). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой . Плотность воздуха в стратосфере в десятки и сотни раз меньше чем в н.у.

Именно в стратосфере располагается слой озоносферы («озоновый слой») (на высоте от 15-20 до 55-60 км), который определяет верхний предел жизни в биосфере. Озон (О 3) образуется в результате фотохимических реакций наиболее интенсивно на высоте ~30 км. Общая масса О 3 составила бы при нормальном давлении слой толщиной 1,7-4,0 мм, но и этого достаточно для поглощения губительного для жизни ультрафиолетового излучения Солнца. Разрушение О 3 происходит при его взаимодействии со свободными радикалами, , галогенсодержащими соединениями (в т. ч. «фреонами »).

В стратосфере задерживается большая часть коротковолновой части ультрафиолетового излучения (180-200 нм) и происходит трансформация энергии коротких волн. Под влиянием этих лучей изменяются магнитные поля, распадаются молекулы, происходит ионизация , новообразование газов и других химических соединений. Эти процессы можно наблюдать в виде северных сияний , зарниц и других свечений.

В стратосфере и более высоких слоях под воздействием солнечной радиации молекулы газов диссоциируют - на атомы (выше 80 км диссоциируют СО 2 и Н 2 , выше 150 км - О 2 , выше 300 км - N 2 ). На высоте 200-500 км в ионосфере происходит также ионизация газов, на высоте 320 км концентрация заряженных частиц (О + 2 , О − 2 , N + 2) составляет ~ 1/300 от концентрации нейтральных частиц. В верхних слоях атмосферы присутствуют свободные радикалы - ОН , НО 2 и др.

В стратосфере почти нет водяного пара.

Полёты в стратосфере

Полёты в стратосферу начались в 1930-годах. Широко известен полёт на первом стратостате (FNRS-1), который совершили Огюст Пикар и Пауль Кипфер 27 мая 1931 г. на высоту 16,2 км. Современные боевые и сверхзвуковые коммерческие самолёты летают в стратосфере на высотах в основном до 20 км (хотя динамический потолок может быть значительно выше). Высотные метеозонды поднимаются до 40 км; рекорд для беспилотного аэростата составляет 51,8 км.

В последнее время в военных кругах США большое внимание уделяют освоению слоёв стратосферы выше 20 км, часто называемых «предкосмосом» (англ. «near space » ). Предполагается, что беспилотные дирижабли и самолёты на солнечной энергии (наподобие NASA Pathfinder) смогут длительное время находиться на высоте порядка 30 км и обеспечивать наблюдением и связью очень большие территории, оставаясь при этом малоуязвимыми для средств ПВО ; такие аппараты будут во много раз дешевле спутников .

См. также

Примечания


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Стратосфера" в других словарях:

    Стратосфера … Орфографический словарь-справочник

    стратосфера - ы, ж. stratosphère <лат. stratum настил, слой. + гр. sphaire сфера. Слой атмосферы, расположенный над тропосферой, на высоте от 8 12 до 80 км. над уровнем моря. БАС 1. Установил существование стратосферы и предложил ее название фр. метеоролог… … Исторический словарь галлицизмов русского языка

    - (от лат. stratum слой и сфера) слой атмосферы, лежащий над тропосферой от 8 10 км в высоких широтах и от 16 18 км вблизи экватора до 50 55 км. Стратосфера характеризуется возрастанием температуры с высотой от 40 .С (80 .С) до температур, близких … Большой Энциклопедический словарь

    СТРАТОСФЕРА, часть АТМОСФЕРЫ Земли, расположенная между ТРОПОСФЕРОЙ и МЕЗОСФЕРОЙ. В высоту 10 км, при чем температура примерно половины этого слоя остается постоянной. В стратосфере содержится большая часть озонового СЛОЯ АТМОСФЕРЫ … Научно-технический энциклопедический словарь

