхностного натяжения указывают стабильность границы шаровой молнии, в том числе при перемещении ее в окружающем воздухе (иногда при сильном ветре), устойчивость сферической формы и восстановление ее после деформаций, возникающих от взаимодействия с окружающими телами. Необходимо отметить, что сферическая форма молнии восстанавливается и после больших деформаций, сопровождающихся распадом шаровой молнии на части.

Кроме того, на поверхности шаровой молнии нередко наблюдаются поверхностные волны. При достаточно большой амплитуде эти волны приводят к выбрасыванию капель вещества с поверхности, аналогичных брызгам жидкости.

Существование шаровой молнии не сферической формы (грушевидная, эллиптическая) могут быть обусловлены поляризацией в сильных магнитных полях.

Шаровая молния может нести электрический заряд, который появляется, например, при поляризации в электрическом поле (особенно если заряды разных знаков по-разному стекают с ее поверхности). Движение шаровой молнии в условиях безразличного равновесия, при котором сила тяжести уравновешена архимедовой силой, определяется как электрическими полями, так и движением воздуха.

Наблюдается корреляция времени жизни и размера молнии.

Долгоживущие молнии оказываются в основном больших размеров (по данным они составляют 80% среди молний диаметром больше 30 см и только 20% среди молний диаметром меньше 10 см). Наоборот, короткоживущие молнии имеют малый диаметр (80% молний диаметром меньше 10 см и 20% - больше 30 см).

Анализируя наблюдения, можно предположить, что шаровая молния появляется там, где накапливается значительный электрический заряд, при мощной, но кратковременной эмиссии этого заряда в воздух.

Исчезает шаровая молния в результате взрыва, развития неустойчивостей или из-за постепенного расходования запаса ее энергии и вещества (тихое погасание). Природа взрыва шаровой молнии не вполне ясна.

Большая часть молний - около 60% - испускает видимый свет, относящийся к красному концу спектра (красный, оранжевый или желтый). Около 15% испускает свет в коротковолновой части спектра (голубой, реже - синий, фиолетовый, зеленый). Наконец, приблизительно в 25% случаев молния имеет белый цвет.

Мощность излучаемого света - порядка нескольких ватт. Поскольку температура молнии невелика, ее видимое излучение имеет неравновесную природу. Возможно, молния излучает также некоторое количество ультрафиолетового излучения, поглощением которого в воздухе можно объяснить голубой ореол вокруг нее.

Теплообмен шаровой молнии с окружающей средой происходит через испускание значительного количества инфракрасного излучения. Если шаровой молнии действительно можно приписать температуру 500-600 К, то мощность равновесного теплового излучения, испускаемого молнией среднего диаметра (см), порядка 0,5-1 кВт и максимум излучения лежит в области длин волн 5-10 мкм.

Кроме инфракрасного и видимого излучений шаровая молния может испускать довольно сильное неравновесное радиоизлучение.

Все гипотезы, касающиеся физической природы шаровой молнии можно разделить на две группы. В одну группу входят гипотезы, согласно которым шаровая молния непрерывно получает энергию извне. Предполагается, что молния каким-то образом получает энергию, накапливающуюся в облаках и тучах, причем тепловыделение в самом канале оказывается незначительным, так что вся передаваемая энергия сосредотачивается в объеме шаровой молнии, вызывая его свечение. К другой группе относятся гипотезы, согласно которым шаровая молния становится самостоятельно существующим объектом. Этот объект состоит из некоего вещества, внутри которого происходят процессы, приводящие к выделению энергии.

Среди гипотез первой группы отметим гипотезу, предложенную в 1965 году академиком Капицей. Он подсчитал, что собственных запасов энергии шаровой молнии должно хватить на ее существование в течение сотых долей секунды. В природе, как известно, она существует гораздо дольше и нередко заканчивает свое существование взрывом. Возникает вопрос, откуда энергия?

Поиск решения привел Капицу к выводу, что "если в природе не существует источников энергии, еще нам неизвестных, то на основании закона сохранения энергии приходится принять, что во время свечения к шаровой молнии непрерывно подводится энергия, и мы вынуждены искать источник вне объема шаровой молнии". Академик теоретически показал, что шаровая молния представляет собой высокотемпературную плазму, существующую довольно длительное время за счет резонансного поглощения или интенсивного поступления энергии в виде радиоволнового излучения.

Он высказал мысль, что искусственная шаровая молния может быть создана с помощью мощного потока радиоволн, сфокусированного в ограниченную область пространства (Если молния - шар диаметром порядка 35-70 см.)

Но несмотря на многие привлекательные стороны данной гипотезы, она все же представляется несостоятельной: не объясняет характера перемещения шаровой молнии, зависимости ее поведения от воздушных потоков; в рамках данной гипотезы трудно объяснить хорошо наблюдаемую четкую поверхность молнии; взрыв такой шаровой молнии не должен сопровождаться выделением энергии и напоминает громкий хлопок.

Несколько лет назад в одной из лабораторий НИИ механики МГУ под руководством А.М. Хазена была создана еще одна теория огненного шара.

Согласно ей, в грозу под действием разности потенциалов начинается направленный дрейф электронов из облаков к земле. Попутно электроны, разумеется, сталкиваются с молекулами газов, из которых состоит воздух, причем вопреки здравому смыслу - тем реже, чем выше скорость электрона. В итоге отдельные атомы, достигшие некоей критической скорости, скатываются вниз, будто с горки. Такой "эффект горки" перестраивает войско заряженных частиц. Они начинают скатываться не беспорядочной толпой, а шеренгами, подобно тому, как накатываются волны морского прибоя. Только "прибой" этот обладает колоссальной скоростью - 1000 км/с! Энергии таких волн, как показывают расчеты Хазена, вполне достаточно, чтобы, настигая плазменный шар, подпитывать его своим электростатическим полем и некоторое время поддерживать в нем электромагнитные колебания. Теория Хазена ответила на некоторые вопросы: почему шаровая молния часто движется над землей, будто копируя рельеф местности? Объяснение следующее: с одной стороны, светящаяся сфера, обладая более высокой температурой по отношению к окружающей среде, стремится выплыть наверх под действием архимедовой силы; с другой стороны, под действием электростатических сил шар притягивается к влажной проводящей поверхности почвы. На какой-то высоте обе силы уравновешивают друг друга и шар словно катится по невидимым рельсам.

Иногда, правда, шаровая молния делает и резкие скачки. Их причиной может послужить либо сильный порыв ветра, либо изменение в направлении движения электронной лавины.

Нашлось объяснение и еще одному факту: шаровая молния стремится попасть внутрь построек. Любое строение, особенно каменное, поднимает в данном месте уровень грунтовых вод, а значит, возрастает электропроводность почвы, что и привлекает плазменный шар.

И наконец, почему шаровая молния по-разному заканчивает свое существование, иногда бесшумно, а чаще - взрывом? Здесь тоже виноват электронный дрейф. Если к шаровому "сосуду" подводится слишком много энергии, он, в конце концов, лопается от перегрева или, попав в область повышенной электропроводности разряжается, подобно обычной линейной молнии. Если же электронный дрейф по каким-либо причинам затухает, шаровая молния тихо угасает, рассеивая свой заряд в окружающем пространстве.

А.М. Хазен создал интересную теорию одного из самых загадочных явлений природы и предложил схему ее создания: "Возьмем проводник, проходящий через центр антенны передатчика сверхвысоких частот (СВЧ). Вдоль проводника, как по волноводу, будет распространятся электромагнитная волна. Причем проводник надо взять достаточно длинный, чтобы антенна электростатически не влияла на свободный конец. Подключим этот проводник к импульсному генератору высокого напряжения и, включив генератор, подадим на него короткий импульс напряжения, достаточный для того, чтобы на свободном конце мог возникнуть коронный разряд. Импульс надо сформировать так, чтобы возле его заднего фронта напряжение на проводнике не падало до нуля, а сохранялось на каком-то уровне, недостаточном для создания короны, то есть постоянно светящегося заряда на проводнике. Если менять амплитуду и время импульса постоянного напряжения, варьировать частоту т амплитуду поля СВЧ, то в конце концов на свободном конце провода даже после выключения переменного поля должен остаться и, возможно, отделиться от проводника светящийся плазменный сгусток".

