Индустриальная слава Челябинска во многом связана с Цинковым заводом. Сегодня на ЧЦЗ выпускают около 60% всего российского цинка и около 2% мирового.

Цинковый завод находится в черте города, поэтому для нас очень важно снижать негативное воздействие на окружающую среду. С 2009 года, когда одним из акционеров стала УГМК , завод ведет активную экологическую политику. На предприятии прошли масштабная замена оборудования и реконструкция цехов. Фактические выбросы ЧЦЗ уже несколько лет не превышают 30% от разрешенного норматива. Несмотря на то, что наша доля в общем объеме выбросов относительно невелика - по данным Комплексного доклада о состоянии окружающей среды Челябинской области, в 2017 году выбросы ПАО «ЧЦЗ» составили 0,4% от выбросов по Челябинской области или 1,7% от выбросов Челябинска. Мы со всей серьезностью и ответственностью подходим к решению задачи снижения негативного воздействия на окружающую среду, - говорит генеральный директор ПАО «ЧЦЗ» Павел Избрехт.

ЧЕТЫРЕ МИЛЛИАРДА - НА ЭКОЛОГИЮ

За последние восемь лет Челябинский цинковый вложил в природоохранные мероприятия более четырех миллиардов рублей.

Прежде всего, реконструирован сернокислотный цех, который оказывал большое негативное воздействие на город. Новая технология отходящих газов позволила довести степень очистки промышленных выбросов до 99,95% - она признана самой эффективной на сегодняшний день. Весь процесс обжига диоксида серы удалось автоматизировать: каждый этап контролирует электроника, а на трубах теперь стоят датчики чистоты воздуха - специальные газоанализаторы. Информация с них в режиме реального времени отправляется на сайт завода и в «ГорЭкоЦентр ».

Помимо этого на предприятии установлен скруббер Вентури с двухъярусным орошением, который используется при пуске и остановке печей в обжиговом цехе. Это устройство, как моющий пылесос, промывает воздух, собирая всю пыль и тяжелые металлы - сернистый ангидрид, диоксид углерода, азот… Эффективность очистки практически абсолютная - 99,8%. При этом водяной цикл замкнут: загрязненные воды используются на других этапах производственного процесса.

Настоящим событием стало перевооружение пятой вельц-печи. Здесь оборудован узел приема и грануляции пылевидных отходов. Рукавный фильтр компании «Donaldson» ловит выбросы и возвращает их в производственную цепочку. Фильтр помог улучшить условия в рабочей зоне, в итоге часть профессий на Цинковом исключили из списка «вредных».

НА СУД ЗАКОНОДАТЕЛЕЙ

Как отметил начальник управления охраны труда, промышленной и экологической безопасности ЧЦЗ Дмитрий Кустов , на Челябинском цинковом заводе такие датчики используются уже 7 лет. Эти стационарные газоаналитические комплексы непрерывного контроля, состоящие из системы пробоподготовки и газоанализаторов, установлены в сернокислотном цехе. Комплексы позволяют в текущем времени определять содержание диоксида серы в отходящих газах, информация на мониторе оператора обновляется непрерывно. Затраты на приобретение стационарных газоаналитических комплексов составили 3,6 млн. руб. Ежегодные затраты на техническое обслуживание в среднем составляют порядка 350 тыс. руб.


Наш завод расположен на оживленной автомобильной магистрали, соединяющей два района города, вокруг множество других промышленных предприятий. Комплекс автоматического контроля позволяет предприятию обеспечивать необходимый уровень информационной открытости перед регуляторами и жителями города. На сегодня показатель утилизации диоксида серы составляет 99,95%. Несмотря на растущие объёмы производства, нам удалось сократить объём годовых выбросов на 25%, - рассказал Дмитрий Кустов.

ОТЧЕТЫ В РОСПРИРОДНАДЗОР СТАНУТ ЕЖЕСЕКУНДНЫМИ

Челябинский цинковый завод еще в 2010 году приобрел передвижную лабораторию экологического мониторинга на колесах. С виду это простая «газель», похожая на «скорую помощь». На крыше лаборатории - зонд, забирающий воздух. Часть потока мгновенно поступает на газовый анализатор - спустя десять секунд он уже выдает состав пробы. Другая часть воздуха прогоняется через фильтры. Их исследуют в заводской лаборатории и через сутки определяют концентрацию разных металлов. Анализ делают на 15 разных веществ.

Наша передвижная лаборатория загружена каждый день, - рассказывает заведующая лабораторией санитарно-экологического мониторинга ЧЦЗ Наталья Баклагина. - Замеры проводим по всей территории санитарно-защитной зоны и в жилой зоне поблизости от завода.

Чтобы лишний раз подчеркнуть открытость своей экологической политики, ЧЦЗ подписал соглашение с администрацией Челябинска о мониторинге выбросов и готов к диалогу с общественностью.

Основы этой работы заложены еще в 2011 году, когда Челябинский цинковый одним из первых в регионе подписал соглашение с администрацией города в сфере охраны окружающей среды, - говорит Павел Избрехт . - В период НМУ наша передвижная лаборатория проводит замеры три раза в день, и в этот же день результаты передаются в «ГорЭкоЦентр» и министерство экологии. Система отлажена и работает.

В феврале на предприятии побывала делегация Росприроднадзора . Чиновники оценили качество очистных сооружений, а также современную систему экологического мониторинга, которая позволила Цинковому заводу войти в проект.

Чем больше предприятий вовлечет «Чистый воздух» на территории города и всей области, тем проще нам будет работать. Когда в режиме онлайн мы начнем понимать, кто и сколько выбрасывает в атмосферу, легче вычислить нарушителей. На них мы и сможем сконцентрировать свои силы, - заявил в ходе визита на ЧЦЗ руководитель управления Федеральной службы по надзору в сфере природопользования по Челябинской области Виталий Курятников. - Цинковый завод подтвердил свою приверженность двигаться в этом направлении.

ВАЖНО

К 2020 году Цинковый прекратит сбрасывать воду в Миасс

Смог над городом не единственная проблема Челябинска, хотя и самая очевидная. Серьезные опасения вызывают промышленные стоки в реку Миасс . Но на Челябинском цинковом заводе эту проблему уже решают.

Три года назад на ЧЦЗ запустили новую станцию оборотного водоснабжения сернокислотного цеха. Два года назад – отделение химической подготовки воды, которое снабжает водой котлы -утилизаторы вельц-печей и охлаждающие установки.

В 2020 году завод планирует закончить строительство локальных очистных сооружений. Они позволят сократить объемы сбрасываемой воды, улучшить ее качество, а в перспективе планируется полностью исключить сброс промышленных вод в Миасс.

Министерство экологии организовало пресс-тур на Челябинский цинковый завод с целью проверить реализацию мероприятий, которые вошли в региональный план мероприятий проведения Года экологии. «Челябинск входит в число городов с высоким индексом загрязнения атмосферного воздуха. В черте города расположен целый узел крупных металлургических предприятий, вносящих большой вклад в формирование загрязнения воздуха в Челябинске. Выполнение ими природоохранных мероприятий, направленных на снижение выбросов в атмосферу, - один из важнейших пунктов реализации плана проведения Года экологии » - сообщила министр экологии Челябинской области Ирина Гладкова .

Предприятие ежегодно наращивает объёмы производства. По словам Генерального директора ПАО «ЧЦЗ» Павла Избрехта , в 2016 году завод выпустил 174,8 тысячи тонн товарного цинка, в 2017 году - 183, в 2019 году планирует выплавить 200 тысяч тонн цинка. Рост объёмов производства происходит одновременно с модернизацией производства и внедрением «чистых» технологий.

В 2009 - 2012 годах предприятие переоснастило сернокислотный цех, установило фильтры и газоаналитическое оборудование. Данные о выбросах в режиме онлайн поступают на сайт Горэкоцентра. Начальник отдела экологии ПАО «Челябинский цинковый завод» Ирина Золина рассказала, что в 2016 году общий объём выбросов составил 4 173 тонны, в 2017 году планируемый объём выбросов 3950 тонн. При этом норма разрешённых выбросов для ПАО ЧЦЗ установлена на уровне 12 тысяч тонн.