    СТРАТОСФЕРА, стратосферы, мн. нет, жен. (от лат. stratum настил и греч. sphaira шар). Верхний слой атмосферы, расположенный над тропосферой на высоте от 11 до 75 км над уровнем моря. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    СТРАТОСФЕРА, ы, жен. (спец.). Верхний слой земной атмосферы, лежащий над тропосферой. | прил. стратосферный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    - (от латинского stratum слой и греческого sphaira шар) см. в статье Атмосфера Земли. Авиация: Энциклопедия. М.: Большая Российская Энциклопедия. Главный редактор Г.П. Свищев. 1994 … Энциклопедия техники

    Слой атмосферы между тропосферой и мезосферой. Нижняя граница С. тропопауза расположена в полярныхи умеренных широтах на высоте z 8 12 км, в тропиках на z 16 18 км. От зимы к лету тропопауза поднимается в ср. на 1 2 км. Верхняяграница С.… … Физическая энциклопедия

    Слой атмосферы, расположенный выше 11 км, сильно разреженный, с очень низкой атмосферой; нижний слой атмосферы называется тропосферой. В С. отсутствуют вертикальные токи и образование облаков. Изучение С. имеет практическое значение для авиации,… … Морской словарь

Все, кто летал на самолете, привыкли к сообщению такого рода: «наш полет проходит на высоте 10 000 м, температура за бортом - 50 °С». Кажется, ничего особенного. Чем дальше от нагретой Солнцем поверхности Земли, тем холоднее. Многие думают, что понижение температуры с высотой идет непрерывно и постепенно температура падает, приближаясь к температуре космоса. Между прочем, так думали ученые вплоть до конца 19 века.

Разберемся подробнее с распределением температуры воздуха над Землей. Атмосферу подразделяют на несколько слоев, которые и отражают в первую очередь характер изменения температуры.

Нижний слой атмосферы называется тропосферой , что означает „сфера поворота". Все перемены погоды и климата являются результатом физических процессов, происходящих именно в этом слое. Верхняя граница этого слоя располагается там, где уменьшение температуры с высотой сменяется ее возрастанием,— примерно на высоте 15—16 км над экватором и 7—8 км над полюсами. Как и сама Земля, атмосфера под влиянием вращения нашей планеты тоже несколько сплющена над полюсами и разбухает над экватором. Однако этот эффект выражен в атмосфере значительно сильнее, чем в твердой оболочке Земли. В направлении от поверхности Земли к верхней границе тропосферы температура воздуха понижается. Над экватором минимальная температура воздуха составляет около —62°С, а над полюсами около —45°С. В умеренных широтах более 75% массы атмосферы находится в тропосфере. В тропиках же в пределах тропосферы находится около 90% массы атмосферы.

В 1899 г. в вертикальном профиле температуры на некоторой высоте был обнаружен ее минимум, а затем температура незначительно повышалась. Начало этого повышения означает переход к следующему слою атмосферы — к стратосфере , что означает „сфера слоя". Термин стратосфера означает и отражает прежнее представление о единственности слоя, лежащего выше тропосферы. Стратосфера простирается до высоты около 50 км над земной поверхностью. Особенностью ее является, в частности, резкое повышение температуры воздуха. Это повышение температуры объясняют реакцией образования озона — одной из главных химических реакций, происходящих в атмосфере.

Основная масса озона сосредоточена на высотах примерно 25 км, но в целом слой озона представляет собой сильно растянутую по высоте оболочку, охватывающую почти всю стратосферу. Взаимодействие кислорода с ультрафиолетовыми лучами — один из благоприятных процессов в земной атмосфере, способствующих поддержанию жизни на Земле. Поглощение озоном этой энергии препятствует излишнему поступлению ее на земную поверхность, где создается именно такой уровень энергии, который пригоден для существования земных форм жизни. Озоносфера поглощает часть лучистой энергии, проходщей через атмосферу. В результате этого в озоносфере устанавливается вертикальный градиент температуры воздуха примерно 0,62°С на 100 м, т. е, температура повышается с высотой вплоть до верхнего предела стратосферы — стратопаузы (50 км), достигая, по некоторым данным, 0 °С.

На высотах от 50 до 80 км располагается слой атмосферы, называемый мезосферой . Слово „мезосфера" означает „промежуточная сфера", здесь температура воздуха продолжает понижаться с высотой. Выше мезосферы, в слое, называемом термосферой , температура снова растет с высотой примерно до 1000°С, а затем очень быстро падает до —96°С. Однако падает не беспредельно, потом температура снова увеличивается.