Необходимость большого количества энергии мешает реализовать данный эксперимент.

И все же большинство ученых отдают предпочтение гипотезам второй группы.

Одна из них предполагает химическую природу шаровой молнии. Первым ее предложил Доминик Араго. А в середине 70-х годов ее детально разрабатывал Б.М.Смирнов. Предполагается, что шаровая молния состоит из обычного воздуха (имеющего температуру примерно на 100? выше температуры окружающей атмосферы), небольшой примеси озона и оксидов азота и. Принципиально важную роль здесь играет озон, образующийся при разряде обычной молнии; его концентрация около 3%.

Недостатком рассматриваемой физической модели является также невозможность объяснения устойчивой формы шаровой молнии, существование поверхностного натяжения.

В поисках ответа была разработана новая физическая теория. Согласно этой гипотезы шаровая молния состоит из положительных и отрицательных ионов. Ионы образуются за счет энергии разряда обычной линейной молнии. Затраченная на их образование энергия и определяет запас энергии шаровой молнии. Она высвобождается при рекомбинации ионов. Благодаря электростатическим (кулоновским) силам, действующим между ионами, объем, заполненный ионами, будет обладать поверхностным натяжением, что и определяет устойчивую шаровую форму молнии.

Стаханов, как и многие другие физики, исходил из того, что молния состоит из вещества, находящегося в состоянии плазмы. Плазма похожа на газообразное состояние с единственной разницей: молекулы вещества в плазме ионизированы, то есть потеряли (или наоборот приобрели лишние) электроны и перестали быть нейтральными. Это значит, что молекулы могут взаимодействовать не только как частицы газа - при столкновениях, но и на расстоянии с помощью электрических сил.

Разноименно заряженные частицы притягиваются. Поэтому в плазме молекулы стремятся вернуть себе потерянный заряд путем рекомбинации с оторванными электронами. Но после рекомбинации плазма превратится в обычный газ. Поддерживать жизнь плазмы можно только до тех пор, пока рекомбинации что-то мешает, - как правило, очень высокая температура.

Если шаровая молния - это плазменный шар, то она обязана быть горячей. Так рассуждали сторонники плазменных моделей до Стаханова. А он заметил, что существует и другая возможность. Ионы, то есть молекулы, потерявшие или захватившие лишний электрон, могут притянуть к себе обыкновенные нейтральные молекулы воды и окружить себя прочной "водяной" оболочкой, запирающей лишние электроны внутри и не дающий им воссоединятся со своими хозяевами. Такое возможно потому, что молекула воды имеет два полюса: отрицательный и положительный, за один из которых "хватается" ион в зависимости от своего заряда, чтобы притянуть молекулу к себе. Таким образом, сверхвысокие температуры больше не нужны, плазма может оставаться и "холодной", не горячее 200-300 градусов. Ион, окруженный водяной оболочкой, называется кластером, поэтому гипотеза профессора Стаханова получила имя кластерной.

Самым важным достоинством кластерной гипотезы стало то, что она продолжает не просто жить в науке, но и обогащаться новым содержанием. Группа исследователей из Института общей физики РАН, в которую входит профессор Сергей Яковленко, недавно получила поразительные новые результаты.

Выяснилось, что сама по себе водяная оболочка не может получиться столь плотной, чтобы помешать ионам рекомбинировать. Но рекомбинация приводит к возрастанию энтропии шаровой молнии, то есть меры ее беспорядка. Действительно, в плазме положительно и отрицательно заряженные молекулы отличаются друг от друга, по-особому взаимодействуют, а после рекомбинации они перемешиваются и становятся неразличимыми. До сих пор считалось, что в предоставленной самой себе системе беспорядок самопроизвольно возрастает, то есть в случае шаровой молнии рекомбинация произойдет сама собой, если ей как-то не помешать. Из результатов компьютерного моделирования и теоретических выкладок, проведенных в институте общей физики, следует совершенно иной вывод: беспорядок вносится в систему извне, например, при хаотичных столкновениях молекул на границе шаровой молнии и воздуха, в котором она движется. Пока беспорядок не "накопится", рекомбинации не будет, даже несмотря на то, что молекулы стремятся к этому. Характер их движения внутри шаровой молнии таков, что при сближении разноименно заряженные молекулы будут пролетать друг мимо друга, не успевая обменяться зарядом.

Итак, согласно кластерной гипотезе шаровая молния представляет собой самостоятельно существующее тело (без непрерывного подвода энергии от внешних источников), состоящих из тяжелых положительных и отрицательных ионов, рекомбинация которых сильно заторможена вследствие гидратации ионов.

В отличие от многих других гипотез, данная выдерживает сравнение с результатами нескольких тысяч известных сейчас наблюдений и удовлетворительно объясняет многие из них.

В 2000 году журнал "Nature" представил работу новозеландских химиков Джона Абрахамсона и Джеймса Динниса. Они показали, что при ударе молнии в почву, содержащую силикаты и органический углерод, образуется клубок волокон кремния и карбида кремния. Эти волокна медленно окисляются и начинают светиться - вспыхивает огненный шар, разогретый до 1200-1400°С. Обычно шаровые молнии бесшумно тают, но бывает, что и взрываются. По мнению Абрахамсона и Динниса, такое случается, если начальная температура клубка чересчур высока. Тогда окислительные процессы протекают ускоренно, что и приводит к взрыву. Впрочем, эта гипотеза не может описать все случаи наблюдения шаровых молний.

В 2004 году российские исследователи А.И. Егоров, С.И. Степанов и Г.Д. Шабанов описали схему установки, на которой им удавалось получать шаровые разряды, названные ими "плазмоидами" и напоминавшие шаровую молнию. Опыты вполне можно было воспроизвести, вот только существовали плазмоиды не более секунды.

В феврале 2006 года пришло сообщение из Тель-Авивского университета. Физики Владимир Дихтярь и Эли Йерби наблюдали в лаборатории светящиеся газовые шары, во многом напоминающие те странные молнии. Генерируя их, Дихтярь и Йерби разогревали в микроволновом поле мощностью 600 ватт кремниевый субстрат, пока тот не испарялся. В воздухе возникал желтовато-красный шар диаметром около 3 сантиметров, состоявший из ионизованного газа (как видите, заметно меньше шаровой молнии). Он медленно плавал в воздухе, сохраняя свою форму до тех пор, пока установку, создававшую поле, не отключали. Температура поверхности шара достигала 1700°С. Подобно обычной молнии, он притягивался к металлическим предметам и скользил вдоль них, а вот проникнуть сквозь оконное стекло не мог. В опытах Дихтяря и Йерби стекло лопалось, соприкоснувшись с огненным шаром.

Очевидно, в природе шаровые молнии порождены не микроволновыми полями, а электрическими разрядами. В любом случае израильские ученые продемонстрировали, что исследование подобных молний допустимо в лабораторных условиях и что результаты экспериментов можно использовать при создании новых технологий обработки материалов, в частности, для нанесения сверхтонких пленок.

Число различных гипотез о природе шаровой молнии значительно превосходит сотню, но мы разобрали только несколько. Ни одна из существующих в настоящее время гипотез не является совершенной, каждая имеет множество недостатков.

Поэтому, хотя принципиальные закономерности природы шаровой молнии проняты, данную проблему нельзя считать решенной - осталось множество тайн и загадок, а также нет конкретных способов создания ее в лабораторных условиях.