В Год экологии ЧЦЗ провел текущие ремонты рукавных фильтров в вельц-цехе, а также текущие ремонты газоходов контактных аппаратов, электрофильтров; башен промывного отделения в сернокислотном цехе, что позволит лучше улавливать такие опасные соединения как диоксид серы, диоксид азота, ртуть, оксид углерода и взвешенные вещества.

В ходе пресс-тура журналистам показали станцию оборотного водоснабжения. Станция запущена в 2014 году. Сюда поступают промышленные стоки сернокислотного отделения, после очистки, вода возвращается обратно в технологический процесс. Объёмы очищаемых стоков более 3 тысяч кубометров в сутки. В следующем году предприятие планирует начать строительство локальных очистных сооружений, что должно снизить сброс промышленных стоков в реку Миасс на 500 м3/сут. Строительство объекта завершится к 2020 году.

Не остаётся без внимания проблема утилизации твёрдых коммунальных отходов, образуемых на предприятии. ПАО ЧЦЗ заключил соглашение с предприятиями - переработчиками вторичных ресурсов. Если в 2016 году цинковый завод вывозил на Челябинскую городскую свалку 7 тысяч тонн коммунальных отходов, в 2017 году этот показатель составит 1 тысячу тонн.

По словам генерального директора ПАО «Челябинский цинковый завод» Павла Избрехта в Год экологии на природоохранные мероприятия будет потрачено порядка 480 миллионов рублей, в следующем году - ещё 400 миллионов рублей.


Не утихают цинковые страсти
Обе ветви власти города – законодательная и исполнительная – объединились в стремлении не допустить в Орске строительства цинкового завода. Пока что они крепко держат стенку и не намерены отступать. Хотя на прошлой неделе снова в город прибыл представитель уральского центра с деловым предложением.
История тянется с прошлого года, когда орчане были шокированы сообщением, что «Русская медная компания» собирается построить цинковый завод в городской черте. Но и сегодня, как оказалось, страсти не утихают. Завод, по мнению уральцев, удобно разместить прямо в населенном пункте: не нужно тянуть коммуникации. К тому же в Новоорском районе имеется рудник, который будет поставлять медный и цинковый концентраты. С точки зрения производственников, все аргументы – за строительство цинкового завода в Орске. Но власти не соглашаются.
Радужные перспективы экспортного производства не радуют, многие задумываются, а нужно ли в промышленном узле области еще одно предприятие. Жители восточного Оренбуржья и так задыхаются от выбросов заводов черной и цветной металлургии. К тому же в атмосфере содержание некоторых предельно допустимых концентраций вредных веществ превышено. Руководство «Русской медной компании» обнадеживает, что на природоохранные мероприятия потратит 20 миллионов долларов, и даже пообещало добиться 100-процентной экологической безопасности проекта. Но стоит ли поддаваться на посулы?

Красная пыль Владикавказа
25 ноября 2005 года жители Владикавказа наблюдали, как с территории завода «Электроцинк» поднялось в воздух громадное красное облако. А через несколько минут дома, дороги, деревья – все покрылось пылью. Жители промышленной зоны североосетинской столицы были обеспокоены происшедшим и стали звонить на завод в отдел охраны окружающей среды. Однако им ответили, что в одном из цехов произошла поломка и ее оперативно устраняют. А еще заверили владикавказцев в безопасности: пыль никакой угрозы здоровью не принесет и благодаря ветреной погоде уйдет в сторону Карцинского шоссе. Не ушла. В журнале «Экология производства» за прошлый год опубликована заметка, где жители Владикавказа жалуются на «Электроцинк», обращаются в различные инстанции. Выброс красной пыли – подтверждение их слов, на заводе часто происходят технологические сбои, аварии. Корреспонденты журнала опросили жителей и вот какие ответы получили. «Мы уже задыхаемся от выбросов этого предприятия, – сказал Хасан Голиев, водитель автобуса, – дети рождаются с дефектами, больше стало онкологических больных. Мечтаем продать квартиру и уехать в село – уж там-то воздух чистый». По словам многодетной матери Эльвиры Теблоевой, как только заработали на полную мощность цеха предприятия, то сразу жителям стало невмоготу, они постоянно болеют. В республиканской онкологической больнице нет свободных коек.
Но все равно руководство завода опровергает факт загрязнения окружающей среды. Выброс пыли подтверждают, но заверяют жителей города в его случайном происхождении: якобы в обжиговом цехе осуществлялся переход с одной печи на другую. «Воздушные потоки унесли частицы пыли, и никаких негативных последствий для экологии быть не может», – считают на «Электроцинке». Причем больше всего страдают жители близлежащих домов – они бьют тревогу, но никто не прислушивается. За год завод выпускает около 100 тысяч тонн продукции, и оплатить металлургическому гиганту штраф – раз плюнуть. Поэтому с чистой совестью завод продолжает загрязнять окружающую среду.

Челябинцы вдыхают серу
ОАО «Челябинский цинковый завод» производит в год до 150 тысяч тонн продукции. Мощнейшее предприятие было построено в 50-х годах. Причем не в какой-нибудь малонаселенной территории, а прямо в центре города. И хотя радиус санитарной зоны составляет 1 километр, люди и природа подверглись отрицательному влиянию завода. Пятьдесят лет подряд загрязнялись воздух, почва и вода. Ежегодно в атмосферу попадало 4 тонны свинца, а твердых составляющих – 44 тысячи тонны. Экологи считают, что самое опасное на заводе – сернокислотное производство. Содержание вредных газов в воздухе значительно превышает нормы. 4 тысячи тонн серы попадало в городскую атмосферу.
Есть проблема утилизации ртутно-селенового шлама. Сейчас его вывозят в Киргизию на переработку. Речка Миасс подверглась варварскому загрязнению. Сульфат цинка, окись цинка и аммиак, сбрасывались в воду. В 2002 году на Челябинском цинковом заводе вопросы экологии стали приоритетными. Два последних десятилетия на ЧЦЗ проходила полномасштабная реконструкция попутных и вспомогательных производств. Приобретен импортный фильтр для предотвращения выбросов свинца и твердых отходов в окружающую среду. Установка для утилизации ртути из газов сможет разительно сократить выбросы – до 1,5 тысячи тонн. Решен вопрос с серной кислотой. Компания «Еврохим» готова приобретать кислоту с фиксированными годовым объемом и ценой в течение ближайших пяти лет. Генеральный директор ЧЦЗ Всеволод Гейхман неоднократно обращался с просьбой к властям о строительстве в Челябинске завода по производству удобрений. Он смог бы полностью решить проблему сбыта серной кислоты. Но общественность вряд ли позволит построить в Челябинске еще одно вредное производство. Специалистами разработан уникальный проект перерабатывающих мощностей по утилизации свинцовых кеков. Причем это будет единственное в России производство, которое сможет извлекать из сырья не только свинец, но и сплав золота с серебром. Пуск нового комплекса приведет к уменьшению количества выбросов в Миасс на 81 тонну. ЧЦЗ на модернизацию и природоохранные мероприятия потратил около 160 миллионов долларов.

Татьяна Алова

Развалины электролизного цеха «Электроцинка» после пожара. Фото: Farniev Konstantin

Не секрет, что выбросы заводов и промышленных предприятий являются одним из основных источников загрязнения воздуха, а сбросы сточных вод от них наносят существенный вред гидросфере. Однако когда работа одного завода ставит под угрозу жизнь и здоровье 300 тысяч человек – опасно оставаться равнодушными.

«Электроцинк» – крупнейшее промышленное предприятие Республики Северная Осетия, занимающее 70,2 га в северо-восточной части столицы региона, Владикавказа, и одно из ведущих предприятий цветной металлургии России, которое с 1904 года производит и реализует цинк, кадмий и серную кислоту.

А еще «Электроцинк» – это загрязнитель воздуха, чья деятельность вызывает острое недовольство владикавказцев как минимум 9 лет. Местные жители до сих пор помнят 5 октября 2009 года, когда в результате производственного выброса окиси серы на заводе над Владикавказом образовалась густая пелена. Горожане начали жаловаться на сильную головную боль и першение в горле. В день аварии более 500 человек собралось на стихийный митинг с требованием провести референдум о прекращении работы предприятия. До конца месяца на заводе произошло еще пять аварийных сверхлимитных выбросов. С тех пор митинги за закрытие «Электроцинка» проводятся регулярно. Хотя первые протесты против работы предприятия начались еще в 2003 году: вскоре после того, как его владельцем стала «Уральская горно-металлургическая компания» (УГМК), местные жители начали жаловаться на вредные выбросы в атмосферу.