Термосфера является первым слоем ионосферы . В отличие от упомянутых ранее слоев, ионосфера выделена не по температурному признаку. Ионосфера является областью, имеющей электрическую природу, благодаря которой становятся возможными многие виды радиосвязи. Ионосферу делят на несколько слоев, обозначая их буквами D, Е, F1 и F2 Эти слои имеют и особые названия. Разделение на слои вызвано несколькими причинами, среди которых самая важная—неодинаковое влияние слоев на прохождение радиоволн. Самый нижний слой, D, в основном поглощает радиоволны и тем самым препятствует дальнейшему их распространению. Лучше всего изученный слой Е расположен на высоте примерно 100 км над земной поверхностью. Его называют также слоем Кеннелли — Хевисайда по именам американского и английского ученых, которые одновременно и независимо друг от друга обнаружили его. Слой Е, подобно гигантскому зеркалу, отражает радиоволны. Благодаря этому слою длинные радиоволны проходят более далекие расстояния, чем следовало бы ожидать, если бы они распространялись только прямолинейно, не отражаясь от слоя Е. Аналогичные свойства имеет и слой F. Его называют также слоем Эпплтона. Вместе со слоем Кеннелли—Хевисайда он отражаем радиоволны к наземным радиостанциями Такое отражение может происходить под различными углами. Слой Эпплтона расположен на высоте около 240 км.

Самая внешняя область атмосферы, второй слой ионосферы, часто называется экзосферой . Этот термин указывает на существование окраины космоса вблизи Земли. Определить, где именно кончается атмосфера и начинается космос, трудно, поскольку с высотой плотность атмосферных газов уменьшается постепенно и сама атмосфера плавно превращается почти в вакуум, в котором встречаются лишь отдельные молекулы. Уже на высоте примерно 320 км плотность атмосферы настолько мала, что молекулы, не сталкиваясь друг с другом, могут проходить путь более 1 км. Самая внешняя часть атмосферы служит как бы ее верхней границей, которая располагается на высотах от 480 до 960 км.

Подробнее о процессах а атмосфере можно узнать на сайте «Земной климат»

Стратосфера

Выше тропопаузы до высоты 50 – 60 км расположен слой атмосферы, называемый стратосферой , главной особенностью которой является рост температуры с высотой. В нижней части стратосферы до высоты порядка 25 км температура постоянна или медленно растет с высотой. Стоит отметить, что в зимние месяцы в высоких широтах она даже может слабо падать. Но с высоты 34 – 36 км температура начинает расти быстрее. Это возрастание продолжается до верхней границы стратосферы, именуемой стратопаузой . Здесь стратосфера почти такая же теплая, как и воздух у поверхности Земли.

Возрастание температуры с высотой приводит к большой устойчивости стратосферы: здесь нет упорядоченных (конвективных) вертикальных движений воздуха и его активного перемешивания, что свойственно для тропосферы. Однако очень небольшие по величине вертикальные движения типа медленного оседания или подъема иногда охватывают слои стратосферы, занимающие огромные пространства.

Водяного пара в стратосфере ничтожно мало. Однако на высотах 22 – 24 км в высоких широтах иногда наблюдаются . Днем они не видны, а ночью кажутся светящимися, так как освещаются Солнцем, находящимся под горизонтом. Считается, что эти облака состоят из переохлажденных капель.

Состав воздуха в стратосфере практически такой же, как и в тропосфере, но есть отличие. В стратосфере наблюдается повышенное содержание озона – неустойчивого газа, молекула которого состоит из трех атомов кислорода. Озоновый слой сформировался и поддерживается взаимодействием ультрафиолетового излучения Солнца с молекулами обычного кислорода и служит надежным экраном на пути этого губительного для всего живого излучения. Из-за наличия слоя озона в стратосфере она может быть также названа озоносферой .