Этот разряд характеризуется прерывистой формой (даже при пользовании источниками постоянного тока). Он возникает в газе обычно при давлениях порядка атмосферного. В естественных природных условиях искровой разряд наблюдается в виде молний. Внешне искровой разряд представляет собой пучок ярких зигзагообразных разветвляющихся тонких полосок, мгновенно пронизывающих разрядный промежуток, быстро гаснущих и постоянно сменяющих друг друга (рис. 5). Эти полоски называют искровыми каналами. Они начинаются как от положительных, так и от отрицательных, а также от любой точки между ними. Каналы, развивающиеся от положительного электрода, имеют четкие нитевидные очертания, а развивающиеся от отрицательных - диффузные края и более мелкое ветвление.

Т.к. искровой разряд возникает при больших давлениях газа, то потенциал зажигания очень высок. (Для сухого воздуха, например, при давлении 1 атм. и расстоянии между электродами 10 мм, пробивное напряжение 30 кВ.) Но после того как разрядный промежуток "искровым" каналом, сопротивление промежутка становится очень малым, через канал проходит кратковременный импульс тока большой силы, в течение которого на разрядный промежуток приходится лишь незначительное сопротивление. Если мощность источника не очень велика, то после такого импульса тока разряд прекращается. Напряжение между электродами начинает расти до прежнего значения, и пробой газа повторяется с образованием нового искрового канала.

Величина Ек увеличивается с увеличением давления. Отношение критической напряженности поле к давлению газа р для данного газа остается приблизительным в широкой области изменения давления: Ек/рconst.

Время нарастания напряжения тем больше, чем больше емкость С между электродами. Поэтому включение конденсатора параллельно разрядному промежутку увеличивает время между двумя последующими искрами, а сами искры становятся более мощными. Через канал искры проходит большой электрический заряд, и поэтому увеличивается амплитуда и длительность импульса тока. При большой емкости С канал искры ярко светится и имеет вид широких полос. То же самое происходит при увеличении мощности источника тока. Тогда говорят о конденсированном искровом разряде, или о конденсированной искре. Максимальная сила тока в импульсе, при искровом разряде, меняется в широких пределах, в зависимости от параметров цепи разряда и условий в разрядном промежутке, достигая нескольких сотен килоампер. При дальнейшем увеличении мощности источника, искровой разряд переходит в дуговой разряд.

В результате прохождения импульса тока через канал искры в канале выделяется большое количество энергии (порядка 0,1 - 1 Дж на каждый сантиметр длины канала). С выделением энергии связано скачкообразное увеличение давления в окружающем газе - образование цилиндрической ударной волны, температура на фронте которой ~104 К. Происходит быстрое расширение канала искры, со скоростью порядка тепловой скорости атомов газа. По мере продвижения ударной волны температура на ее фронте начинает падать, а сам фронт отходит от границы канала. Возникновение ударных волн объясняются звуковые эффекты, сопровождающие искровой разряд: характерное потрескивание в слабых разрядах и мощные раскаты в случае молний.

В момент существования канала, особенно при высоких давлениях, наблюдается более яркое свечение искрового разряда. Яркость свечения неоднородна по сечению канала имеет максимум в его центре.

Рассмотрим механизм искрового разряда.

В настоящее время общепринятой считается так называемая стримерная теория искрового разряда, подтвержденная прямыми опытами. Качественно она объясняет основные особенности искрового разряда, хотя в количественном отношении и не может считаться завершенной. Если вблизи катода зародилась электронная лавина, то на ее пути проходит ионизация и возбуждение молекул и атомов газа. Существенно, что световые кванты, испускаемые возбужденными атомами и молекулами, распространяясь к аноду со скорость света, сами производят ионизацию газа, и дают начало первым электронным лавинам. Таким путем во всем объеме газа появляются слабо святящиеся скопления ионизированного газа, называемые стримерами. В процессе своего развития отдельные электронные лавины догоняют друг друга и, сливаясь вместе, образуют хорошо проводящий мостик из стримеров. По этому в последующий момент времени и устремляется мощный поток электронов, образующий канал искрового разряда. Поскольку проводящий мостик образуется в результате слияния практически одновременно возникающих стримеров, время его образования много меньше времени, которое требуется отдельной электронной лавине для прохождения расстояний от катода к аноду. Наряду с отрицательными стримерами, т.е. стримерами, распространяющимися от катода к аноду, существуют также положительные стримеры, которые распространяются в противоположном направлении.

Свободные электроны получают в таком поле огромные ускорения. Эти ускорения направлены вниз, поскольку нижняя часть тучи заряжена отрицательно, а поверхность земли положительно. На пути от первого столкновения до другого, электроны приобретают значительную кинетическую энергию. Поэтому, сталкиваясь с атомами или молекулами, они ионизируют их. В результате рождаются новые (вторичные) электроны, которые, в свою очередь, ускоряются в поле тучи и затем в столкновениях ионизуют новые атомы и молекулы. Возникают целые лавины быстрых электронов, образующие у самого "дна" тучи, плазменные "нити" - стример.

Сливаясь друг с другом, стримеры дают начало плазменному каналу, по которому в последствии пройдет импульс основного тока. Этот развивающийся от "дна" тучи к поверхности земли плазменный канал наполнен свободными электронами и ионами, и поэтому может хорошо проводить электрический ток. Его называют лидером или точнее ступенчатым лидером. Дело в том, что канал формируется не плавно, а скачками - "ступенями".

Почему в движении лидера наступают паузы и притом относительно регулярные - точно неизвестно. Существует несколько теорий ступенчатых лидеров.

В 1938 году Шонланд выдвинул два возможных объяснения задержки, которая вызывает ступенчатый характер лидера. Согласно одному из них, должно происходить движение электронов вниз по каналу ведущего стримера (пилота). Однако часть электронов захватывается атомами и положительно заряженными ионами, так что требуется некоторое время для поступления новых продвигающихся электронов, прежде чем возникнет градиент потенциала, достаточный для того, чтобы ток продолжался. Согласно другой точке зрения, время требуется для того, чтобы положительно заряженные ионы скопились под головкой канала лидера и, таким образом, создали на ней достаточный градиент потенциала. В 1944 году Брюс предложил иное объяснение, в основе которого лежит перерастание тлеющего разряда в дуговой. Он рассмотрел "коронный разряд", аналогичный разряду острия, существующий вокруг канала лидера не только на головке канала, но и по всей его длине. Он дал объяснение тому, что условия для существования дугового разряда будут устанавливаться на некоторое время после того, как канал разовьется на определенное расстояние и, следовательно, возникнут ступени. Это явление еще до конца не изучено и конкретной теории пока нет. А вот физические процессы, происходящие вблизи головки лидера, вполне понятны. Напряженность поля под тучей достаточно велика - она составляет B/м; в области пространства непосредственно перед головкой лидера она еще больше. Увеличение напряженности поля в этой области хорошо объясняет рис.4, где штриховыми кривыми показаны сечения эквипотенциальных поверхностей, а сплошными кривыми - лини напряженности поля. В сильном электрическом поле вблизи головки лидера происходит интенсивная ионизация атомов и молекул воздуха. Она происходит за счет, во-первых, бомбардировки атомов и молекул быстрыми электронами, вылетающими из лидера (так называемая ударная ионизация), и, во-вторых, поглощение атомами и молекулами фотонов ультрафиолетового излучения, испускаемого лидером (фотоионизация). Вследствие интенсивной ионизации встречающихся на пути лидера атомов и молекул воздуха плазменный канал растет, лидер движется к поверхности земли.

С учетом остановок по пути лидеру, чтобы достигнуть земли, потребовалось 10...20 мс при расстоянии 1 км между тучей и земной поверхностью. Теперь тучу соединяет с землей плазменный канал, прекрасно проводящий ток. Канал ионизированного газа как бы замкнул тучу с землей накоротко. На этом первая стадия развития начального импульса заканчивается.

