Карбоновыми кислотами называют соединения, в которых содержится карбоксильная группа:

Карбоновые кислоты различают:

В зависимости от строения карбоновые кислоты различают:

  • алифатические;
  • алициклические;
  • ароматические.

Примеры карбоновых кислот.

Получение карбоновых кислот.

1. Окисление первичных спиртов перманганатом калия и дихроматом калия:

2. Гибролиз галогензамещенных углеводородов, содержащих 3 атома галогена у одного атома углерода:

3. Получение карбоновых кислот из цианидов:

При нагревании нитрил гидролизуется с образованием ацетата аммония:

При подкисления которого выпадает кислота:

4. Использование реактивов Гриньяра:

5. Гидролиз сложных эфиров:

6. Гидролиз ангидридов кислот:

7. Специфические способы получения карбоновых кислот:

Муравьиная кислота получается при нагревании оксида углерода (II) с порошкообразным гидроксидом натрия под давлением:

Уксусную кислоту получают каталитическим окислением бутана кислородом воздуха:

Бензойную кислоту получают окислением монозамещенных гомологов раствором перманганата калия:

Реакция Каннициаро . Бензальдегид обрабатывают 40-60% раствором гидроксида натрия при комнатной температуре.

Химические свойства карбоновых кислот.

В водном растворе карбоновые кислоты диссоциируют:

Равновесие сдвинуто сильно влево, т.к. карбоновые кислоты являются слабыми.

Заместители влияют на кислотность вследствие индуктивного эффекта. Такие заместители оттягивают электронную плотность на себя и на них возникает отрицательный индуктивный эффект (-I). Оттягивание электронной плотности приводит к повышению кислотности кислоты. Электронодонорные заместители создают положительный индуктивный заряд.

1. Образование солей. Реагирование с основными оксидами, солями слабых кислот и активными металлами:

Карбоновые кислоты - слабые, т.к. минеральные кислоты вытесняют их из соответствующих солей:

2. Образование функциональных производных карбоновых кислот:

3. Сложные эфиры при нагревании кислоты со спиртом в присутствие серной кислоты - реакция этерификации:

4. Образование амидов, нитрилов:

3. Свойства кислот обуславливаются наличием углеводородного радикала. Если протекает реакция в присутствие красного фосфора, то образует следующий продукт:

4. Реакция присоединения.

8. Декарбоксилирование. Реакцию проводят сплавлением щелочи с солью щелочного металла карбоновой кислоты:

9. Двухосновная кислота легко отщепляет СО 2 при нагревании:

Дополнительные материалы по теме: Карбоновые кислоты.

Калькуляторы по химии

Химия онлайн на нашем сайте для решения задач и уравнений.

Карбонаты - многочисленная группа минералов, которые имеют широкое распространение. К минералам класса карбонатов относятся соли угольной кислоты, чаще всего это соли кальция, магния, натрия, меди. Всего в этом классе известно около 100 минералов. Некоторые из них очень широко распространены в природе, например кальцит и доломит.

В структурном отношении все карбонаты относятся к одному основному типу - анионы 2- представляют собой изолированные радикалы в форме плоских треугольников.

Большинство карбонатов безводные простые соединения, главным образом Ca, Mg и Fe с комплексным анионом 2- . Менее распространены сложные карбонаты, содержащие добавочные анионы (OH) - , F - и Cl - . Среди наиболее распространённых безводных карбонатов различают карбонаты тригональной и ромбической сингоний. Карбонаты обычно имеют светлую окраску: белую, розовую, серую и т.д., исключение представляют карбонаты меди, имеющие зелёную или синюю окраску. Твёрдость карбонатов около 3-4.5; плотность невелика, за исключением карбонатов Zn, Pb и Ba.

Важным диагностическим признаком является действие на карбонаты кислот (HCl и HNO 3), от которых они в той или иной степени вскипают с выделением углекислого газа. По происхождению карбонаты осадочные (биохимические или химические осадки) или осадочно-метаморфические минералы; выделяются также поверхностные, характерные для зоны окисления и иногда низкотемпературные гидротермальные карбонаты.