…Когда-то обнаруженное в тропосфере падение температуры с высотой ошибочно считалось свойством всей атмосферы, что объяснялось удалением от нагреваемой Солнцем земной поверхности. Но первые же подъемы шаров-зондов с инструментами на борту дали неожиданные данные. Оказалось, что температура понижается примерно до высоты 10 км, после чего она практически не меняется, а затем начинает даже несколько повышаться. Эти данные шли вразрез с установившимися представлениями о вертикальном изменении температуры в атмосфере. Приборы перед запусками шаров-зондов стали проверять более тщательно, практиковались также ночные запуски, исключающие нагрев приборов Солнцем. Однако все новые и новые пуски приносили одни и те же данные о том, что падение температуры с высотой прекращается. В результате пришлось согласиться с тем фактом, что законы, действующие в нижней части атмосферы, перестают работать выше определенной высоты. Таким образом, атмосферу впервые поделили на слои. Тот слой, в котором температура с высотой понижается, назвали тропосферой, а слой атмосферы, в котором температура переставала понижаться с высотой – стратосферой. Учитывая то, что шары-зонды имели значительные ограничения по высоте подъема, они не могли достичь следующего слоя атмосферы – мезосферы , в которой температура снова начинает понижаться по мере подъема. В результате стратосферой стали считать всю верхнюю атмосферу.

Стоит отметить, что переход от тропосферы к стратосфере не происходит резко. Между ними лежит промежуточный слой, толщиной до нескольких километров, в котором прекращается падение температуры с высотой и начинается слой изотермии. Этот слой называется тропопаузой .

Причину роста температуры в стратосфере обнаружили не сразу. Им оказался обнаруженный еще в 1785 году газ, получивший в 1840 году название – озон . В результате поглощения солнечной энергии, происходящей уже в верхней части слоя озона, температура атмосферы на этих высотах повышается, и слой озона является своего рода резервуаром тепла в атмосфере. Содержание озона в нижних слоях атмосферы (до высоты 10 км) ничтожно. А его набольшее содержание приходится на высоты 20 – 25 км. Молекулы озона не встречаются на высотах более 60 км. Данные о содержании озона на высотах получали весьма интересным способом: на шаре-зонде или метеорологической ракете устанавливался спектрограф, регистрирующий спектр Солнца. Известно, что при наблюдениях с поверхности Земли спектр Солнца обрывается в ультрафиолетовой части. Когда стало ясно, что это связано с поглощением озоном солнечного ультрафиолета, логичным методом оценки содержания озона на высотах стали запуски зондов и ракет со спектрографами на борту.

Повышение температуры в стратосфере начинается примерно от 30 км и продолжается до 40 – 50 км, где находится верхняя часть озонного слоя. Несмотря на то, что озона здесь меньше, чем на более низких уровнях, именно эта часть слоя обращена к Солнцу и нагревается сильнее поглощаемыми ею ультрафиолетовыми лучами.

Установленное по результатам зондирования повышение температуры на высоте около 40 – 50 км было подтверждено в 1920 году, когда 9 мая в Москве произошел сильный взрыв артиллерийских складов. Звук от взрыва был хорошо слышен вблизи Москвы – на расстоянии до 60 км, а затем снова на большом расстоянии в пунктах, расположенных кольцом вокруг города. Между этими двумя зонами слышимости имелась «зона молчания» шириной в 100 км, где взрыв совсем не был слышен. Профессор В.И. Виткевич исследовал это явление и пришел к выводу, что такое распределение слышимости звука может наблюдаться при условии его отражения от слоев атмосферы, распложенных на высоте 40 – 50 км. Но при этом температура отражающих слоев должна быть около плюс 40 – 50 градусов.

Мы уже упоминали о важной роли озонового слоя в сохранении жизни на Земле. Но в 1985 году ученые обнародовали сенсационное известие: над Антарктидой обнаружена озоновая дыра диаметром свыше 1000 км! Ежегодно она появлялась здесь в августе, а к декабрю – январю прекращался свое существование. Меньших размеров озоновая дыра была обнаружена и над Арктикой. Стоит отметить, что изменения озонового слоя, его уменьшение, вызвано не только влиянием антропогенных факторов. Существующие естественные изменения волновой активности и динамики стратосферы значительно влияют на вариации озона во времени. Межгодовые вариации общего содержания озона (ОСО) в глобальном масштабе являются индикаторами изменений климата. Например, заметное уменьшение содержания озона в период между 1979 – 1994 гг. над Западной Европой, Восточной Сибирью и востоком США связаны с потеплением климата в этих районах, в увеличение содержания озона в области Лабрадора – с похолоданием в Гренландии и Западной Атлантике.