Вторая стадия протекает быстро и мощно. По проложенному лидером пути устремляется основной ток. Импульс тока длится примерно 0,1мс. Сила тока достигает значений порядка А. Выделяется значительное количество энергии (до Дж). Температура газа в канале достигает. Именно в этот момент рождается тот необычайно яркий свет, который мы наблюдаем при разряде молнии, и возникает гром, вызванный внезапным расширением внезапно нагретого газа.

Существенно, что и свечение, и разогрев плазменного канала развиваются в направлении от земли к туче, т.е. снизу вверх. Для объяснения этого явления разобьем условно весь канал на несколько частей. Как только канал образовался (головка лидера достигла земли), вниз соскакивают прежде всего электроны, которые находились в самой нижней его части; поэтому нижняя часть канала первой начинает светиться и разогреваться. Затем к земле устремляются электроны из следующей (более высоко находящейся части канала); начинаются свечение и разогрев этой части. И так постепенно - от низа до верха - в движение к земле включаются все новые и новые электроны; в результате свечение и разогрев канала распространяются в направлении снизу вверх.

После того, как прошел импульс основного тока, наступает пауза длительностью от 10 до 50мс. За это время канал практически гаснет, его температура падает, степень ионизации канала существенно уменьшается.

Однако в туче еще сохранился большой заряд, поэтому новый лидер устремляется из тучи к земле, готовя дорогу для нового импульса тока. Лидеры второго и последующих ударов являются не ступенчатыми, а стреловидными. Стреловидные лидеры аналогичны ступеням ступенчатого лидера. Однако поскольку ионизированный канал уже существует, необходимость в пилоте и ступенях отпадает. Так как ионизация в канале стреловидного лидера "старше", чем у ступенчатого лидера, рекомбинация и диффузия у носителей носителей заряда происходят интенсивнее, а поэтому и степень ионизации в канале стреловидного лидера ниже. В результате скорость стреловидного лидера меньше скорости отдельных ступеней ступенчатого лидера, но больше скорости пилота. Значения скорости стреловидного лидера составляют от до м/с.

Если между последующими ударами молнии пройдет больше времени, чем обычно, то степень ионизации может быть настолько низкой, особенно в нижней части канала, что возникает необходимость в новом пилоте для повторной ионизации воздуха. Это объясняет отдельные случаи образования ступеней на нижних концах лидеров, предшествующих не первому, а последующим главным ударам молнии.

Как говорилось выше, новый лидер идет по пути, который был проторен начальным лидером. Он без остановки (1мс) пробегает весь путь сверху до низу. И снова следует мощный импульс основного тока. После очередной паузы все повторяется. В итоге высвечиваются несколько мощных импульсов, которые мы естественно, воспринимаем как единый разряд молнии, как единую яркую вспышку.

До изобретения электричества и громоотвода люди боролись с разрушительными последствиями ударов молний заклинаниями. В Европе действенным средством борьбы считался непрерывный колокольный звон во время грозы. Согласно статистике, итогом 30-летней борьбы с молниями в Германии стало разрушение 400 колоколен и гибель 150 звонарей.

Первым человеком, придумавшим эффективный способ стал ученыйСША Бенджамин Франклин - универсальный гений своей эпохи (1706-1790).

Как Франклин отклонил молнию. К счастью, большинство разрядов молнии происходят между облаками и поэтому угрозы не представляют. Однако считается, что каждый год молнии убивают более тысячи людей по всему миру. По крайней мере, в США, где ведется такая статистика, каждый год от удара молнии страдают около 1000 человек и более ста из них погибают. Ученые давно пытались защитить людей от этой "кары божьей". Например, изобретатель первого электрического конденсатора (лейденской банки) Питер ван Мушенбрук (1692-1761) в статье об электричестве, написанной для знаменитой французской Энциклопедии, защищал традиционные способы предотвращения молнии - колокольный звон и стрельбу из пушек, которые, как он считал, оказываются довольно эффективными.

Бенджамин Франклин, пытаясь защитить Капитолий столицы штата Мериленд, в 1775 году прикрепил к зданию толстый железный стержень, который возвышался над куполом на несколько метров и был соединен с землей. Ученый отказался патентовать свое изобретение, желая, чтобы оно как можно скорее начало служить людям (рис. 6).

Весть о громоотводе Франклина быстро разнеслась по Европе, и его выбрали во все академии, включая и Российскую. Однако в некоторых странах набожное население встретило это изобретение с возмущением. Сама мысль, что человек так легко и просто может укротить главное оружие "божьего гнева", казалась кощунственной. Поэтому в разных местах люди из благочестивых соображений ломали громоотводы. Любопытный случай произошел в 1780 году в небольшом городке Сент-Омер на севере Франции, где горожане потребовали снести железную мачту громоотвода, и дело дошло до судебного разбирательства. Молодой адвокат, защищавший громоотвод от нападок мракобесов, построил защиту на том, что и разум человека, и его способность покорять силы природы имеют божественное происхождение. Все, что помогает спасти жизнь, во благо - доказывал молодой адвокат. Он выиграл процесс и снискал большую известность. Адвоката звали Максимилиан Робеспьер. Ну а сейчас портрет изобретателя громоотвода - самая желанная репродукция в мире, ведь она украшает известную всем стодолларовую купюру.

Как можно защититься от молнии с помощью водяной струи и лазера. Недавно был предложен принципиально новый способ борьбы с молниями. Громоотвод создадут из... струи жидкости, которой будут стрелять с земли непосредственно в грозовые облака. Громоотводная жидкость представляет собой солевой раствор, в который добавлены жидкие полимеры: соль предназначена для увеличения электропроводности, а полимер препятствует "распаду" струи на отдельные капельки. Диаметр струи составит около сантиметра, а максимальная высота - 300 метров. Когда жидкий громоотвод доработают, им оснастят спортивные и детские площадки, где фонтан включится автоматически, когда напряженность электрического поля станет достаточно высокой, а вероятность удара молнии - максимальной. По струе жидкости с грозового облака будет стекать заряд, делая молнию безопасной для окружающих. Аналогичную защиту от разряда молнии можно сделать и с помощью лазера, луч которого, ионизируя воздух, создаст канал для электрического разряда вдали от скопления людей.

Может ли молния сбить нас с пути? Да, если вы пользуетесь компасом. В известном романе Г. Мелвила "Моби Дик" описан именно такой случай, когда разряд молнии, создавший сильное магнитное поле, перемагнитил стрелку компаса. Однако капитан судна взял швейную иглу, ударил по ней, чтобы намагнитить, и поставил ее вместо испорченной стрелки компаса.

Может ли вас поразить молния внутри дома или самолета? К сожалению, да! Ток грозового разряда может войти в дом по телефонному проводу от рядом стоящего столба. Поэтому при грозе старайтесь не пользоваться обычным телефоном. Считается, что говорить по радиотелефону или по мобильному безопасней. Не следует во время грозы касаться труб центрального отопления и водопровода, которые соединяют дом с землей. Из этих же соображений специалисты советуют при грозе выключать все электрические приборы, в том числе компьютеры и телевизоры.

Что касается самолетов, то, вообще говоря, они стараются облетать районы с грозовой активностью. И все-таки в среднем раз в год в один из самолетов попадает молния. Ее ток поразить пассажиров не может, он стекает по внешней поверхности самолета, но способен вывести из строя радиосвязь, навигационное оборудование и электронику.

Медики полагают, что человек, выживший после удара молнии (а таких людей немало), даже не получив сильных ожогов головы и тела, впоследствии может получить осложнения в виде отклонений в сердечно-сосудистой и невралгической деятельности от нормы. Впрочем, может и обойтись.