Главные минералы-карбонаты

Сингония

Твердость

Кальцита

Кальцит СаСОз

Родохрозит МпСОз

Магнезит MgCOз

Сидерит РеСОз

Смитсонит ZnCO3

Доломита

Доломит CaMg(COз)2

Арагонита

Арагонит СаСОз

Витерит ВаСОз

Стронцианит SrCO3

Церуссит PbСОз

Малахита

Малахит Cu2(СO3)(ОН)2

Азурит Cu3(CO3)2(ОН)2

Редкоземельных карбонатов

Бастнезит Се(С03)Р

Паризит Ca (Ce, La) 2 × 3 F 2

Натрит Na 2 CO 3 · 10H 2 O

Нахколит NaHCO3

Ниеререита

Ниеререит Na2Ca(CO3)2

Многие из широко распространенных карбонатов, в особенности же кальцит, магнезит, сидерит, доломит, имеют сходные черты морфологии кристаллов, близкие физические свойства, встречаются в одинаковых агрегатах и часто имеют переменный химический состав. Поэтому бывает трудно, а порой невозможно различить их по внешним признакам, твердости, спайности. Издавна используется про­стой прием диагностики карбонатов по характеру их реакции с соляной кислотой. Для этого наносят каплю разбавленной (1: 10) кислоты на зерно карбоната. Каль­цит реагирует активно, и капля раствора вскипает от выделяющихся пузырьков СО2, доломит реагирует слабо, только в порошке, а магнезит - при нагревании.

Более надежные результаты дают следующие лабораторные исследования: точное определение их показателей преломления; проведение микрохимических реакций на отполированных пластинках пород с реактивами, красящими разные минералы в различные цвета; термический анализ (определение температуры разложения минерала, у каждого карбоната она своя); рентгеновские исследования.

Карбонатовые отложения

Самым распространённым карбонатом является кальцит. Прозрачный кальцит называют исландским шпатом, непрозрачный известковым шпатом. Кальцит формирует такие породы, как известняк и мел. Подавляющее количество кальцита сформировалось за счёт биогенного его накопления. В то же время известен и кальцит гидротермального происхождения. В почвах кальцит накапливается в результате реакции кальция, высвободившегося при выветривании, с углекислым газом почвенного воздуха; особенно часто богаты кальцитом почвы засушливых областей. Кальцит и доломит формируют мрамор. Сидерит типичный минерал болотных руд; достаточно редко отмечается его эндогенное происхождение. Малахит красивый поделочный камень; как и близкий к нему по составу и свойствам минерал азурит Сu3(СО3)2(ОН)2, он образуется на поверхности Земли в результате окисления сульфидов меди.

Применение карбонатов

Карбонаты кальция, магния, бария и др. применяют в строительном деле, в химической промышленности, оптике и др. В технике, промышленности и быту широко применяется сода (Na2CO3 и NaHCO3): при производстве стекла, мыла, бумаги, как моющее средство, при заправке огнетушителей, в кондитерском деле. Кислые карбонаты выполняют важную физиологическую роль, являясь буферными веществами, регулирующими постоянство реакции крови.

Cтраница 1


Взаимодействие карбонатов и бикарбонатов щелочных металлов или аммония с солями уранила приводит к образованию комплексных ионов типа: [ UO2 (CO3) 3 ] 4 -, [ UO2 (CO3) 2 (H2O) 2 ] 2 - и др. Наиболее важными в технологии производства урана являются карбонатные комплексные соли натрия и аммония.  

Взаимодействие карбоната бария с пятиокисью ниобия при неизотермическом нагревании сопровождается появлением на кривой ДТГ максимумов скорости выделения двуокиси углерода при 670 - 690 и 960 - 980 С. В изотермических условиях реакция протекает с заметной скоростью при температурах выше 650 С.  

Процессы взаимодействия карбоната бария с окислами подгруппы ванадия удовлетворительно описываются указанными уравнениями в пределах до 70 - 80 % превращения исходных компонентов в конечный продукт реакций.  

При взаимодействии карбоната калия с кислотами образуются соли этих кислот с выделением диоксида углерода.  

При взаимодействии карбоната циркония с карбонатом аммония образуется (ЫН4) з2гОН (СОз) з - 2Н2Р - бесцветное кристаллическое вещество, растворимое в воде и нерастворимое в этаноле.  

При взаимодействии карбоната калия с хлороводородом образуются хлорид калия, диоксид углерода и вода. Определите количество хлорида калия и объем диоксида углерода (при н.у.), которые образуются из 24 82 г хлороводорода.  

Так как при взаимодействии карбонатов с кислотами происходит связывание ионов водорода, карбонатами, как и основаниями, можно пользоваться для нейтрализации кислот. Так, известняк СаСОз в размолотом виде применяется для известкования почв при излишней их кислотности.  