Следует добавить, что санитарно-защитная зона вокруг завода составляет всего 300 метров – именно на таком расстоянии от него начинается жилая застройка (законодательно предприятия первого класса опасности, каковым является «Электроцинк», должны быть удалены от жилых районов не менее чем на 1000 метров). Хотя «зона влияния» предприятия далеко не ограничивается одним километром, а распространяется практически на весь Владикавказ.

Серьезной проблемой являются и места складирования отходов производства: огромные курганы, расположенные в черте города, открыты ветрам и дождям.

Глава Минприроды России Дмитрий Кобылкин 7 ноября сообщил, что завод «Электроцинк» выполнял все экологические требования. «По нашей линии Росприроднадзора замечаний к нему никогда не было. Все, что мы просили и требовали, он всегда выполнял», – уточнил министр.

Это подтверждает опасения, что закрыть завод и реабилитировать прилегающие к нему территории или хотя бы снизить до приемлемых уровней его выбросы в ближайшее время не удастся. Ученый и общественный деятель Тамерлан Камболов создал петицию на сайте Change.org , адресованную президенту Российской Федерации с просьбой немедленно и навсегда закрыть «Электроцинк». На данный момент петицию подписали более 26 тысяч человек.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Цинк и его влияние на окружающую среду

1. Антропогенные источники поступления в окружающую среду

Основным источником является выброс в атмосферу цинка при высокотемпературных технологических процессах. Таким путем плюс потери при транспортировке, обогащении, сортировке с 1995 по 2005 г. во всем мире было рассеяно 700 тыс. т цинка. В результате сжигания каменного угля в 1980г. в атмосферу поступило 137,5 тыс. т, к 2000 году эта цифра возросла до 218,8 тыс. т. Содержание цинка в воздухе в районе завода вторичной переработки цветных металлов составляет: в радиусе 300 м -0,350 мг/м 3 ; 500м - 0,285 мг/м 3 , 1000 м - 0,148 мг/м 3 , 2000 м - 0,52 мг/м 3 . Металлический цинк окисляется кислородом воздуха и выпадает в виде оксида ZnO. В среднем с атмосферными осадками ежегодно выпадает на 1км 2 поверхности Земли 72 кг цинка - в три раза больше чем свинца, и в 12 раз больше чем меди. Значительные количества цинка поступают в почву с твердыми отходами ГРЭС на буром угле. В районе одного из цинкоплавильных заводов в радиусе 0,8 км в поверхностном слое почвы содержание цинка достигало 80 мг/г. В радиусе 1 км от цинкового завода в зеленых частях овощей содержание цинка 53 -667 мг/кг, в корнеплодах - 3,5 -65 мг/кг, в почве -42 -40 мг/кг сухого остатка.

Сточные воды, содержащие цинк, не пригодны для орошения полей. Не соблюдение гигиенических нормативов привело в Японии к вспышке тяжелого заболевания костно-мышечной системы у населения, потреблявшего в пищу рис, выращенный на полях орошения, где использовались ирригационные воды, сильно загрязненные сульфидом цинка и кадмием.

Для Мирового океана особую опасность представляют шламы сточных вод и сами сточные воды химического, деревообрабатывающего, текстильного, бумажного, цементного производств, а также рудников, горно-обогатительных и плавильных заводов, металлургических комбинатов. Пороговой концентрацией цинка, снижающей эффективность очистки сточных вод на 5%, является 5 -10мг/л. Серьезным источником поступления цинка в воду является вымывание его горячей водой из оцинкованных водопроводных труб до 1,2 -2,9 мг с поверхности 1 дм 2 в сутки. Суммируя все антропогенные источники, общий объем поступления цинка в окружающую среду составляет 314 тыс. т в год.

2. Химические и физические свойства цинка и его соединений

Цинк (Zincum) Zn - химический элемент 12-й (IIb) группы Периодической системы. Атомный номер 30, относительная атомная масса 65,39. Природный цинк состоит из трех стабильных изотопов 64 Zn (48,6%), 66 Zn (26,9%) и 67 Zn (4,1%). Известно несколько радиоактивных изотопов, важнейший из них - 65 Zn с периодом полураспада 244 сут. Степень окисления +2.

Характеристика простого вещества. Металлический цинк обладает характерным голубоватым блеском на свежей поверхности, который он быстро теряет во влажном воздухе. Температура плавления 419,58° С, температура кипения 906,2° С, плотность 7,133 г/см 3 . При комнатной температуре цинк хрупок, при 100-150° С становится пластичным и легко прокатывается в тонкие листы и проволоку, а при 200-250° С вновь становится очень хрупким и его можно быть истолочь в порошок.

При нагревании цинк взаимодействуют с неметаллами (кроме водорода, углерода и азота). Активно реагирует с кислотами:

Zn + H 2 SO 4 (разб.) = ZnSO 4 + H 2

Цинк - единственный элемент группы, который растворяется в водных растворах щелочей с образованием ионов 2- (гидроксоцинкатов):

Zn + 2OH - + 2H 2 O = 2- + H 2

При растворении металлического цинка в растворе аммиака образуется аммиачный комплекс:

Zn + 4NH 3 ·H 2 O = (OH) 2 + 2H 2 O + H 2

Соединения цинка. Цинк образует многочисленные бинарные соединения с неметаллами, некоторые из них обладают полупроводниковыми свойствами. Соли цинка бесцветны (если не содержат окрашенных анионов), их растворы имеют кислотную среду вследствие гидролиза. При действии растворов щелочей и аммиака (начиная с pH ~ 5) основные соли осаждаются и переходят в гидроксид, который растворяется в избытке осадителя.

Оксид цинка ZnO является самым важным промышленным цинксодержащим соединением. Будучи побочным продуктом производства латуни, он стал известен раньше, чем сам металл. Оксид цинка получают, сжигая на воздухе пары цинка, образующиеся при плавке руды. Более чистый и белый продукт производят сжиганием паров, полученных из предварительно очищенного цинка.

Обычно оксид цинка - это белый тонкий порошок. При нагревании его окраска меняется на желтую в результате удаления кислорода из кристаллической решетки и образования нестехиометрической фазы Zn 1+ x O (x ? 7,10-5). Избыточное количество атомов цинка приводит к появлению дефектов решетки, захватывающих электроны, которые впоследствии возбуждаются при поглощении видимого света. Добавляя в оксид цинка 0,02-0,03%-ный избыток металлического цинка, можно получить целый спектр цветов - желтый, зеленый, коричневый, красный, однако красноватые оттенки природной формы оксида цинка - цинкита - появляются по другой причине: за счет присутствия марганца или железа. Оксид цинка ZnO амфотерен; он растворяется в кислотах с образованием солей цинка и в щелочах с образованием гидроксоцинкатов, таких как - и 2- :

ZnO + 2OH- + H 2 O = 2-

Гидроксид цинка Zn(OH) 2 образуется в виде студенистого белого осадок при добавлении щелочи к водным растворам солей цинка. Гидроксид цинка, так же как и оксид, амфотерен:

Zn(OH) 2 + 2OH- = 2-

Сульфид цинка ZnS выделяется в виде белого осадка при взаимодействии растворимых сульфидов и солей цинка в водном растворе. В кислотной среде осадок сульфида цинка не выпадает в кислотной среде. Сероводородная вода осаждает сульфид цинка лишь в присутствии анионов слабых кислот, например, ацетат-ионов, которые понижают кислотность среды, что приводит к повышению концентрации сульфид-ионов в растворе. Свежеосажденный сульфид цинка легко растворяется в минеральных кислотах с выделением сероводорода:

ZnS + 2H 3 O + = Zn 2+ + H 2 S + 2H 2 O

Селенид цинка ZnSe может быть осажден из раствора в виде лимонно-желтого, плохо фильтрующегося осадка. Влажный селенид цинка очень чувствителен к действию воздуха. Высушенный или полученный сухим путем устойчив на воздухе.

Теллурид цинка ZnTe, в зависимости от способа получения, - серый порошок, краснеющий при растирании, или красные кристаллы.