Люди давным-давно поняли, какой вред может принести удар молнии, и придумали от нее защиту. Но опять-таки назвали ее почему-то громоотводом, хотя он “отводит” не гром, а молнию. Громоотвод - это железный шест, который помещают как можно выше. Молнии ведь надо сначала проложить себе дорожку в воздухе. Понятное дело, что чем короче дорожка, тем проще ее сделать. А молния - ужасная лентяйка, всегда ищет самый короткий путь и ударяет в самый высокий (и, значит, самый близкий к ней) предмет. Когда молния “видит” поблизости высокий железный шест, приготовленный для нее людьми, она прокладывает дорожку именно к нему. А громоотвод проводом соединен с землей, и все электричество молнии, не причинив никому вреда, уходит в землю. А вот раньше, давным-давно, в городах и селах от ударов молний бывали большие пожары.

Рабби Йеуда Нахшони приводит комментарий Раббейну Бахья (умер в 1340 г.), который считал, что Вавилонская башня должна была быть своего рода громоотводом против молний, которыми Всевышний намеревался сжечь землю. В энциклопедии сказано, что громоотвод изобрел Бенджамин Франклин (1706-1790) в Америке. Не спорим, он действительно интересовался этим вопросом, сумел использовать накопленный опыт и дать практическое применение своим идеям. Однако, как мы видим, еще во время составления Мишны (1500 лет до этого) уже использовались громоотводы. Поэтому можно считать, что первенство, приписываемое Франклину, на деле является довольно сомнительным. В далекое прошлое уходят воспоминания о вещах, ставших для нас привычными, и не всегда удается найти того, кто был первым, кто открыл для нас то, без чего свою жизнь мы уже не можем и представить.

Заключение

Молния - одно из самых разрушительных и устрашающих природных явлений, с которыми повсеместно сталкивается человек.

В настоящий момент современный уровень науки и техники позволяет создать действительно функционально надежную и соответствующую техническому уровню систему молниезащиты.

На Земле происходит около 32 миллиардов ударов молний в год, ущерб от которых оценивается в 5 миллиардов долларов. Только в США от молний ежегодно страдает около 1000 человек, двести из которых гибнет.

По статистике, молнии попадают в самолеты, в среднем, три раза в год, но в наши дни это редко приводит к серьезным последствиям. Современные авиалайнеры теперь достаточно хорошо защищены от удара молнии. Самая тяжелая авиационная катастрофа, вызванная молнией, произошла 8 декабря 1963 года в штате Мэрилэнд, США. Тогда попавшая в самолет молния проникла в резервный бак горючего, что привело к воспламенению всего самолета. В результате этой погибло 82 человека.

Шаровая молния - загадочное явление природы, о наблюдениях которого сообщается на протяжении нескольких столетий. Большой прогресс в исследовании этого явления был достигнут в последние десять - пятнадцать лет. Изучение загадочного явления прогрессирует за счет развития смежных областей физики и химии.

Естественно считать, что в основе природы шаровой молнии лежат известные физические закономерности, но их сочетание приводит к новому качеству, которое мы не понимаем. Разобравшись в этом, мы найдем реальным то, что ранее казалось экзотическим, и получим качественные представления, которые могут иметь аналоги и в других физических процессах и явлениях. Получение таких представлений обогащает науку и является ценным в рассматриваемых исследованиях. Такова логика развития науки вообще, и накопленный опыт исследования природы шаровой молнии подтверждает это.

В ходе написания реферата, была изучена специальная литература, благодаря которой выполнена цель данного реферата: рассмотрены причины возникновения молнии, изучены различные виды электрических зарядов, рассмотрены различные виды защиты.

1.Богданов, К.Ю. Молния: больше вопросов, чем ответов // Наука и жизнь. – 2007. - № 2. – С. 19-32.

2.Дёмкин, С. Светлая личность с темным прошлым // Чудеса и приключения. – 2007. - № 4. – С. 44-45.

3.Имянитов, И.М., Чубарина, Е.В., Шварц Я.М. Электричество облаков. Л., 197. – 593 с.

4.Остапенко, В. Шаровая молния – сгусток холодной плазмы // Техника молодежи. – 2007. - № 884. – С. 16-19.

5.Перышкин, А.В., Гутник, Е.М. Физика. 9 кл. Учебник для общеобразовательных учреждений. - М.: Дрофа, 2003. – 256 с.

6.Тарасов, Л.В. Физика в природе. - М.: Просвещение, 1988. – 352 с.

7.Френкель, Я.И. Собрание избранных трудов, т. 2.: М. -Л., 1958. – 600 с.

Задумывались ли вы когда-то почему птицы сидят на высоковольтных проводах, а человек, коснувшись проводов, погибает? Все очень просто - они сидят на проводе, но ток через птицу не течет, но если птичка взмахнет крылом, одновременно касаясь двух фаз - умрет. Обычно так погибают большие птицы типа аистов, орлов, соколов.

Так и человек может коснуться фазы и ему ничего не будет, если через него ток не потечет, для этого нужно одевать прорезиненные ботинки и не дай Бог коснуться стены или металла.

Электрический ток способен убить человека в долю секунды, он поражает без предупрежденья. Молния ударяет в землю сто раз в секунду и свыше восьми миллионов раз в день. Эта сила природы в пять раз горячее, чем поверхность солнца. Электрический разряд бьёт с силой в 300`000 ампер и миллион вольт в долю секунды. В повседневной жизни мы думаем, что можем контролировать электричество, которое питает наши дома, наружное освещение, а теперь и автомобили. Но электричество в его первозданной форме не поддаётся контролю. А молния - это электричество в громадных масштабах. И всё же молния остаётся большой загадкой. Она может ударить неожиданно, и её путь может быть непредсказуемым.

Молния в небе не приносит вреда, но одна из десяти молний обрушивается на поверхность земли. Молния разделяется на множество ветвей, каждая из которых способна поразить человека находящегося в эпицентре. При ударе человека молнией, разряд тока может переходить от одного человека к другому, если они соприкасаются.

Существует правило тридцати и тридцати: если вы видите молнию, а менее чем через тридцать секунд услышали гром, то надо искать убежище, а затем требуется подождать тридцать минут с последнего раската грома, прежде чем выходить на улицу. Но молния не всегда подчиняется строгому порядку.

Существует такое атмосферное явление, как гром среди ясного неба. Часто молния, выходя из облака, проходит до шестнадцати километров, прежде чем ударить в землю. Другими словами, молния может появиться ниоткуда. Молнии нужен ветер и вода. Когда сильные ветра поднимают влажный воздух, возникают условия для появления разрушительных гроз.

Невозможно разложить на составляющие то, что укладывается в миллионную долю секунды. Одно из ложных убеждений состоит в том, что мы видим молнию, когда она устремляется в землю, на самом деле мы видим обратный путь молнии в небо. Молния - это не однонаправленный удар в землю, а это на самом деле кольцо, путь в две стороны. Вспышка молнии, которую мы видим, так называемый обратный удар, завершающая фаза цикла. И когда обратный удар молнии раскаляет воздух, появляется её визитная карточка - гром. Обратный путь молнии - это та часть молнии, которую мы видим как вспышку и слышим как гром. Обратный ток силой в тысячи ампер и миллионы вольт устремляются от земли к облаку.

Молния регулярно поражает электрическим током человека в помещении. Она может проникнуть в строение разными путями, по водосточным трубам и водопроводу. Молния может проникать в электропроводку, сила тока которой в обычном доме не достигает двухсот ампер и перегружает электропроводку скачками от двадцати тысяч до двухсот тысяч ампер. Возможно, наиболее опасная тропа в вашем доме ведёт прямо к вашей руке через телефон. Почти две трети ударов электрическим током в помещениях приходятся на людей, взявшие в свои руки трубку стационарного телефона во время молнии. Беспроводные телефоны более безопасны во время грозы, но молния может ударить человека электрическим током, который стоит рядом с базой телефона. Даже громоотвод не может защитить вас от всех молний, так как он не способен ловить молнию в небе.