Кинетика взаимодействия смесей МеСОз и МоО3 при температуре 375 С. 1 - MgCO3 Mo03MgMoO4.  

С заметной скоростью реакции взаимодействия карбонатов щелочноземельных металло в с трехокисью молибдена протекает при температурах выше 300 С.  

Хлорид рубидия RbCl получают взаимодействием карбонатов с соляной кислотой, хорошо растворим в воде.  


Химическая пена образуется при взаимодействии карбоната или бикарбоната натрия с кислотой в присутствии пенообразователя. Пенообразующий порошок состоит из сухих солей (сернокислого алюминия, бикарбоната натрия) и лакричного экстракта или другого пенообразующего вещества. При взаимодействии с водой сернокислый алюминий (или другие сернокислые соли), бикарбонат натрия и пенообразователь растворяются и немедленно реагируют с образованием диоксида углерода.  

Химическая пена образуется при взаимодействии карбоната или бикарбоната с кислотой в присутствии пенообразователя. Практически такую пену получают в эжекторных переносных приборах (пеногенераторах) из пенопорошка и воды. Пенопорошок состоит из сухих солей (сернокислого алюминия, бикарбоната натрия) и лакричного экстракта или другого пенообразующего вещества. При взаимодействии с водой сернокислый алюминий (или другие сернокислые соли), бикарбонат натрия и пенообразователь растворяются и немедленно реагируют с образованием двуокиси углерода.  

Химическая пена образуется при взаимодействии карбоната или бикарбоната с кислотой в присутствии пенообразователя. Такую пену получают в эжекторных переносных приборах (пе-ногенераторах) из пенопорошка и воды. Пенопорошок состоит из сухих солей (сернокислого алюминия, бикарбоната натрия) и лакричного экстракта или другого пенообразующего вещества. При взаимодействии с водой сернокислый алюминий (или другие сернокислые соли), бикарбонат натрия и пенообразователь растворяются и вступают в реакцию, образуя диоксид углерода.  

Многие природные вещества активно используются человеком в промышленности, фармацевтике и косметологии. При правильном применении они способны принести нам громадную пользу, но даже систематически встречая такие элементы в лекарствах, продуктах питания и косметике, мы чаще всего не подозреваем о всех многообразии их качеств. Как раз к таким веществам можно отнести и карбонат кальция, применение и свойства которого мы сейчас как раз и обсудим чуть более подробно.

Применение карбоната кальция

Карбонат кальция большей частью добывается человеком из разного рода полезных ископаемых, после чего активно применяется в промышленности. Так после очистки от посторонних примесей это вещество активно используют при создании бумаги, продуктов питания, пластмассы, красок и резины. Ему нашлось место и при выработке бытовой химии, а также в строительстве.

Карбонат кальция достаточно активно применяется при производстве продукции личной гигиены (к примеру, его добавляют в зубную пасту), а также в медицинской промышленности. При изготовлении пищи он обычно играет роль антислеживащего агента, а также разделителя в различных молочных продуктах.

Свойства карбоната кальция

Кальция карбонат – это порошок либо кристаллы белой окраски. Он не имеют ни запаха, ни вкуса. Такое вещество практически не растворимо в воде, однако вполне растворимо в разведенной соляной либо азотной кислоте, при этом процесс растворения сопровождается активным выделением углекислого газа. Вещество «карбонат кальция» является источником сорока процентов кальция.

Лекарственные свойства

Карбонат кальция способен нейтрализовать соляную кислоту, способствуя значительному снижению кислотности пищеварительного сока. Лекарство оказывает достаточно быстрое воздействие, однако после прекращения буферного влияния наблюдается некоторое увеличение выработки желудочного сока.

Потребление карбоната кальция способствует снижению активности остеокластов и замедлению резорбции костных тканей. Такое вещество неплохо оптимизирует электролитный баланс.

Кроме всего прочего, карбонат кальция поставляет в организм человека непосредственно кальций, принимающий активное участие в процессах свертывания крови, а также в формировании костных тканей. Кальций нужен также для отличной деятельности сердца и для полноценной передачи нервных импульсов.