Хлорид цинка ZnCl 2 является одним из важных соединений цинка в промышленности. Его получают действием соляной кислоты на вторичное сырье или обожженную руду.

Ацетат цинка Zn(CH 3 COO) 2 хорошо растворим в воде (28,5% по массе при 20° С) и многих органических растворителях. При перегонке ацетата цинка при пониженном давлении образуется основный ацетат , его молекулярная структура включает атом кислорода, окруженный тетраэдром из атомов цинка, связанных по ребрам ацетатными мостиками. Он изоморфен основному ацетату бериллия, но в отличие от него, быстро гидролизуется в воде, это обусловлено способностью катиона цинка иметь координационное число выше четырех.

Цинкорганические соединения . Открытие в 1849 английским химиком-органиком Эдуардом Франклендом (Frankland Edward) (1825-1899) алкилов цинка, хотя и не первых из синтезированных металлоорганических соединений (соль Цейзе была получена в 1827), можно считать началом металлоорганической химии. Исследования Франкленда положили начало применению цинкорганических соединений в качестве промежуточных веществ при органическом синтезе, а измерения плотности паров привело его к предположению (важнейшему в развитии теории валентности), что каждый элемент имеет ограниченную, но определенную силу сродства. Реактивы Гриньяра, открытые в 1900, сильно потеснили алкилы цинка в органическом синтезе, однако многие реакции, в которых они теперь используются, были сначала разработаны для соединений цинка. Алкилы типа RZnX и ZnR 2 (где Х - галоген, R - алкил) можно получить, нагревая цинк в кипящем RX в инертной атмосфере (диоксид углерода или азот). Ковалентные ZnR 2 представляют собой неполярные жидкости или низкоплавкие твердые вещества. Они всегда мономерны в растворе и характеризуются линейной координацией атома цинка C-Zn-C. Цинкорганические соединения очень чувствительны к действию воздуха. Соединения с малой молекулярной массой самовоспламеняются, образуя дым из оксида цинка. Их реакции с водой, спиртами, аммиаком и другими веществами протекают подобно реакциям Гриньяра, однако менее энергично. Важным отличием является то, что они не взаимодействуют с диоксидом углерода.

3. Получение и применение цинка и его соединений

Исходное сырье для получения металлического цинка - сульфидные цинковые и полиметаллические руды. Выделение цинка начинается с концентрирования руды методами седиментации или флотации, затем ее обжигают до образования оксидов:

2ZnS + 3O 2 = 2ZnO + SO 2

Образующийся диоксид серы используют в производстве серной кислоты, а оксид цинка перерабатывают электролитическим методом или выплавляют с коксом.

В первом случае цинк выщелачивают из сырого оксида разбавленным раствором серной кислоты. При этом цинковой пылью осаждают кадмий:

Zn + Cd 2+ = Zn 2+ + Cd

Затем раствор сульфата цинка подвергают электролизу. Металл 99,95%-ной чистоты осаждается на алюминиевых катодах.

Восстановление оксида цинка коксом описывается уравнением:

2ZnO + C = 2Zn + CO 2

Для выплавки цинка ранее использовались ряды сильно нагретых горизонтальных реторт периодического действия, затем они были заменены непрерывно действующими вертикальными ретортами (в некоторых случаях, с электрическим подогревом). Эти процессы не были так термически эффективны, как доменный процесс, в котором сжигание топлива для нагрева проводится в той же камере, что и восстановление оксида, однако неизбежная проблема в случае цинка в том, что восстановление оксида цинка углеродом не протекает ниже температуры кипения цинка (этой проблемы нет для железа, меди или свинца), поэтому для конденсации паров нужно последующее охлаждение. Кроме того, в присутствии продуктов сгорания металл повторно окисляется.

Эту проблему можно решить, опрыскивая выходящие из печи пары цинка расплавленным свинцом. Это приводит к быстрому охлаждению и растворению цинка, так что повторное окисление цинка сводится к минимуму. Затем цинк почти 99%-й чистоты выделяют в виде жидкости и дополнительно очищают вакуумной дистилляцией до чистоты 99,99%. Весь присутствующий кадмий в ходе дистилляции восстанавливается. Преимущество доменной печи в том, что состав шихты не имеет принципиального значения, поэтому можно использовать смешанные руды цинка и свинца (ZnS и PbS часто находят вместе) для непрерывного производства обоих металлов. Свинец при этом выпускают со дна печи.

По данным экспертов, в 2009 производство цинка составило 9,9 млн. тонн, а его потребление - около 10,2 млн. тонн. Таким образом, дефицит цинка на мировом рынке равен 250-300 тыс. тонн.

В 2004 в Китае выпуск рафинированного цинка достиг 2,46 млн. т. Примерно по 1 млн. т производят Канада и Австралия. Цена на цинк в конце 2004 составила более 1100 долл. за тонну.

Спрос на металл остается высоким, благодаря бурному росту производства антикоррозионных покрытий. Для получения таких покрытий используют различные способы: погружение в расплавленный цинк (цинкование горячим способом), электролитическое осаждение, опрыскивание жидким металлом, нагревание с порошком цинка и использование красок, содержащих цинковый порошок. Оцинкованная жесть широко применяется как кровельный материал. Металлический цинк в виде брусков используют для защиты от коррозии стальных изделий, соприкасающихся с морской водой. Большое практическое значение имеют сплавы цинка - латуни (медь плюс 20-50% цинка). Для литья под давлением, помимо латуней, используется быстро растущее число специальных сплавов цинка. Еще одна область применения - производство сухих батарей, хотя в последние годы оно существенно сократилось.

Примерно половина всего производимого цинка используется для производства оцинкованной стали, одна треть - в горячем цинковании готовых изделий, остальное - для полосы и проволоки. За последние 20 лет мировой рынок этой продукции вырос более чем в 2 раза, в среднем прибавляя по 3,7% в год, причем в странах Запада производство металла ежегодно увеличивается на 4,8%. В настоящее время для цинкования 1 т стального листа нужно в среднем 35 кг цинка.

По предварительным оценкам, в 2005 потребление цинка в России может составить порядка 168,5 тыс. т в год, в том числе 90 тыс. т пойдет на цинкование, 24 тыс. т - на полуфабрикаты (латунный, цинковый прокат и др.), 29 тыс. т - в химическую промышленность (лакокрасочные материалы, резинотехнические изделия), 24,2 тыс. т - на литейные цинковые сплавы.

Соединения цинка.

Основное промышленное применение оксида цинка - производство резины, в котором он сокращает время вулканизации исходного каучука.

В качестве пигмента при производстве красок оксид цинка имеет преимущества по сравнению с традиционными свинцовыми белилами (основной карбонат свинца), благодаря отсутствию токсичности и потемнения под действием соединений серы, однако уступает оксиду титана по показателю преломления и кроющей способности.

Оксид цинка увеличивает срок жизни стекла и поэтому используется в производстве специальных стекол, эмалей и глазурей. Еще одна важная область применения - в составе нейтрализующих косметических паст и фармацевтических препаратов.

В химической промышленности оксид цинка обычно является исходным веществом для получения других соединений цинка, в которых наиболее важными являются мыла (т.е. соединения жирных кислот, такие как стеарат, пальмитат и другие соли цинка). Их используют в качестве отвердителей красок, стабилизаторов пластмасс и фунгицидов.

Небольшая, но важная область применения оксида цинка - производство цинковых ферритов. Это шпинели типа Zn II x M II 1- x Fe III 2 O 4 , содержащие еще один двухзарядный катион (обычно Mn II или Ni II). При х = 0 они имеют структуру обращенной шпинели. Если х = 1, то структура соответствует нормальной шпинели. Понижение количества ионов Fe III в тетраэдрических позициях приводит к понижению температуры Кюри. Таким образом, изменяя содержание цинка, можно влиять на магнитные свойства ферритов.

Гидроксид цинка применяется для синтеза различных соединений цинка.

Сфалерит ZnS является наиболее распространенным минералом цинка и главным источником металла, однако известна и вторая природная, хотя и намного более редкая форма вюрцит, более устойчивая при высокой температуре. Названия этих минералов используются для обозначения кристаллических структур, которые являются важными структурными типами, найденными для многих других соединений АВ. В обеих структурах атом цинка тетраэдрически координирован четырьмя атомами серы, а каждый атом серы тетраэдрически координирован четырьмя атомами цинка. Структуры существенно различаются только типом плотнейшей упаковки: в вюрците она кубическая, а в сфалерите - гексагональная.