О природе молнии

Существует несколько различных теорий, объясняющих происхождение молний.

Обычно нижняя часть облака несёт отрицательный заряд, а верхняя - положительный, что делает систему облако-земля подобной гигантскому конденсатору.

Когда разность электрических потенциалов становится достаточно большой, между землёй и облаком или между двумя частями облака происходит разряд, известный под названием молнии.

Опасно ли находиться в автомобиле во время молнии?

В одном из этих опы-тов искусственная смертельная молния в метр длиной была на-правлена на стальную крышу автомобиля, в котором находился человек. Молния прошла по обшивке, не нанеся вреда человеку. Как же так получилось? Поскольку заряды на заряженном пред-мете взаимно отталкиваются, они стремятся разойтись как можно дальше друг от друга.

В случае полого механического шара пи цилиндра заряды распределяются по внешней поверхности предмета Аналогично, если молния л дарит в металлическую крышу автомобиля, то отталкивающиеся электроны чрезвычайно быстро разойдутся по поверхности автомашины и уйдут через ее корпус в землю. Поэтому молния по поверхности металлической машины уходит в землю и не попадает внутрь автомобиля. По той же причине совершенной защитой от молнии является металличе-ская клеть. В результате ударов в автомашину искусственных молний напряжением 3 млн. вольт потенциал автомобиля и тела, находящегося в нём человека, повышается почти до 200 тыс. вольт. Человек при этом не испытывает ни малейшего признака удара электрического тока, поскольку между любыми точками его тела нет никакой разности потенциалов.

Значит, почти полностью защищает от молнии пребывание в хорошо заземленном здании с металлическим каркасом, а та-ковых много в современных городах.


Чем объяснить, что птицы совершенно спокойно и безнаказанно сидят на проводах?

Тело сидящей птицы представляет собой как бы ответвление цепи (параллельное соединение). Сопротивление этой ветви с птицей много больше, чем сопротивление провода между ногами птицы. Поэтому сила тока в теле птицы ничтожна. Если бы птица, сидя на проводе, коснулась бы крылом или хвостом столба или как-то ещё соединилась бы с землёй, она мгновенно была бы убита током, который устремился бы через неё в землю.


Интересные факты о молниях

Средняя длина молнии 2,5 км. Некоторые разряды простираются в атмосфере на расстояние до 20 км.

Молнии приносят пользу: они успевают выхватить из воздуха млн тн азота, связать его и направить в землю, удобряя почву.

Молнии Сатурна в миллион раз сильнее земных.

Разряд молнии обычно состоит из трех или более повторных разрядов - импульсов, следующих по одному и тому же пути. Интервалы между последовательными импульсами очень коротки, от 1/100 до 1/10 с (этим обусловлено мерцание молнии).

Ежесекундно на Земле вспыхивает около 700 молний. Мировые очаги гроз: остров Ява - 220, экваториальная Африка - 150, южная Мексика - 142, Панама - 132, центральная Бразилия - 106 грозовых дней в году. Россия: Мурманск - 5, Архангельск - 10, С-Петербург - 15, Москва - 20 грозовых дней в году.

Воздух в зоне канала молнии практически мгновенно разогревается до температуры 30 000-33 000° С. От удара молнии в мире в среднем ежегодно погибает около 3 000 человек

Статистика показывает, что на 5000-10000 летных часов приходится один удар молнии в самолет, к счастью, почти все поврежденные самолеты продолжают полет.

Несмотря на сокрушительную мощь молнии, уберечься от нее довольно просто. Во время грозы следует немедленно уходить с открытых мест, ни в коем случае нельзя прятаться под отдельно стоящими деревьями, а также находиться вблизи высоких мачт и ЛЭП. Не следует держать в руках стальные предметы. Также во время гроз нельзя пользоваться средствами радиосвязи, мобильными телефонами. В помещении нужно отключить телевизоры, радиоприемники и электроприборы.


Молниеотводы защищают здания от поражения молнией по двум причинам: они дают возможность стекать в воздух наве-денному на здании заряду, а при ударе молнии в здание уводят её в землю.

Попав в грозу, следует избегать укрываться возле одиноч-ных деревьев, изгородей, возвышенных мест и находиться на от-крытых пространствах.

Еще 250 лет назад знаменитый американский ученый и общественный деятель Бенджамин Франклин установил, что молния — это электрический разряд. Но до сих пор раскрыть до конца все тайны, которые хранит молния, не удается: изучать это природное явление сложно и опасно.

(20 фото молний + видео Молния в замедленной съёмке)

Внутри тучи

Грозовую тучу не спутаешь с обычным облаком. Ее мрачный, свинцовый цвет объясняется большой толщиной: нижний край такой тучи висит на расстоянии не более километра над землей, верхний же может достигать высоты 6-7 километров.

Что происходит внутри этой тучи? Водяной пар, из которого состоят облака, замерзает и существует в виде ледяных кристаллов. Восходящие потоки воздуха, идущие от нагретой земли, увлекают мелкие льдинки вверх, заставляя их все время сталкиваться с крупными, оседающими вниз.

Кстати, зимой земля нагревается меньше, и в это время года, практически, не образуется мощных восходящих потоков. Поэтому зимние грозы — крайне редкое явление.

В процессе столкновений льдинки электризуются, точно так же, как это происходит при трении различных предметов один о другой, — например, расчески о волосы. Причем, мелкие льдинки приобретают заряд положительный, а крупные — отрицательный. По этой причине верхняя часть молниеобразующего облака приобретает положительный заряд, а нижняя — отрицательный. Возникает разность потенциалов в сотни тысяч вольт на каждом метре расстояния — как между облаком и землей, так и между частями облака.

Развитие молнии

Развитие молнии начинается с того, что в некотором месте облака возникает очаг с повышенной концентрацией ионов — молекул воды и, составляющих воздух, газов, от которых отняли или к которым добавили электроны.

По одним гипотезам, такой очаг ионизации получается из-за разгона в электрическом поле свободных электронов, всегда имеющихся в воздухе в небольших количествах, и соударением их с нейтральными молекулами, которые сразу же ионизируются.

По другой гипотезе, начальный толчок вызывается космическими лучами, которые все время пронизывают нашу атмосферу, ионизируя молекулы воздуха.

Ионизированный газ служит неплохим проводником электричества, поэтому через ионизированные области начинает течь ток. Дальше — больше: проходящий ток нагревает область ионизации, вызывая всё новые высокоэнергетичные частицы, которые ионизируют близлежащие области, — канал молнии очень быстро распространяется.

Вслед за лидером

На практике процесс развития молнии происходит в несколько стадий. Сначала передний край проводящего канала, называемый «лидером», продвигается скачками по нескольку десятков метров, каждый раз, немного меняя направление (от этого молния получается извилистой). Причем скорость продвижения «лидера» может, в отдельные моменты, достигать 50 тысяч километров за одну-единственную секунду.

В конце концов, «лидер» достигает земли или другой части облака, но это еще не главная стадия дальнейшего развития молнии. После того, как ионизированный канал, толщина которого может достигать нескольких сантиметров, оказывается «пробит», по нему с огромной скоростью — до 100 тысяч километров всего за одну секунду — устремляются заряженные частицы, это и есть сама молния.

Ток в канале составляет сотни и тысячи ампер, а температура внутри канала, при этом, достигает 25 тысяч градусов — потому молния и дает столь яркую вспышку, видимую за десятки километров. А мгновенные перепады температур, в тысячи градусов, создают сильнейшие перепады давления воздуха, распространяющиеся в виде звуковой волны — грома. Этот этап длится очень недолго — тысячные доли секунды, но энергия, которая при этом выделяется, огромна.