Применение в медицине

Активное вещество Карбонат кальция может использоваться для терапии пациентов с чрезмерной кислотностью желудочного сока, а также при болезнях системы пищеварения, протекающих на фоне такого нарушения. К подобным недугам можно отнести обострение хронической формы гастрита, острый тип гастрита либо дуоденита, симптоматические язвенные поражения разной этиологии. Также в этом списке находится язва на этапе обострения, рефлюкс-эзофагит, эрозивные поражения слизистых, изжога (после чрезмерного приема никотина, кофе, медикаментов и нарушений диеты).

Также применение карбоната кальция может быть целесообразно при коррекции остеопороза, кариеса и рахита у деток, при лечении тетании и остеомаляции. Его советуют принимать при возросшей потребности человека в кальции, что наблюдается при грудном вскармливании, на этапе активного роста, при беременности и прочих аналогичных состояниях.

Иногда карбонат кальция используется в качестве вспомогательной терапии при аллергических реакциях и при гипокальциемии.

Дополнительная информация

Дозировка карбоната кальция. Применение

Кальция карбонат применяется перорально, без привязки ко времени трапезы дважды-трижды на день в количестве 250-1000мг.

Стоит учитывать, что при потреблении высоких доз данного средства в течение продолжительного времени крайне важно систематически контролировать уровень кальция в крови пациента, а также отслеживать показатели деятельности почек. Если таблетки кальция карбоната выпускаются в форме таблеток, предназначенных для предупреждения и коррекции кариеса, остеопороза, а также рахита, их не стоит применять в качестве антацидного состава.

Противопоказания карбоната кальция

Применение кальция карбоната категорически не рекомендовано при наличии у пациента гиперчувствительности к данному элементу, а также при гиперкальциемии (передозировке витамином D, гиперпаратиреодизме и костных метастазах). Такой медикамент противопоказан при нефроуролитиазе, множественной миеломе, хронической почечной недостаточности, фенилкетонурии и саркоидозе.

Побочные эффекты карбоната кальция

В некоторых случаях применение кальция карбоната может провоцировать аллергические реакции, иногда такое лечение становится причиной появления диспепсических явлений, представленных метеоризмом, болями в эпигастрии, тошнотой, диареей либо запором. При потреблении более двух грамм кальция на день есть вероятность развития у пациента гиперкальциемии. Кроме того некоторые больные при таком лечении сталкиваются с проблемой вторичного усиления желудочной секреции.

Учтите, что превышение рекомендуемой дозировки может привести к передозировке карбонатом кальция. Такое состояние требует проведения промывания желудка и приема активированного угля. Кроме того может осуществляться симптоматическая коррекция, и, по необходимости, принимаются меры по поддержанию жизненно-важных функций.

Таким образом, действующее вещество карбонат кальция, свойства которого мы только рассмотрели, имеет достаточно широкий спектр применения и может принести огромную пользу человеку.

Екатерина, www.сайт

P.S. В тексте употреблены некоторые формы свойственные устной речи.

Материал для учащихся 9

«Палеонтология и карбонат кальция»

Карбонат кальция

Карбонат кальция (углекислый кальций) - неорганическое химическое соединение, соль угольной кислоты и кальция.

Химическая формула - CaCO 3 .

Карбонат кальция в природе

Карбонат кальция основа большинства природных минералов кальция (мел, мрамор, известняк, ракушечник, кальцит, исландский шпат). В чистом виде вещество белого цвета или бесцветные кристаллы. Соединения кальция - известняк, мрамор, гипс (а также известь - продукт обжига известняка) применялись в строительном деле уже несколько тысячелетий назад. Вплоть до конца XVIII века химики считали известь простым веществом. В 1789 году А. Лавуазье предположил, что известь , магнезия, барит, глинозём и кремнезём - вещества сложные.

В естественной миграции кальция существенную роль играет «карбонатное равновесие», связанное с обратимой реакцией взаимодействия карбоната кальция с водой и углекислым газом с образованием растворимого гидрокарбоната:

(равновесие смещается влево или вправо в зависимости от концентрации углекислого газа).

Соединения кальция находятся практически во всех животных и растительных тканях. Значительное количество кальция входит в состав живых организмов. Из карбоната кальция CaCO 3 состоят раковины и панцири многих беспозвоночных, яичная скорлупа и др. В живых тканях человека и животных 1,4-2 % Са (по массовой доле); в теле человека массой 70 кг содержание кальция - около 1,7 кг (в основном в составе межклеточного вещества костной ткани).