Чистый сульфид цинка - белый и, подобно оксиду цинка, применяется как пигмент, для этого его часто получают (как литопон) вместе с сульфатом бария при взаимодействии водных растворов сульфата цинка и сульфида бария.

Кроме того, у сульфида цинка интересные оптические свойства. Он становится серым при действии ультрафиолетового излучения (возможно, за счет диссоциации). Однако этот процесс можно замедлить, например, добавлением следов солей кобальта. Катодное, рентгеновское и радиоактивное излучение вызывает появление флуоресценции или люминесценции различных цветов, которую можно усилить добавлением следов различных металлов или замещением цинка кадмием, а серы селеном. Это широко используется для производства электроннолучевых трубок и экранов радаров.

Селенид цинка используется в качестве лазерного материала и компонента люминофоров (вместе с сульфидом цинка).

Теллурид цинка используется как материал для фоторезисторов, приемников инфракрасного излучения, дозиметров и счетчиков радиоактивного излучения. Кроме того, он служит люминофором и полупроводниковым материалом, в том числе в лазерах.

Хлорид цинка ZnCl 2 является одним из важных соединений цинка в промышленности. Его получают действием соляной кислоты на вторичное сырье или обожженную руду.

Концентрированные водные растворы хлорида цинка растворяют крахмал, целлюлозу (поэтому их нельзя фильтровать через бумагу) и шелк. Его применяют в производстве текстиля, кроме того, он используется как антисептик для древесины и при изготовлении пергамента.

Поскольку в расплаве хлорид цинка легко растворяет оксиды других металлов, его используют в ряде металлургических флюсов. С помощью раствора хлорида цинка очищают металлы перед пайкой.

Хлорид цинка применяется и в магнезиальном цементе для зубных пломб, как компонент электролитов для гальванических покрытий и в сухих элементах.

Ацетат цинка используют как фиксатор при крашении тканей, консервант древесины, противогрибковое средство в медицине, катализатор в органическом синтезе. Ацетат цинка входит в состав зубных цементов, используется при производстве глазурей и фарфора.

4. Возможные пути ми грации и трансформации вещества

Цинк относиться к группе рассеянных элементов: содержание его в земной коре <1,5*10 -3 %. при Кларке 83/10 -4 %. Из 64 минералов цинка наибольшее значение имеют сфалерит (цинковая обманка ZnS, цинкит ZnO), смитсонит ZnCO 3 , вюртцит, каламин, госларит и другие. Основная масса цинка мигрирует через гидросферу Земли. Содержание растворенных форм цинка в Мировом океане составляет 6850 млн.т. Цинк относится к наиболее распространенным токсическим компонентам крупномасштабного загрязнения Мирового океана, о чем можно судить по его содержанию в настоящее время в поверхностном слое морской воды (60-100мкм), где оно достигает 1020 мкг/л. Верхним порогом экологической толерантности для океанов и внутренних морей принято считать 50мкг/л. Годовой глобальный вынос цинка с речными водами составляет 740 тыс.т при средней концентрации его 20мкг/л. Годовой захват цинка железомарганцевыми конкрециями океана превышает 2,8 тыс. т в год. Среднее содержание цинка в почвах мира 5*10 -3 %. В массе живого вещества планеты содержится 500 млн. т. Захват цинка годовым приростом фитомассы составляет 57,5 кг на 1 км 2 . Вместе с медью и свинцом цинк занимает первое среди рассеянных элементов по интенсивности поглощения биосом океана. Содержание цинка в морских водорослях 15,0 мг/100 г сухого веса, в наземных растениях 10,0. в морских животных 0,6-150,0. в наземных животных 16,0 в бактериях 0,1-28,0. Интенсивно аккумулируют цинк водные растения, брюхоногие моллюски и особенно клоп-гладыш, содержание цинка в которых достигает 141 мг/кг сухого вещества. Накопителем биоиндикатором атмосферного загрязнения цинка могут служить мхи.

5. Токсич еское действие цинка и его соединений и сан итарно-гигиенические показатели

Микроорганизмы и растения . При содержании цинка в верхнем слое почвы до 8 -13% значительно уменьшается общее число микроорганизмов, но рост большинства из них замедляется уже при уровне цинка 100-200 мкг/кг; грибы более устойчивы. Отрицательное влияние цинка на микроорганизмы и микрофауну почвы снижает ее плодородие: в условиях умеренного климата урожай зерновых снижается на 20 -30%, свеклы - на 35%, бобов - на 40%, картофеля - на 47%. Уровень цинка, снижающий урожай или высоту растения на 5-10%, считается токсичным и составляет для овса 435-725 млн -1 , для клевера 210-290, для свеклы 240-275. Известны растения, которые обладают способностью концентрировать цинк, например гвоздичные (до 1500-4900 мг/кг сухого вещества), крестоцветные (до 5440-13630 мг/кг).

Гидробионты . Соединения цинка сильно повреждают жабры рыб. Сначала наблюдается фаза возбуждения и учащения дыхания, по мере разрушения респираторного эпителия наступают асфиксия и смерть. Обратимость отравления возможна, если рыбу перенести в свежую воду в стадии опрокидывания. Токсичность цинка усиливают ионы меди и никеля. Концентрация 15мг/л в течение 8 ч смертельна для всех рыб. Плотва не переносит концентрацию более 1мг/л. В мягкой воде цинк токсичен для форели в концентрации 0,15мг/л, в жесткой ЛК 50 = 4,76 мг/л. Хлорид цинка токсичен для улиток и ракообразных при 0,2 мг/л. Способностью накапливать цинк обладают устрицы; скармливание таких устриц крысам вызывает у них интоксикацию.

Общий характер действия на теплокровных . В основе многих проявлений цинковой интоксикации лежат конкурентные отношения цинка с рядом других металлов. У рабочих - плавильщиков цинка и упаковщиц оксида цинка выявлено значительное снижение общего уровня кальция в сыворотке крови. Избыточное поступление цинка в организм животных сопровождалось падением содержания кальция не только в крови, но и в костях, одновременно нарушалось усвоение фосфора; в результате развивался остеопороз. Токсичность оксида цинка объясняют его каталитической активностью. Цинк может представлять мутагенную и онкогенную опасность. Гонадотоксическое действие цинка проявляется снижением подвижности сперматозоидов и их способности проникать в яйцеклетку.

Острое отравление. Животные. У кошек, вдыхавших однократно цинковую пыль, в легких - отек, кровоизлияния, в бронхиолах и альвеолах - лейкоциты, макрофаги. В подострых опытах: узелки эпителиальных клеток в легких, цирроз поджелудочной железы, увеличение содержания в ней цинка, дегенерация, а в некоторых случаях пролиферация Я-клеток в островках Лангерганса, выделение сахара с мочой. У кроликов с экспериментальной цинковой лихорадкой проявление анемии. После вдыхания паров оксида цинка в концентрации 110-600мг/м 3 (к воздуху добавлялось 10% СО 2) в течение 15 мин у кошек наблюдается вялость, понижение температуры. При вдыхании в течение 45мин полная прострация, дрожание, затрудненное дыхание, понижение температуры, снижение числа эритроцитов в крови. У убитых сразу после извлечения из камер животных резко выраженных изменений в легких не обнаружено. У убитых через сутки - полнокровие, проникновение в ткани вокруг бронхов клеточных элементов, экссудат в бронхах, очаги уплотнений с большим количеством лейкоцитов в альвеолах. Через 4 суток воспаление легких. Крысы и кролики менее чувствительны. Ингаляция морским свинкам ZnO в течение 3 часов в концентрации 25мг/м 3 привела к выраженному отеку легких. Воздействие аэрозоля сульфата цинка (1,1 мг/м 3 в течение 1 часа) раздражает у морских свинок верхние дыхательные пути. После интратрахеального введения 40мг цинка через 8 мес.наблюдаются значительные изменения в бронхах, гиперплазия лимфоидных элементов, интенсивное образование соединительной ткани, эмфизема в легких. Примесь 1мг цинка к 25мг SiO 2 усиливает фиброгенность последнего. Через 18-24 мес. после интратрахеального однократного (5, 25 и50 мг) или повторного (по2 -5 мг) введения высокодисперсной пыли цинка у 15% крыс появились злокачественные опухоли (саркомы) в легких и опухоли яичек. Через тот же срок после введения в трахею 50мг ZnO деформация бронхов, гиперплазия и склероз лимфатических фолликулов, перибронхиальная пневмония.