Конечная стадия

На конечной стадии скорость и интенсивность движения зарядов в канале снижается, но, все равно, остаются достаточно большими. Именно этот момент наиболее опасен: конечная стадия может длиться только десятые (и даже меньше) доли секунды. Такое, достаточно длительное, воздействие на предметы на земле (например, на сухие деревья) часто приводит к пожарам и разрушениям.

Причем, как правило, одним разрядом дело не ограничивается — по проторенному пути могут двинуться новые «лидеры», вызывая в том же самом месте повторные разряды, по количеству доходящих до нескольких десятков.

Несмотря на то, что человечеству известна молния с момента появления самого человека на Земле, до настоящего времени она до конца еще не изучена.

Lightning 1882
(c) Photographer: William N. Jennings, c. 1882

Электрическая природа молнии была раскрыта в исследованиях американского физика Б. Франклина , по идее которого был проведён опыт по извлечению электричества из грозового облака. Широко известен опыт Франклина по выяснению электрической природы молнии. В 1750 году им опубликована работа, в которой описан эксперимент с использованием воздушного змея, запущенного в грозу. Опыт Франклина был описан в работе Джозефа Пристли .

Физические свойства молнии

Средняя длина молнии 2,5 км, некоторые разряды простираются в атмосфере на расстояние до 20 км.

Формирование молнии

Наиболее часто молния возникает в кучево-дождевых облаках , тогда они называются грозовыми; иногда молния образуется в слоисто-дождевых облаках, а также при вулканических извержениях, торнадо и пылевых бурях.

Обычно наблюдаются линейные молнии, которые относятся к так называемым безэлектродным разрядам, так как они начинаются (и заканчиваются) в скоплениях заряженных частиц. Это определяет их некоторые до сих пор не объяснённые свойства, отличающие молнии от разрядов между электродами. Так, молнии не бывают короче нескольких сотен метров; они возникают в электрических полях значительно более слабых, чем поля при межэлектродных разрядах; сбор зарядов, переносимых молнией, происходит за тысячные доли секунды с миллиардов мелких, хорошо изолированных друг от друга частиц, расположенных в объёме нескольких км³. Наиболее изучен процесс развития молнии в грозовых облаках, при этом молнии могут проходить в самих облаках - внутриоблачные молнии , а могут ударять в землю - наземные молнии . Для возникновения молнии необходимо, чтобы в относительно малом (но не меньше некоторого критического) объёме облака образовалось электрическое поле (см. атмосферное электричество) с напряжённостью, достаточной для начала электрического разряда (~ 1 МВ/м), а в значительной части облака существовало бы поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~ 0,1-0,2 МВ/м). В молнии электрическая энергия облака превращается в тепловую, световую и звуковую.

Наземные молнии

Процесс развития наземной молнии состоит из нескольких стадий. На первой стадии, в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация , создаваемая вначале свободными зарядами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с молекулами, составляющими воздух, ионизуют их.

По более современным представлениям, ионизация атмосферы для прохождения разряда происходит под влиянием высокоэнергетического космического излучения - частиц с энергиями 10 12 -10 15 эВ , формирующих широкий атмосферный ливень (ШАЛ) с понижением пробивного напряжения воздуха на порядок от такового при нормальных условиях.

По одной из гипотез, частицы запускают процесс, получивший название пробоя на убегающих электронах . Таким образом возникают электронные лавины, переходящие в нити электрических разрядов - стримеры , представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью - ступенчатому лидеру молнии .

Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью ~ 50 000 километров в секунду, после чего его движение приостанавливается на несколько десятков микросекунд, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров. Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 200 000 метров в секунду.

По мере продвижения лидера к земле напряжённость поля на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример , соединяющийся с лидером. Эта особенность молнии используется для создания молниеотвода .

В заключительной стадии по ионизованному лидером каналу следует обратный (снизу вверх), или главный, разряд молнии , характеризующийся токами от десятков до сотен тысяч ампер, яркостью, заметно превышающей яркость лидера , и большой скоростью продвижения, вначале доходящей до ~ 100 000 километров в секунду, а в конце уменьшающейся до ~ 10 000 километров в секунду. Температура канала при главном разряде может превышать 2000-3000 °C. Длина канала молнии может быть от 1 до 10 км, диаметр - несколько сантиметров. После прохождения импульса тока ионизация канала и его свечение ослабевают. В финальной стадии ток молнии может длиться сотые и даже десятые доли секунды, достигая сотен и тысяч ампер. Такие молнии называют затяжными, они наиболее часто вызывают пожары. Но земля не является заряженой, поэтому принято считать что разряд молнии происходит от облака по направлению к земле(сверху вниз).

Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со скоростью в тысячи километров в секунду. Яркость его свечения близка к яркости ступенчатого лидера. Когда стреловидный лидер доходит до поверхности земли, следует второй главный удар, подобный первому. Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 сек. Смещение канала многократной молнии ветром создаёт так называемую ленточную молнию - светящуюся полосу.

Внутриоблачные молнии

Внутриоблачные молнии над Тулузой, Франция. 2006 год

Внутриоблачные молнии включают в себя обычно только лидерные стадии; их длина колеблется от 1 до 150 км. Доля внутриоблачных молний растет по мере смещения к экватору , меняясь от 0,5 в умеренных широтах до 0,9 в экваториальной полосе. Прохождение молнии сопровождается изменениями электрических и магнитных полей и радиоизлучением , так называемыми атмосфериками .

Полёт из Калькутты в Мумбаи.

Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы на поверхности или на некоторой глубине (на этих факторах основано действие громоотвода). Если в облаке существует электрическое поле, достаточное для поддержания разряда, но недостаточное для его возникновения, роль инициатора молнии может выполнить длинный металлический трос или самолёт - особенно, если он сильно электрически заряжен. Таким образом иногда «провоцируются» молнии в слоисто-дождевых и мощных кучевых облаках .

Молнии в верхней атмосфере

В 1989 году был обнаружен особый вид молний - эльфы, молнии в верхней атмосфере . В 1995 году был открыт другой вид молний в верхней атмосфере - джеты .

Эльфы

Джеты

Джеты представляют собой трубки-конусы синего цвета. Высота джетов может достигать 40-70 км (нижняя граница ионосферы), живут джеты относительно дольше эльфов .

Спрайты

Спрайты трудно различимы, но они появляются почти в любую грозу на высоте от 55 до 130 километров (высота образования «обычных» молний - не более 16 километров). Это некое подобие молнии, бьющей из облака вверх. Впервые это явление было зафиксировано в 1989 году случайно. Сейчас о физической природе спрайтов известно крайне мало .

Взаимодействие молнии с поверхностью земли и расположенными на ней объектами

Глобальная частота ударов молний (шкала показывает число ударов в год на квадратный километр)

Согласно ранним оценкам, частота ударов молний на Земле составляет 100 раз в секунду. По современным данным, полученным с помощью спутников, которые могут обнаруживать молнии в местах, где не ведётся наземное наблюдение, эта частота составляет в среднем 44 ± 5 раз в секунду, что соответствует примерно 1,4 миллиарда молний в год. 75 % этих молний ударяет между облаками или внутри облаков, а 25 % - в землю.

Самые мощные молнии вызывают рождение фульгуритов .

Ударная волна от молнии

Разряд молнии является электрическим взрывом и в некоторых аспектах похож на детонацию . Он вызывает появление ударной волны, опасной в непосредственной близости. Ударная волна от достаточно мощного грозового разряда на расстояниях до нескольких метров может наносить разрушения, ломать деревья, травмировать и контузить людей даже без непосредственного поражения электрическим током. Например, при скорости нарастания тока 30 тысяч ампер за 0,1 миллисекунду и диаметре канала 10 см могут наблюдаться следующие давления ударной волны :

  • на расстоянии от центра 5 см (граница светящегося канала молнии) - 0,93 МПа,
  • на расстоянии 0,5 м - 0,025 МПа (разрушение непрочных строительных конструкций и травмы человека),
  • на расстоянии 5 м - 0,002 МПа (выбивание стёкол и временное оглушение человека).