Химические свойства карбоната кальция


  1. Карбонат кальция при нагревании разлагается на соответствующий оксид и углекислый газ.
CaCO 3 → CaO + CO 2

  1. С водой, содержащей растворенный диоксид углерода, карбонат кальция реагирует, образуя растворы гидрокарбонатов:
CaCO 3 + CO 2 + H 2 O = Ca 2 + + 2HCO 3 -

При нагревании и даже при попытке выделить гидрокарбонат из раствора , удаляя воду при комнатной температуре, он разлагается по обратной реакции:

Ca 2 + + 2HCO 3 - = CaCO 3 + CO 2 + H 2 O.


  1. Карбонат кальция взаимодействует с кислотами с выделением углекислого газа
CaCO 3 ( мрамор ) + 2HCl CaCl 2 + H 2 O + CO 2

  1. Карбонат кальция не растворим в воде и этаноле.
Кальцит

Кальцит, известковый шпат - минерал, одна из природных форм карбоната кальция. Исключительно широко распространён на поверхности Земли, породообразующий минерал. Кальцитом сложены известняки, меловые породы, мергели, карбонатиты. Кальцит - самый распространённый биоминерал: он входит в состав раковин и эндоскелета большинства беспозвоночных, а также покровных структур некоторых одноклеточных организмов.

Название предложено Гайдингером в 1845 году и происходит , как и название химического элемента, от лат. calx (род.п. calcis) - известь.

В чистом виде кальцит белый или бесцветный, прозрачный (исландский шпат) или просвечивающий, - в зависимости от степени совершенства кристаллической структуры. Примеси окрашивают его в разные цвета.



Кальцит относится к тригональной сингонии. Кристаллы очень разнообразны, но чаще ромбоэдрические (острый, основной и тупой ромбоэдры). Кальцит слагает горную породу мрамор, является главной составной частью известняков. Нередко образует псевдоморфозы по органическим остаткам, замещает раковины древних моллюсков и кораллы («окаменелости»).

Известняк

Известняк - осадочная горная порода органического происхождения, состоящая преимущественно из кристаллов кальцита различного размера и образующаяся при участии живых организмов в морских бассейнах.

Известняк, состоящий преимущественно из раковин морских животных и их обломков, называется ракушечником. При метаморфизме известняк перекристаллизуется и образует мрамор.

Название разновидности известняка отражает присутствие в нём остатков породообразующих организмов, район распространения , структуру (например, оолитовые известняки), примесей (железистые), характер залегания (плитняковые), геологический возраст (триасовые).

Из известняков сложены целые горные цепи в Альпах, широко распространён известняк и в других местах. У известняка нет блеска, он обычно светло-серого цвета, но может быть белым или тёмным, почти чёрным, голубоватым, желтоватым или розовым, в зависимости от состава примесей.

Мрамор

Мрамор (др.-греч. μάρμαρος - «белый или блестящий камень») - метаморфическая горная порода, состоящая только из кальцита , а также органических соединений. Мраморы появляются путем метаморфизма при средних температурах и давлениях из преимущественно карбонатных осадочных пород. При этих условиях очень мелкие зерна карбоната кальция и магния осадочных пород испытывают «бластез» - укрупнение кристаллов.

В мире разведано огромное количество месторождений мрамора. Самые известные - Каррарское в Италии, Паросское и Пенделиконское в Греции. В России это Кибик-Кордонское в Красноярском крае, Буровщина в Забайкалье, Уфалейское на Урале, Рускеальское и Белогорское в Карелии. Окраска мрамора также зависит от примесей.


Палеонтология

Палеонтология (от др.-греч. παλαιοντολογία) - наука об организмах, существовавших в прошлые геологические периоды и сохранившихся в виде ископаемых останков, а также следов их жизнедеятельности.

Палеонтологи исследуют не только останки собственно животных и растений, но и их окаменевшие следы, отброшенные оболочки и другие свидетельства их существования. В палеонтологии также используются методы палеоэкологии и палеоклиматологии с целью воспроизведения среды жизнедеятельности организмов , сопоставления современной среды обитания организмов, предположения местообитаний вымерших и т. д.

Ископаемые останки или окаменелости человек использовал, начиная с палеолита. Об этом свидетельствуют находки ожерелий из фрагментов вымерших кораллов и морских ежей, использовавшихся в ритуалах погребения, и другие археологические находки. Различные ископаемые упоминаются в преданиях, мифах и сказках. Так, белемниты называют «чёртовы пальцы» и в восточных сказках их рассматривают как ногти джинов, раковины фораминифер – нуммулитид в сказаниях о битвах Александра Македонского описывают как окаменевшие монетки.