Существуют также связи между вариациями ОСО в одних географических районах и приземными температурными аномалиями – в других. Например, анализ межгодовых вариаций ОСО в январе и приземной температуры в феврале 1979 – 1994 гг. показал, что для того, чтобы предсказать какая погода (холодная или теплая) будет в феврале в Западной Сибири, нужно смотреть на содержание озона в точке к западу от Англии (50° с.ш., 10° з.д.).

Первые подъемы шаров-зондов до достигавшейся ими предельной высоты опказали, что общий ход температуры выше тропопаузы был достаточно постоянным. Отсюда был сделан вывод о том, что на этих высотах отсутствует (или почти отсутствует) вертикальное перемешивание воздуха. Более поздние высокие радиозондовые подъемы позволили обнаружить значительные сезонные (муссонные) изменения градиента температуры экватор – полюс и связанные с ними изменения режима давления и ветра. Другое важное открытие связано с обнаруженным в стратосфере, прежде всего в зимней стратосфере, значительные внутрисезонные изменения температуры, ветра и содержания озона. Особенно ярко эти внутрисезонные изменения проявляются в так называемых взрывных потеплениях в стратосфере высоких широт.

Первые важные данные о ветрах в нижней стратосфере в ее экваториальной части дало извержение вулкана Кракатао 27 августа 1883г., в результате которого в атмосферу было выброшено огромное количество вулканической пыли. Это обстоятельство позволило получить начальные сведения о некоторых особенностях стратосферы низких широт.

Движение вулканической пыли показало, что в экваториальной зоне не только на уровне моря, но и в нижней стратосфере зональная составляющая ветра направлена с востока на запад, причем скорость этих восточных потоков в нижней стратосфере достигает значительных величин (25 – 50 м/сек). Эти стратосферные восточные ветры получили название ветров Кракатао . Ветры Кракатао огибают весь земной шар в экваториальных (15° с.ш. – 15° ю.ш.) широтах на высотах 25 – 40 км.

В 1909 году экспедицией Ван-Берсона в Центральной Африке впервые были обнаружены западные ветры в тропической стратосфере. Последующие наблюдения показали как наличие восточных ветров Кракатао в тропической стратосфере, так и появление под ними западных ветров Берсона . Западные ветры Берсона также были обнаружены при серии атомных испытаний на Маршалловых островах. Последующие исследования показали, что ветры в нижней тропической стратосфере меняют направление между восточным и западным с периодом около 26 – 27 месяцев. Так была установлена квазидвухлетняя цикличность , когда в слое тропической стратосферы от 18 – 20 км до 35 км в течение примерно одного года господствуют ветры восточных направлений, а в течение следующего года – западных. Квазидвухлетняя цикличность особенно отчетливо выражена в зоне 8 – 10° по обе стороны от экватора и имеет наибольшую амплитуду на уровне около 23 км, где средняя продолжительность цикла составляет около 26 месяцев. Каждый из зональных переносов появляется раньше всего в верхних слоях, на уровне около 35 км, и постепенно со скоростью 1 – 1,5 км в месяц распространяется вниз.

В верхней тропической стратосфере позднее была обнаружена шестимесячная цикличность, которая находится в определенной связи с двухлетней.

Новейшие исследования стратосферы, как было отмечено выше, обнаруживают значительную взаимосвязь между ней и тропосферой. Например, некоторые работы показали, что распространение климатического сигнала из тропосферы в стратосферу происходит довольно быстро – в течение 3 – 10 суток. После этого в стратосфере аномальный сигнал существует намного дольше (15 – 40 суток), что дает основания для долгосрочного прогноза погоды по параметрам стратосферы.