На бо́льших расстояниях ударная волна вырождается в звуковую волну - гром .

Люди и молния

Молнии - серьёзная угроза для жизни людей. Поражение человека или животного молнией часто происходит на открытых пространствах, так как электрический ток идёт по кратчайшему пути «грозовое облако-земля». Часто молния попадает в деревья и трансформаторные установки на железной дороге, вызывая их возгорание. Поражение обычной линейной молнией внутри здания невозможно, однако бытует мнение, что так называемая шаровая молния может проникать через щели и открытые окна. Обычный грозовой разряд опасен для телевизионных и радиоантенн, расположенных на крышах высотных зданий, а также для сетевого оборудования.

В организме пострадавших отмечаются такие же патологические изменения, как при поражении электротоком. Жертва теряет сознание , падает, могут отмечаться судороги , часто останавливается дыхание и сердцебиение . На теле обычно можно обнаружить «метки тока», места входа и выхода электричества. В случае смертельного исхода причиной прекращения основных жизненных функций является внезапная остановка дыхания и сердцебиения, от прямого действия молнии на дыхательный и сосудодвигательный центры продолговатого мозга. На коже часто остаются так называемые знаки молнии, древовидные светло-розовые или красные полосы, исчезающие при надавливании пальцами (сохраняются в течение 1 - 2 суток после смерти). Они - результат расширения капилляров в зоне контакта молнии с телом.

Молния проходит в стволе дерева по пути наименьшего электрического сопротивления , с выделением большого количества тепла, превращая воду в пар, который раскалывает ствол дерева или чаще отрывает от него участки коры, показывая путь молнии. В следующие сезоны деревья обычно восстанавливают повреждённые ткани и могут закрывать рану целиком, оставив только вертикальный шрам. Если ущерб является слишком серьёзным, ветер и вредители в конечном итоге убивают дерево. Деревья являются естественными громоотводами , и, как известно, обеспечивают защиту от удара молнии для близлежащих зданий. Посаженные возле здания, высокие деревья улавливают молнии, а высокая биомасса корневой системы помогает заземлять разряд молнии.

По этой причине нельзя прятаться от дождя под деревьями во время грозы, особенно под высокими или одиночными на открытой местности.

Из деревьев, поражённых молнией, делают музыкальные инструменты, приписывая им уникальные свойства.

Молния и электроустановки

Разряды молний представляют большую опасность для электрического и электронного оборудования. При прямом попадании молнии в провода в линии возникает перенапряжение , вызывающее разрушение изоляции электрооборудования, а большие токи обуславливают термические повреждения проводников. Для защиты от грозовых перенапряжений электрические подстанции и распределительные сети оборудуются различными видами защитного оборудования таким как разрядниками , нелинейными ограничителями перенапряжения, длинноискровыми разрядниками. Для защиты от прямого попадания молнии используются молниеотводы и грозозащитные тросы. Для электронных устройств представляет опасность также и электромагнитный импульс , создаваемый молнией.

Молния и авиация

Атмосферное электричество вообще и молнии в частности представляют значительную угрозу для авиации. Попадание молнии в летательный аппарат вызывает растекание тока большой величины по его конструкционным элементам, что может вызвать их разрушение, пожар в топливных баках, отказы оборудования, гибель людей. Для снижения риска металлические элементы наружной обшивки летательных аппаратов тщательно электрически соединяются друг с другом, а неметаллические элементы металлизируются. Таким образом, обеспечивается низкое электрическое сопротивление корпуса. Для стекания тока молнии и другого атмосферного электричества с корпуса, летательные аппараты оборудуются разрядниками.

Ввиду того, что электрическая емкость самолёта, находящегося в воздухе невелика, разряд «облако-самолёт» обладает существенно меньшей энергией по сравнению с разрядом «облако-земля». Наиболее опасна молния для низколетящего самолёта или вертолёта, так как в этом случае летательный аппарат может сыграть роль проводника тока молнии из облака в землю. Известно, что самолёты на больших высотах сравнительно часто поражаются молнией и тем не менее, случаи катастроф по этой причине единичны. В то же время известно очень много случаев поражения самолётов молнией на взлете и посадке, а также на стоянке, которые закончились катастрофами или уничтожением летательного аппарата.

Молния и надводные корабли

Молния также представляет очень большую угрозу для надводных кораблей в виду того, что последние приподняты над поверхностью моря и имеют много острых элементов (мачты, антенны), являющихся концентраторами напряженности электрического поля. Во времена деревянных парусников, обладающих высоким удельным сопротивлением корпуса, удар молнии практически всегда заканчивался для корабля трагически: корабль сгорал или разрушался, от поражения электрическим током гибли люди. Клёпаные стальные суда также были уязвимы для молнии. Высокое удельное сопротивление заклёпочных швов вызывало значительное локальное тепловыделение, что приводило к возникновению электрической дуги, пожарам, разрушению заклёпок и появлению водотечности корпуса.

Сварной корпус современных судов обладает низким удельным сопротивлением и обеспечивает безопасное растекание тока молнии. Выступающие элементы надстройки современных судов надежно электрически соединяются с корпусом и также обеспечивают безопасное растекание тока молнии.

Деятельность человека, вызывающая молнию

При наземном ядерном взрыве за доли секунды до прихода границы огненной полусферы в нескольких сотнях метров (~400-700 м при сравнении со взрывом 10,4 Мт) от центра дошедшее гамма-излучение продуцирует электромагнитный импульс с напряжённостью на уровне ~100-1000 кВ/м, вызвающий разряды молний, бьющих от земли вверх перед приходом границы огненной полусферы.


См. также

Примечания

  1. Ермаков В.И., Стожков Ю.И. Физика грозовых облаков // Физический институт им. П.Н. Лебедева, РАН, М.2004 г. :37
  2. В возникновении молний обвинили космические лучи Lenta.Ru , 09.02.2009
  3. Красные Эльфы и Синие Джеты
  4. ELVES, a primer: Ionospheric Heating By the Electromagnetic Pulses from Lightning
  5. Fractal Models of Blue Jets, Blue Starters Show Similarity, Differences to Red Sprites
  6. V.P. Pasko, M.A. Stanley, J.D. Matthews, U.S. Inan, and T.G. Wood (March 14, 2002) "Electrical discharge from a thundercloud top to the lower ionosphere, " Nature , vol. 416, pages 152-154.
  7. Появление НЛО объяснили спрайтами . lenta.ru (24.02.2009). Архивировано из первоисточника 23 августа 2011. Проверено 16 января 2010.
  8. John E. Oliver Encyclopedia of World Climatology . - National Oceanic and Atmospheric Administration, 2005. - ISBN 978-1-4020-3264-6
  9. . National Oceanic and Atmospheric Administration. Архивировано
  10. . NASA Science. Science News. (December 5, 2001). Архивировано из первоисточника 23 августа 2011. Проверено 15 апреля 2011.
  11. К. БОГДАНОВ «МОЛНИЯ: БОЛЬШЕ ВОПРОСОВ, ЧЕМ ОТВЕТОВ». «Наука и жизнь» № 2, 2007
  12. Живлюк Ю.Н., Мандельштам С.Л. О температуре молнии и силе грома // ЖЭТФ. 1961. Т. 40, вып. 2. С. 483-487.
  13. Н. А. Кун «Легенды и мифы Древней Греции» ООО «Издательство АСТ» 2005-538,с. ISBN 5-17-005305-3 Стр.35-36.