Человек. Опасность острого ингаляционного отравления представляют аэрозоли металлического цинка, его оксида и хлорида; возможно отравление парами последнего. Опрос рабочих, занятых в производстве цинковой пыли, выявил у большинства из них в анамнезе случаи литейной лихорадки. Описаны симптомы, появляющиеся сразу после приступа лихорадки,- боли и отечность суставов, геморрагические высыпания в области стоп. Острые отравления с типичными явлениями лихорадки описаны при электросварке и газорезке металлических конструкций, содержащих цинк; количество цинка в сварочной пыли в зависимости от толщины цинкового покрытия колеблется в пределах 18 -58 мг/м 3 ; в моче при этом резко увеличивается содержание цинка и меди; появляется дизурия. У электросварщиков обнаружены хронические катаральные заболевания верхних дыхательных путей и пищеварительного тракта, конъюнктивиты, дерматиты, малокровие, билирубинемия, гипоацидный гастрит. При отравлении оксидом цинка наблюдается типичная картина литейной лихорадки. Уже во время работы появляется сладковатый вкус во рту, после работы - плохой аппетит, иногда сильная жажда. Чувство усталости, стеснение и давящая боль в груди, сонливость, сухой кашель. Этот период, длящийся в зависимости от тяжести отравления от 1 до 4 -5 ч, сменяется резким ознобом, продолжающимися 1 -1,5 ч.Озноб часто нарастает толчками, температура поднимается до 37-38 о С (иногда до 40 о С и выше) и держатся несколько часов. При этом наблюдается расширение зрачков, гиперемия конъюнктивы, глотки, лица. В моче появляются сахар, часто гематопорфирин, уробилин; возможно увеличение содержания цинка и меди. В крови содержание сахара поднимается значительно, иногда отмечается увеличение печени. Нередко болезненное состояние длится 2-3 дня и дольше. В зависимости от индивидуальности, а также концентрации паров ZnO картина заболевания может быть весьма разнообразна. Описан случай лихорадки у фотографа, использовавшего для раскрашивания портретов краску, содержащую ZnO. У погибших при тяжелом отравлении обнаружены отек межуточной ткани легких, деструкция и метаплазия альвеолярного эпителия. Повторные заболевания приводят к ослаблению организма и активированию туберкулезного процесса, а также повышению восприимчивости к другим заболеваниям дыхательных органов.

Вдыхание в течение 5-30 мин дыма хлорида цинка вызывает пароксизмальный кашель, тошноту, иногда рвоту; через 1-24 часа -одышка, повышение температуры тела, возможны воспалительные явления и отек легких; осложнений следует ожидать в течение 5-12 дней. Описанный синдром получил название острой химической пневмопатии. На вскрытии погибших на 6 и 11 дни после отравления - некротизирующий трахеит, бронхит, сливная бронхопневмония с тромбозом мелких сосудов и облитерирующий бронхиолит.

При попадании сульфата цинка в желудок - тошнота, рвота, понос иногда с примесью крови; доза, вызывающая рвоту,- 1-2 г. Инкубационный период от нескольких минут до нескольких часов. При смертельных исходах на вскрытии - тяжелые повреждения слизистой оболочки желудочно-кишечного тракта вплоть до некроза, признаки расстройства мозгового кровообращения. Известно массовое отравление в США пищей, которую готовили и хранили в посуде с цинковым покрытием: под действием кислот пищи образовался ZnSO 4 . Возможна интоксикация кислыми продуктами, например, фруктовой пастилой, при изготовлении и хранении их в оцинкованной посуде. Известны, также, многочисленные случаи отравления пищей, хранившейся в оцинкованной посуде: квасом, стоявшим сутки (содержание цинка в продукте 187,6 мг%), молоком (31,3 мг%), томатным соком(89 мг%), кашей, сваренной в оцинкованной посуде(650 мг%).

Хлорид цинка обладает выраженным действием на слизистые оболочки пищеварительного тракта и кожу вокруг рта: ожог слизистых, колики в животе, рвота с примесью крови, кровавый понос, сильное возбуждение; в последующие дни желтуха, боли в конечностях, анурия, остаточный азот до 280 мг%; на вскрытии - признаки поражения печени, почек, миокарда. Известен случай смерти от внезапного кровотечения из трахеи через месяц после отравления; возможно также развитие стеноза пищевода.

Хроническое отравление. Человек . При воздействии цинковой пыли рабочие жалуются на раздражительность, бессонницу, снижение памяти, потливость по ночам, ухудшение слуха, шум в ушах, желудочно-кишечное расстройство; объективно гипохромная анемия, субатрофические катары верхних дыхательных путей после 2-3 лет работы; рентгенографически - усиление легочного рисунка, эмфизема, начальные признаки пневмосклероза. Обращают внимание на то, что цинк обладает кумулятивным токсическим эффектом даже при весьма незначительном содержании его в воздухе. У рабочих цеха цинковой гальваники содержание цинка в волосах достигает 27,2 мг% (в контроле 7,76); у паяльщиков 25,5; маляров 22,9; оцинковщиков 30,04; у тех из них, кто жаловался на слабость и плохой сон, 57,5 мг%. Среди шведских горняков, добывающих цинк, наблюдается повышенная смертность от рака легких.

У многих рабочих, занятых в производстве оксида цинка, обнаружены гипогликемия, гипохолестеринемия, повышение содержания уробилина и порфиринов в моче; нарушение функций поджелудочной железы и печени; фиброз легких. Даже при использовании респираторов пыль ZnO вызывает (не ранее, чем через год) изменения в содержании полисахаридов, пероксидаз и кислых фосфатаз в клетках крови; при стаже 10 лет развивается анемия. При хроническом воздействии ZnO жалобы на диспептические явления. У женщин, работающих в производстве цинковых белил и подвергавшихся в течение 5 лет воздействию цинка в концентрациях 2,4 -7,1 мг/м 3 , выявлено снижение содержания гемоглобина в крови и железа в сыворотке, повышение уровня трансферрина и эритропоэтина.

Лица, контактирующие с цинкосодержащими удобрениями, жалуются на общую слабость, сухость в носу, кашель, шум в ушах; объективно- хроническое воспаление слизистых верхних дыхательных путей. Производственный контакт с хлоридом цинка может привести к поражению слизистой верхних дыхательных путей вплоть до прободения носовой перегородки, желудочно-кишечным расстройствам(после 1 года работы), а также к возникновению язвы желудка или двенадцатиперстной кишки (после 5- 20 лет работы).

Ортоарсенит и гидроортоарсенат цинка. ЛД 50 при введении в желудок крысам для ортоарсенита 1503 мг/кг, для гидроортоарсената 1020 мг/кг; ЛД 50 последнего для мышей 601 мг/кг. Симптомы интоксикации: гиподинамия, одышка, понос; увеличение содержания пировиноградной кислоты и снижение концентрации SH- групп в крови; на вскрытии- кровоизлияния по ходу пищеварительного тракта. Порог острого раздражающего действия при введении в желудок для ортоарсенита 14 мг/кг, для гидроортоарсената 54мг/кг. Повторное введение обоих веществ в дозах соответственно 27 и 102 мг/кг вызывает сосудистые расстройства, нарушение функции ЦНС, терморегуляции, порфиринового обмена; на вскрытии- язвы на слизистой оболочке желудочно-кишечного тракта, гепатит, увеличение содержания мышьяка в печени.

Селенид и сульфид цинка. Токсическое действие. Животные. Порог острого ингаляционного действия селенида цинка для крыс по влиянию на прирост массы тела и ректальную температуру 44,5 мг/м 3 . При интратрахеальном введении выявлено только пневмотоксическое действие. При введении в желудок доза 8 г/кг не вызывает гибели животных. Кожно-резорбтивное действие отсутствует.