Литература:
П.Н. Тверской. Курс метеорологии. Гидрометеоиздат, 1962.
Атмосфера Земли. Сборник. Москва, 1953.
А.Л. Кац. Циркуляция в стратосфере и мезосфере. Гидрометеоиздат, 1968.
Использованы также материалы журналов «Метеорология и гидрология» и «Наука и жизнь».

Стратосфера — это один из верхних слоев воздушной оболочки нашей планеты. Она начинается на высоте примерно 11 км над землей. Здесь уже не летают самолеты пассажирской авиации и крайне редко образуются облака. В стратосфере располагается озоновый слой Земли - тонкая оболочка, защищающая планету от проникновения губительного ультрафиолета.

Воздушная оболочка планеты

Атмосфера представляет собой газовую оболочку Земли, прилегающую внутренней поверхностью к гидросфере и земной коре. Внешняя граница ее постепенно переходит в космическое пространство. Состав атмосферы включает газы: азот, кислород, аргон, углекислый газ и так далее, — а также примеси в виде пыли, капель воды, кристаллов льда, продуктов горения. Соотношение основных элементов воздушной оболочки сохраняется постоянным. Исключение составляют углекислый газ и вода — их количество в атмосфере нередко меняется.

Слои газовой оболочки

Атмосферу подразделяют на несколько слоев, располагающихся друг над другом и имеющих особенности в составе:

    пограничный слой — непосредственно прилегает к поверхности планеты, простирается до высоты в 1-2 км;

    тропосфера — второй слой, внешняя граница в среднем располагается на высоте 11 км, здесь сконцентрирован практически весь водяной пар атмосферы, образуются облака, возникают циклоны и антициклоны, по мере увеличения высоты подает температура;

    тропопауза — переходный слой, характеризующийся прекращением снижения температуры;

    стратосфера — это слой, простирающийся до высоты 50 км и делящийся на три зоны: с 11 до 25 км температура меняется незначительно, с 25 до 40 — температура повышается, с 40 до 50 — температура остается постоянной (стратопауза);

    мезосфера простирается на высоту до 80-90 км;

    термосфера достигает отметки 700-800 км над уровнем моря, здесь на высоте 100 км располагается линия Кармана, которую принимают за границу между атмосферой Земли и космосом;

    экзосфера также называется зоной рассеяния, здесь сильно теряет частицы вещества, и они улетают в космос.

Изменения температуры в стратосфере

Итак, стратосфера — это часть газовой оболочки планеты, следующая за тропосферой. Здесь температура воздуха, постоянная на протяжении тропопаузы, начинает изменяться. Высота стратосферы составляет примерно 40 км. Нижняя граница — 11 км над уровнем моря. Начиная с этой отметки, температура претерпевает небольшие изменения. На высоте 25 км показатель нагрева начинает медленно расти. К отметке 40 км над уровнем моря температура повышается от -56,5º до +0,8ºС. Далее она остается близкой к нулю градусов вплоть до высоты 50-55 км. Зона между 40 и 55 километрами называется стратопаузой, поскольку температура здесь не меняется. Она является переходной зоной от стратосферы к мезосфере.

Особенности стратосферы

Стратосфера Земли содержит около 20% массы всей атмосферы. Воздух здесь настолько разрежен, что пребывание человека без специального скафандра невозможно. Этот факт — одна из причин, по которой полеты в стратосферу стали осуществляться лишь сравнительно недавно.

Другая особенность газовой оболочки планеты на высоте 11-50 км заключается в очень небольшом количестве водяного пара. В стратосфере по этой причине практически никогда не образуются облака. Для них просто нет строительного материала. Однако редко все же можно наблюдать так называемые перламутровые облака, которыми «украшается» стратосфера (фото представлено ниже) на высоте 20-30 км над уровнем моря. Тонкие, как бы светящиеся изнутри образования можно наблюдать после заката или перед восходом. Формой перламутровые облака похожи на перистые или перисто-кучевые.

Озоновый слой Земли

Главная отличительная черта стратосферы — это максимальная во всей атмосфере концентрация озона. Он формируется под действием солнечных лучей и защищает все живое на планете от их губительного излучения. Озоновый слой Земли располагается на высоте 20-25 км над уровнем моря. Молекулы О 3 распределены во всей стратосфере и даже есть у поверхности планеты, однако на этом уровне наблюдается их наибольшая концентрация.