Первые научные письменные документы об ископаемых организмах принадлежат древнегреческим естествоиспытателям и философам. Успехи естествознания древних греков были обобщены в трудах Аристотеля , жившего в 384–322 гг. до новой эры, – великого мыслителя своего времени, который создал основы классификации животных, зачатки сравнительной анатомии и эмбриологии. Окаменелости он считал остатками морских животных. Спустя много столетий в XV–XVI вв. такой взгляд на окаменелости поддерживал Леонардо да Винчи (1452–1519), хотя в то время существовали иные точки зрения, в частности, что окаменелости – это объекты, созданные богом после потопа.

В XVII–XVIII вв. начинаются интенсивные исследования в различных отраслях естествознания. Это привело не только к накоплению огромного фактического материала , но и к появлению различных идей, гипотез. Большое значение в развитии палеонтологии имели труды шведского учёного Карла Линнея (1707–1778 гг.) – основоположника классификации и систематики. Он разделил всю природу на три царства: минералов, растений и животных. Одновременно с Линнеем работали блестящие учёные: во Франции Жорж Бюффон (1707–1788) и в России – Михаил Ломоносов (1711–1765).

Бюффон, рассматривая происхождение и развитие жизни, историю животного и растительного мира, подчёркивал единый план строения животных, говорил о наличии промежуточных форм между разными группами животных и считал, что история развития Земли насчитывает до 75 000 лет.

М. Ломоносов в своей книге «О слоях земных» объяснял происхождение осадочных горных пород образованием их в морских бассейнах. Ископаемые моллюски , встреченные в этих породах, обязаны своим происхождением морям, существовавшим в прошедшие геологические эпохи. Ломоносов представлял себе смену различных периодов жизни на Земле как последовательное чередование наступления и отступления морей, объясняя эти явления медленными колебаниями суши. Область распространения живых существ на Земле образует особую оболочку, называемую биосферой. Биосфера возникла с появлением на Земле живых существ: она занимает всю поверхность суши, все водоёмы Земли (океаны, моря, озёра, реки), проникает в атмосферу – большинство организмов поднимается в воздух более чем на 50 – 70 м, а споры бактерий и грибов заносятся на высоту до 22 км. Жизнь проникается в литосферу, где она концентрируется в основном в поверхности слоёв на глубине до 6-8 м, но некоторые бактерии найдены в слоях на глубине до 2-3 км.

В 90-х годах XVIII века и начале XIX века геодезист и горный инженер Уильям Смит активно использовал окаменелости , чтобы установить связь между горными пластами в разных местах. Он установил принцип последовательности фаун, согласно которому каждый пласт осадочной породы содержит определенный тип окаменелостей, которые следуют друг за другом в предсказуемом порядке даже в пластах, разделенных огромным расстоянием.

Новый этап в развитии палеонтологии начинается с появлением в 1859 году наиболее завершённой на тот момент теории эволюции Чарльза Дарвина, оказавшей определяющее влияние на всё дальнейшее развитие естествознания. Современная эволюционная палеонтология была основана Владимиром Ковалевским. Именно благодаря исследованиям Ковалевского и его находкам дарвинизм приобрёл палеонтологически обоснованную базу.

Условия существования на земле очень разнообразны и определяются факторами как неорганического, так и органического порядка. К неорганическим факторам относятся: температура, влажность , солёность воды, глубина бассейна, давление. К органическим факторам относятся те взаимоотношения, в которые вступают организмы между собой. Эти взаимоотношения в первую очередь выражаются пищевыми связями. Каждый вид обладает своим ареалом, занимая различные части земной поверхности. Все организмы на земле живут сообществами, называемыми биоценозами. Организмы, входящие в состав биоценоза, по-разному реагируют на колебания того или иного фактора среды – солёности, температуры , давления. Одни могут существовать при широких колебаниях одного из факторов среды и тогда прибавляется приставка «эври»; другие не переносят даже незначительного изменения этого фактора и тогда прибавляется приставка «стено». Если это глубина – эврибатный, стенобатный; солёность – эвригалинный, стеногалинный; температура – эвритермный, стенотермный.