Человек. При производственном контакте жалобы на головную боль, быструю утомляемость, головокружение, сухость во рту, понос, боли в области печени и в суставах, выпадение волос. На некоторых рабочих участках возможно образование селено- и сероводорода.

Фосфаты цинка (ортофосфат и гидроортофосфат) . Токсическое действие. Животные. У крыс через 3 мес. после интратрахеального введения 50 мг каждого из фосфатов воспаление легких и умеренный сетчатый склероз; явления исчезают к концу 6-12 -месячного периода. При введении в желудок не вызывают гибели крыс в дозах 10 г/кг; при в/ брюшинном введении ЛД 50 для гидроортофосфата цинка 600, для ортофосфата цинка551 мг/кг.

Фосфид цинка. Т оксическое действие. Высокую ядовитость фосфида цинка определяет фосфин РН 3 , образующийся в желудке в результате реакции между Zn 3 P 2 и HCI желудочного сока. Фосфин обладает выраженным нейротоксическим действием. В крови он окисляется, частично превращаясь в фосфорную кислоту, частично выделяясь в неизменном виде через легкие; в крови и органах погибших животных и людей не обнаруживается. Ядовит для животных и человека при любых путях введения. У человека при приеме фосфида цинка жажда, тошнота, боли в желудке, понос, отдышка, рвота, чувство страха, судороги, кома.

Объективно - признаки почечной и печеночной недостаточности, нарушение сердечной деятельности, ацидоз. На вскрытии- гиперемия, отек мозга и легких, крупные кровоизлияния в легких и поджелудочной железе. Смерть наступает через 7-60 часов после появления асфиксии. Смертельная доза для взрослого человека - 25 мг.

Поступление, распределение и выведение из организма . Содержание цинка в теле взрослого человека составляет 1-2,5 г.: 30% - в костях, 60% - в мышцах. В печени цинк трансформируется в металлобелковые комплексы (металлоэнзимы). В кровь цинк транспортируется в виде белковых комплексах и лишь небольшая часть в ионной форме. Содержание цинка в крови 700-800 мкг%. В организме цинк распределяется следующим образом(мкг/г): надпочечники 6, кости 66, почки 37, почки 38, мозг 13, желудок 21, сердце 27, кожа 6, мышцы 48. С возрастом содержание цинка в организме увеличивается. Выводится цинк через кишечник, с мочой и потом. Выводится цинк и с молоком.

Санитарно-гигиенические нормативы

Вещество

Нормативы (атмосферный воздух)

Класс опасности

ПДКр.з мг/м3

ВДКр.з мг/м3

ПДКс.с мг/м3

карбонат

Нормативы (водоисточники)

ПДКв мг/л

ПДКв.р. мг/л

Нормативы (почва)

ПДКп мг/кг

ПДК цинка в пищевых продуктах

6. Методы определения и контроля за содер жанием цинка в окружающей среде

цинк окружающая среда выброс атмосфера

Определение цинка и его соединений в воздухе основано на образовании комплекса при взаимодействии иона цинка Zn 2+ с гидрохлоридом диантипирилметилметана в присутствии тиоцианата аммония; чувствительность 1 мкг в анализируемом объеме. Определение в воде основано на образовании красных соединений цинка с дитизоном, извлечении дитизоната цинка в слой CCI 4 при рН 4,5 -4,8 с последующим фотометрированием; чувствительность метода 0,005 мг/л. Определение в пищевых продуктах хроматографическое; основано на образовании комплекса катионов цинка (при рН 4,5-5,0) с диэтилдитиокарбоматом натрия); чувствительность метода 0,005 мг/л.

Для определения в растениях предложен рентгенофлюоросцентный метод. Определение в организме выполняют колориметрически с дитизоном или путем образования комплексов с другими реагентами. Описан флуорометрический метод определения цинка с 8- гидроксихинолином и ряд других. В семенной жидкости цинка можно определить колориметрически по реакции цинка и (4-пиридилазо)-резорцина; чувствительность 2мг/л.

7. Неотло жная помощь при отравления и СИЗ

Индивидуальная защита. Для защиты органов дыхания следует использовать противогазы марки БКФ или респираторы типа «Лепесток», «Астра» и др. При возможности загрязнить кожу рук цинком и его соединениями рабочие должны применять защитные мази перед работой с последующим нанесением питательных кремов после мытья. Работающие, не обеспеченные необходимой спецодеждой и средствами индивидуальной защиты или имеющие их в неисправном состоянии, не должны допускаться к работе.

Неотложная помощь. При литейной лихорадке или после острого отравления парами или пылью цинка, оксидом и хлоридом цинка - дыхание свежим воздухом, иногда - кислородом; щелочные ингаляции, в/вено 5% раствор глюкозы, декстрана физиологического раствора до нормализации венозного давления. В угрожающих случаях назначают пеницилламин, далее антибиотики, кортикостероиды. После приема внутрь растворимых солей цинка сразу промыть желудок 0,5% раствором танина, принять яичное молоко активированный уголь; под кожу унитиол; по показаниям противошоковая терапия.

8. Задача

Исходные данные .

Высота трубы (Н)=12 м.

Диаметр трубы(D)=0,6 м.

V 1 =6500 м 3 /ч=1,81 м 3 /с.

М факт =0,02.

Место выброса: Пермская область (А=200).

Решение.

Соединение цинка: ZnO. Т.к данных по ПДКм.р. для данного соединения нет берем значения ПДКр.з. и считаем ВДКа.в. ПДКр.з=0,5 мг/м 3

lgВДКа.в=0,62*lgПДКр.з-1,77=0,62*lg0.5-1,77=-1,957

Значит ВДКа.в=0,011 мг/м 3

Фоновая концентрация вещества

Сф=0,3*ВДКа.в=0,0033 мг/м 3

Средняя линейная скорость выхода смеси

w о =(4*V 1)/(р*D 2)=(4*1,81)/(3,1416*12*12)=6,4 м/с

ДТ=Т-Тв=55-25=30 о С - выброс горячий.

Параметр f=(1000*w o 2 *D)/(H 2 * ДТ)=5.69<100 - выброс горячий.

Vm=0.65*(V 1 * ДТ/H) 1/3 =0.65*(1.81*30/12) 1/3 =1.075.

Коэффициент n, учитывающий подъем факела за счет скоростного напора,

т.к. 0,5

n=0,532*Vm 2 -2,13*Vm+3,13=1,455

Коэффициент m, учитывающий подъем факела за счет теплового напора,

m=(0.67+0.1*f 1/2 +0.34*f 1/3) -1 =0.6598

Примем что F=1 и з=1, тогда значение ПДВ

ПДВ=((ВДКа.в-Сф)* H 2 *(V 1 * ДТ) 1/3)/(А*F*n*m* з)=

=((0.011-0.0033)* 12 2 *(1.81*30) 1/3)/(200*1*1.455*0.6598)=0.022 г/с

Т.к Мф<ПДВ- выброс экологически безопасный.

Определение максимальной концентрации.

Т.к. f<100 то Cm=(Mф*A*F*m*n* з)/(H 2 *(V 1 * ДТ) 1/3)=0.0065 мг/м 3

Определение максимальной высоты

Коэффициент d зависит от Vm и f<100, тогда

d=4.95*(1+0.28*f 1/3)=7.424

Xm=4*7.424*12/4=89.1 м.

Расчет концентрации загрязняющего вещества в атмосферном воздухе в районе источника выброса.

9 . Методы очистки выбросов, производимых в атмосферу, от цинка и его соединений (выбранное соединение ZnO)

Так как выбранное соединение цинка - оксид цинка представляет собой мелкий порошок - среднедисперсную пыль, то будут рассмотрены методы очистки газов от твердых частиц.

Современные аппараты обеспыливания газов можно разбить на четыре группы:

1) механические обеспыливающие устройства, в которых пыль отделяется под действием сил тяжести, инерции или центробежной силы.

2) мокрые или гидравлические аппараты, в которых твердые частицы улавливаются жидкостью.

3) пористые фильтры, на которых оседают мельчайшие частицы пыли.

4) электрофильтры, в которых частицы осаждаются за счет ионизации газов и содержащихся в нем пылинок.

Для выбросов, содержащих данное соединение цинка, наиболее подходящие в использовании методы очистки - это пористые фильтры, т.к. они обладают наибольшей эффективностью пылеулавливания, и пригодны для такого вида частиц.