Нужно заметить, что озоновый слой Земли составляет всего 3-4 мм. Такой будет его толщина, если разместить частицы этого газа в условиях нормального давления, например, у поверхности планеты. Озон образуется в результате распада молекулы кислорода под действием ультрафиолета на два атома. Один из них соединяется с «полноценной» молекулой и образуется озон — О 3 .

Опасный защитник

Таким образом, сегодня стратосфера — это более изведанный слой атмосферы, нежели в начале прошлого века. Однако по-прежнему не очень понятным остается будущее озонового слоя, без которого не возникла бы жизнь на Земле. Пока страны сокращают производство фреона, одни ученые говорят, что это не принесет особой пользы, по крайней мере, такими темпами, а другие, что это и вовсе не нужно, поскольку основная часть вредных веществ образуется естественным путем. Кто прав — рассудит время.

Тропосфера

Её верхняя граница находится на высоте 8-10 км в полярных, 10-12 км в умеренных и 16-18 км в тропических широтах; зимой ниже, чем летом. Нижний, основной слой атмосферы содержит более 80 % всей массы атмосферного воздуха и около 90 % всего имеющегося в атмосфере водяного пара. В тропосфере сильно развиты турбулентность и конвекция, возникают облака, развиваются циклоны и антициклоны. Температура убывает с ростом высоты со средним вертикальным градиентом 0,65°/100 м

Тропопауза

Переходный слой от тропосферы к стратосфере, слой атмосферы, в котором прекращается снижение температуры с высотой.

Стратосфера

Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11-25 км (нижний слой стратосферы) и повышение её в слое 25-40 км от −56,5 до 0,8 °С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой.

Стратопауза

Пограничный слой атмосферы между стратосферой и мезосферой. В вертикальном распределении температуры имеет место максимум (около 0 °C).

Мезосфера

Мезосфера начинается на высоте 50 км и простирается до 80-90 км. Температура с высотой понижается со средним вертикальным градиентом (0,25-0,3)°/100 м. Основным энергетическим процессом является лучистый теплообмен. Сложные фотохимические процессы с участием свободных радикалов, колебательно возбуждённых молекул и т. д. обусловливают свечение атмосферы.

Мезопауза

Переходный слой между мезосферой и термосферой. В вертикальном распределении температуры имеет место минимум (около -90 °C).

Линия Кармана

Высота над уровнем моря, которая условно принимается в качестве границы между атмосферой Земли и космосом. Линия Кармана находится на высоте 100 км над уровнем моря.

Граница атмосферы Земли

Термосфера

Верхний предел - около 800 км. Температура растёт до высот 200-300 км, где достигает значений порядка 1500 К, после чего остаётся почти постоянной до больших высот. Под действием ультрафиолетовой и рентгеновской солнечной радиации и космического излучения происходит ионизация воздуха («полярные сияния») - основные области ионосферы лежат внутри термосферы. На высотах свыше 300 км преобладает атомарный кислород. Верхний предел термосферы в значительной степени определяется текущей активностью Солнца. В периоды низкой активности происходит заметное уменьшение размеров этого слоя.

Термопауза

Область атмосферы прилегающая сверху к термосфере. В этой области поглощение солнечного излучения незначительно и температура фактически не меняется с высотой.

Экзосфера (сфера рассеяния)

Атмосферные слои до высоты 120 км

Экзосфера - зона рассеяния, внешняя часть термосферы, расположенная выше 700 км. Газ в экзосфере сильно разрежен, и отсюда идёт утечка его частиц в межпланетное пространство (диссипация).

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °C в стратосфере до −110 °C в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200-250 км соответствует температуре ~150 °C. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000-3500 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разреженными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме чрезвычайно разреженных пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы - около 20 %; масса мезосферы - не более 0,3 %, термосферы - менее 0,05 % от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000-3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу. Гетеросфера - это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы, называемая гомосфера. Граница между этими слоями называется турбопаузой, она лежит на высоте около 120 км.