Аммониты – вымерший подкласс головоногих моллюсков, существовавших с девона по мел. Свое название аммониты получили в честь древнеегипетского божества Амона со спиральными рогами. Большинство аммонитов относится к экологической группе нектона , то есть свободно плавающих в толще воды организмов. Некоторые гетероморфные формы были представителями бентосного (донного) сообщества. Лучшими пловцами среди аммонитов были формы с чётко выраженным килем. Многие палеонтологи считают, что сложная лопастная линия - это приспособление к широкому распространению по вертикали в толще воды (эврибатности), так как сложная лопастная линия имеет большую площадь, лучше упрочняет раковину. Аммониты - крайне важная для стратиграфии группа морских ископаемых. Эта группа важна для определения относительного геологического возраста осадочных горных пород и для расчленения отложений юрской и меловой системы.

Наутилусы - род головоногих моллюсков. Это единственный современный род подкласса наутилоидей и единственные среди современных головоногих, имеющие наружную камерную раковину. Этот подкласс появился в кембрии, и в течение палеозоя был очень разнообразным. Спиральная раковина диаметром 15-23 см разделена на 35-39 камер, последовательно соединённых длинным сифоном. Моллюск живёт в передней, самой большой камере. Раковина используется как поплавок и балласт. Нагнетая в камеры раковины биогаз или откачивая его из них, наутилус способен всплывать к поверхности воды или погружаться в её толщу.

Белемниты - представители отряда вымерших беспозвоночных животных класса головоногих моллюсков , относятся к внутрираковинным головоногим моллюскам, так как все части их раковины располагались внутри тела. Белемниты обитали с каменноугольного по меловой период, наиболее широко распространились с триаса, вымерли в конце мезозоя. Лучше всего в ископаемом состоянии сохраняется ростр белемнита - прочное коническое образование, находившееся на заднем конце тела.

Брахиоподы - тип морских беспозвоночных животных. Известны с раннего кембрия; наибольшего расцвета достигли в девоне. На рубеже раннего и позднего палеозоя часть отрядов вымерла; в каменноугольном и пермском периодах господствовали отряды продуктид и спириферид. После пермско-триасового вымирания сохранились 4 отряда, дожившие до наших дней. Брахиоподы, благодаря богатству остатков и хорошей их сохранности , - ценные индексные ископаемые для установления геологического возраста содержащих их пластов и физико-географической обстановки, существовавших когда-то в данной местности.

Морские ежи - класс иглокожих. В ископаемом состоянии известны с ордовика. Тело морских ежей обычно почти сферическое, размером от 2-3 до 30 см; покрыто рядами известковых пластинок. Пластинки, как правило, соединены неподвижно и образуют плотный панцирь (скорлупу), не позволяющий ежу изменять форму.

Морские лилии - один из классов иглокожих. Ископаемые морские лилии известны с нижнего ордовика. Наибольшего расцвета достигали в среднем палеозое, когда их насчитывалось до 11 подклассов и свыше 5000 видов, но к концу пермского периода большая их часть вымерла. Окаменелые остатки морских лилий относятся к одним из наиболее распространённых ископаемых. Некоторые известняковые пласты, датируемые палеозоем и мезозоем, почти полностью сложены из них. Ископаемые членики стеблей криноидов , напоминающие зубчатые колёса, называются трохитами.

Двустворчатые или пластинчатожаберные моллюски – класс морских и пресноводных малоподвижных моллюсков, тело которых уплощено с боков и заключено в раковину из двух створок. Находки древнейших ископаемых двустворчатых моллюсков датируются началом кембрийского периода, их возраст составляет более 500 млн. лет. Общее число ныне живущих видов составляет приблизительно 9 200 (по другим данным, более 20 тысяч). Двустворчатые моллюски - класс беспозвоночных, исключительно водных и встречающихся в пресных и солёных водах по всему миру. Большинство являются бентосными организмами и живут, зарываясь в донные отложения или прикрепляясь к подводным предметам. Створки раковины у двустворчатых моллюсков чаще симметричны. Створки раковины соединены лигаментом - связкой, состоящей из утолщённого рогового слоя раковины. Стенка раковины состоит из трёх слоёв: наружного конхиолинового (периостракум), внутреннего известкового (остракум) и нижнего перламутрового (гипостракум). Минеральный компонент раковины может быть представлен исключительно кальцитом, как у устриц , или кальцитом и арагонитом. Иногда арагонит формирует также перламутровый слой. У остальных моллюсков слои арагонита и кальцита чередуются.