Фильтры. В пылеулавливателях этого типа газовый поток проходит через пористый материал различной плотности и толщины, в котором задерживается основная часть пыли. Очистку от грубой пыли проводят в фильтрах, заполненных коксом, песком, гравием, насадкой различной формы и природы. Для очистки от тонкой пыли применяют фильтрующий материал типа бумаги, войлока или ткани различной плотности. Бумагу используют при очистке атмосферного воздуха или же газа с низким содержанием пыли. В промышленных условиях применяют тканевые или рукавные фильтры. Они имеют форму барабана, матерчатых мешков или карманов, работающих параллельно.

Основным показателем фильтра является его гидравлическое сопротивление. Сопротивление чистого фильтра пропорционально корню квадратному из радиуса ячейки ткани. Гидравлическое сопротивление фильтра, работающего в ламинарном режиме, изменяется пропорционально скорости фильтрации. С увеличением слоя осевшей на фильтре пыли его гидравлическое сопротивление возрастает.

В качестве фильтрующих тканей в промышленности раньше широко применяли шерсть, хлопок. Они позволяют очищать газы при температуре меньше 100єС. Теперь их вытесняют синтетические волокна - химически и механически более стойкие материалы. Они менее влагоемки (например, шерсть поглощает до 15% влаги, а тергаль лишь 0,4% от собственной массы), не гниют и позволяют перерабатывать газы при температуре до 150єС. Кроме того, синтетические волокна термопластичны, что позволяет при помощи простых термических операций проводить их монтаж, крепление и ремонт.

Фильтрующие рукава из некоторых синтетических тканей с помощью термической обработки выполняются в виде гармошки, что значительно увеличивает их фильтрующую поверхность при тех же размерах фильтра. Стали применяться ткани из стекловолокна, которое выдерживает температуру до 250 0 С. Однако хрупкость таких волокон ограничивает сферу их применения.

Рукавные фильтры очищают от пыли следующими методами: механическим встряхиванием, обратной продувкой воздуха, ультразвуком и импульсной продувкой сжатым воздухом (гидравлический удар). Главным достоинством рукавных фильтров является высокая степень очистки, достигающая 99% для всех размеров частиц. Гидравлическое сопротивление тканевых фильтров составляет обычно 0,5-1,5 кПа, а удельный расход равен 0,25-0,6кВт. ч на 1000 м 3 газа.

Развитие производств металлокерамических изделий открыло новые перспективы в пылеочистке. Металлокерамический фильтр ФМК предназначен для тонкой очистки запыленных газов и улавливания ценных аэрозолей из отходящих газов предприятий химической промышленности, цветной металлургии и других отраслей промышленности. Фильтрующие элементы, закрепленные в трубной решетке, заключены в корпус фильтра. Они собираются из металлокерамических труб. На наружной поверхности фильтрующего элемента образуется слой уловленной пыли. Для разрушения и частичного удаления этого слоя предусмотрена обратная продувка сжатым воздухом. Удельная нагрузка по газу 0,4-0,6 м 3 /(м 2. мин). Рабочая длина фильтрующего элемента 2 метра, его диаметр 10 см. Эффективность пылеулавливания 99,99%. Температура очищаемого газа до 500 0 С. Гидравлическое сопротивление фильтра 50-90 Па. Давление сжатого воздуха для регенерации 0,25-0,30 МПа. Период между продувками 30-90 мин, продолжительность продувки 1-2 с.

Один из рукавных фильтров, выпускаемых промышленно и его характеристики, представлены ниже.

Фильтр рукавный с механической регенерацией рукавов ФРМ-С.

Фильтры рукавные с механической регенерацией рукавов типа ФРМ-С представляют собой надежные и эффективные пылеулавливающие аппараты, предназначенные для улавливания мелкодисперсных пылей из воздуха и негорючих газов.

Область применения: в производстве строительных материалов, деревообработке, технологических процессах черной и цветной металлургии и др.

Фильтрующим элементом рукавных фильтров является рукав, сшитый из специального материала, который выбирается исходя из условий эксплуатации установок у Заказчика. Регенерация осуществляется путем встряхивания рукавов с помощью электромеханического вибратора.

Устройство и принцип работы:

Принцип работы фильтра основан на улавливании пыли фильтрующей тканью при прохождении через нее запыленного воздуха. По мере увеличения толщины слоя пыли на поверхности рукавов возрастает сопротивление движению воздуха и снижается пропускная способность фильтра, во избежание чего предусмотрена регенерация запыленных рукавов при помощи электромеханических вибраторов.

Запыленный воздух поступает в фильтр (рис. 1) по воздуховоду через входной патрубок (1) в камеру запыленного воздуха (2), проходит через рукава (3), при этом частицы пыли задерживаются на их наружной поверхности, а очищенный воздух поступает в камеру чистого воздуха (4) и через выходной патрубок (5) отводится из фильтра.

Регенерация запыленных рукавов осуществляется включением на непродолжительное время электромеханического вибратора (6), закрепленного на крепежной раме (7), установленной на виброизоляторах (8).

Пыль, стряхиваемая с рукавов, осыпается в бункер (9) и шлюзовым питателем (10) удаляется из фильтра шлюзовым питателем (10) удаляется из фильтра.

Технические характеристики

Размещено на Allbest.ru

Подобные документы

    Свойства и биохимическая функция цинка. Геохимическая характеристика элемента в природных средах. Месторождения и производства по добыче металла. Влияние цинка и его соединений на здоровье человека. Модель устойчивого развития системы "природа-общество".

    контрольная работа , добавлен 11.09.2010

    Общая характеристика производства. Физико-химические свойства глинистого сырья. Пластичные свойства глин. Оценка влияния выбросов Кирпичного завода ООО "Ажемак" на окружающую среду. Особенности кислотных дождей. Влияние углеводорода на окружающую среду.

    курсовая работа , добавлен 06.01.2015

    Загрязняющие вещества, выбрасываемые в атмосферу предприятием, их влияние на человека и окружающую природную среду. Учёт, обследование и расчеты по инвентаризации выбросов автотранспорта, цеха механической и деревообработки, литейного производства.

    курсовая работа , добавлен 29.09.2011

    Анализ влияния загрязняющих веществ при производстве кормовых дрожжей на окружающую природную среду. Расчет годовых выбросов вредных примесей; определение границ санитарно-защитной зоны для предприятия. Методы очистки сточных вод и газообразных выбросов.

    курсовая работа , добавлен 25.08.2012

    Основные виды карьерного транспорта и их влияние на окружающую среду. Железнодорожный, автомобильный и конвейерный карьерный транспорт. Выброс вредного вещества при сжигании топлива. Выделение пыли в атмосферу на дорогах, отвалах, перегрузочных пунктах.

    реферат , добавлен 16.12.2013

    Природа и свойства загрязняющих окружающую среду веществ, особенности их влияния на человека и растительность. Состав выбросов при сжигании твердого топлива. Загрязнения от подвижных источников выбросов. Элементы и виды отработанных газов автомобилей.

    контрольная работа , добавлен 07.01.2015

    Методы очистки сточных вод и системы водообеспечения. Гальваническое покрытие металла. Хромирование, цинкование и никелирование. Распространение цинкования и меднения. Влияние гальванических производств на окружающую среду. Загрязнение природных вод.

    контрольная работа , добавлен 05.05.2009

    Свойства двуокиси серы, описание влияния данного соединения на окружающую среду. Удаление серы на нефтеперерабатывающих заводах. Очистка продуктов сгорания от окислов серы. Выбор и обоснование метода, способа и аппарата очистки и обезвреживания выбросов.

    курсовая работа , добавлен 21.12.2011

    Классификация, принцип действия АЭС. Выбросы радиоактивных веществ в атмосферу. Влияние радионуклиидов на окружающую среду. Нормирование выбросов радиоактивных газов в атмосферу. Ограничение абсолютных выбросов. Промышленные системы газоочистки.

    курсовая работа , добавлен 26.02.2013

    Комплексное воздействие предприятия на окружающую среду. Оценка выбросов в атмосферу и их характеристика. Санитарно-защитная зона предприятия. Воздействие на почву, подземные и поверхностные воды. Влияние опасных и вредных факторов на организм человека.