РЕЛЬЕФ И КЛИМАТ

Климат - один из важнейших факторов рельефообразования. Взаимоотношения между климатом и рельефом весьма разнообраз­ны. Климат обусловливает характер и интенсивность процессов вы­ветривания, он же определяет в значительной мере характер дену­дации, так как от него зависят «набор» и степень интенсивности действующих экзогенных сил. Как указывалось выше, в разных климатических условиях не остается постоянным и такое свойство горных пород, как их устойчивость по отношению к воздействию внешних сил. Поэтому в разных климатических условиях возника­ют разные, часто весьма специфичные формы рельефа (см. ч. III). Различия в формах наблюдаются даже в том случае, когда внеш­ние силы воздействуют на однородные геологические структуры, сложенные литологически сходными горными породами.

Климат влияет на процессы рельефообразования как непосред­ственно, так и опосредствованно, через другие компоненты природ­ной среды: гидросферу, почвенно-растительный покров и др.

Так, возникновение прибрежных пустынь Намиб (Юго-Запад­ная Африка) и Атакамы (Южная Америка) обусловлено прохо­дящими здесь холодными морскими течениями, существование ко­торых у западных берегов Африки и Южной Америки является следствием общей циркуляции атмосферы. Здесь, таким образом, климат влияет на рельеф через гидросферу.

Существенное влияние на процессы рельефообразования оказы­вает растительный покров, который, кстати, сам является функ­цией климата. Так, поверхностный сток в условиях сомкнутого Растительного покрова при наличии хорошо развитой дернины или лесной подстилки резко ослабевает или гасится совсем даже на крутых склонах. Поверхности с разреженным растительным покро­вом или лишенные его становятся легко уязвимыми для эрозионных процессов, а в случае сухости рыхлых продуктов выветрива­ния- и для деятельности ветра.

Прямые и опосредствованные связи между климатом и релье­фом являются причиной подчинения экзогенного рельефа в опре­деленной степени климатической зональности. Этим он отличается от эндогенного рельефа, формирование которого не подчиняется зональности. Поэтому рельеф эндогенного происхождения называ­ют азональным.

В начале нашего века немецкий ученый А. Пенк предпринял попытку классифицировать климаты по их рельефообразующей роли. Он выделил три основных типа климатов: 1) нивальный (лат. nivalis - снежный), 2) гумидный (богатый осадками, выпадающими в жидком виде) и 3) аридный (сухой и жаркий). Впоследствии эта классификация была дополнена и детализирована. Ниже приво­дится сокращенная классификация климатов по их роли в рельефообразовании по И. С. Щукину, который различает нивальный, полярный, гумидный и аридный типы климатов.

Нивальный климат. Во все сезоны года характерны осадки в твердом виде и в количестве большем, чем их может растаять и испариться в течение короткого и холодного лета. Накопление снега приводит к образованию снежников и ледников. Основными рельефообразующими факторами в условиях нивального климата являются снег и лед в виде движущихся ледников. В местах, не покрытых снегом или льдом, интенсивно развиваются процессы физического (главным образом морозного) выветривания. Сущест­венное влияние на рельефообразование оказывает вечная мерзлота. Нивальные климаты свойственны высоким широтам (Антарктида, Гренландия, острова Северного Ледовитого океана) и вершинным частям гор, поднимающимся выше снеговой границы.

Полярный климат, или климат областей распространения многолетнемерзлых грунтов. Для этого типа климата типичны длинная и суровая зима, короткое и прохладное лето, значительная облач­ность, малое количество осадков, малая интенсивность солнечной радиации. Все эти условия благоприятствуют возникновению или сохранению образовавшейся ранее (при еще более суровых кли­матических условиях) вечной мерзлоты. Наличие последней обус­ловливает ряд процессов, свойственных полярному климату и со­здающих ряд специфических форм мезо- и микрорельефа, описан­ных в гл. 17.

Одним из важнейших факторов денудации в областях распро­странения вечной мерзлоты является солифлюкция (лат. solum - почва, грунт; fluxus - течь) - медленное течение протаивающих переувлажненных почв и дисперсных грунтов по поверхности мерз­лого основания. При низких температурах в условиях полярного климата даже летом преобладает физическое, преимущественно морозное выветривание. Полярный климат свойствен в основном зоне тундры. В континентальных условиях распространяется и на более южные ландшафтные зоны (Восточная Сибирь и др.).

Гумидный климат. В областях с гумидным климатом количество выпадающих в течение года осадков больше, чем может испа­риться и просочиться в почву. Избыток атмосферной воды стекает или в виде мелких струек по всей поверхности склонов, вызывая плоскостную денудацию, или в виде постоянных или временных линейных водотоков (ручьев, рек), в результате деятельности ко­торых образуются разнообразные эрозионные формы рельефа - долины, балки, овраги и др. Эрозионные формы являются домини­рующими в условиях гумидного климата. Благодаря большому количеству тепла и влаги в областях с гумидным климатом интен­сивно протекают процессы химического выветривания. При нали­чии растворимых горных пород развиваются карстовые процессы.

На земном шаре выделяются три зоны гумидного климата: две из них располагаются в умеренных широтах Северного и Южного полушарий, третья тяготеет к экваториальному поясу.

Аридный климат. Характеризуется малым количеством осадков, большой сухостью воздуха, интенсивной испаряемостью, превышаю­щей во много раз годовую сумму осадков, малой облачностью. Растительный покров в этих условиях оказывается сильно разре­женным или отсутствует совсем, интенсивно идет физическое, пре­имущественно температурное выветривание.

Эрозионная деятельность в аридном климате ослаблена, и глав­ным рельефообразующим агентом становится ветер. Сухость про­дуктов выветривания способствует их быстрому удалению не толь­ко с открытых поверхностей, но и из трещин горных пород. В ре­зультате происходит препарировка более стойких пород, и, как следствие этого, в аридном климате наблюдается наиболее чет­кое отражение геологических структур в рельефе.

Области с аридным климатом располагаются на материках преимущественно между 20 и 30° северной и южной широты. Арид­ные климаты наблюдаются и за пределами названных широт, где их формирование связано с размерами и орографическими особен­ностями материков. Так, в пределах Восточной Азии аридная зона в Северном полушарии проникает почти до 50° с. ш.



Следует отметить, что переход от одного морфологического типа климата к другому осуществляется постепенно, вследствие чего и смена доминирующих процессов экзогенного рельефообразования происходит также постепенно.

На границе двух климатов образуются формы рельефа, харак­терные для обоих типов и приобретающие к тому же ряд специфи­ческих особенностей. Такие переходные зоны выделяют в особые морфологические подтипы климатов. Существованию переходных зон способствует и непостоянство границ между климатическими зонами в течение года: следуя за движением солнца, они смещаются то в сторону полюсов, то в сторону экватора.

Изучение пространственного размещения генетических типов Рельефа экзогенного происхождения и сопоставление их с совре­менными климатическими условиями соответствующих регионов показывает, что охарактеризованная выше взаимосвязь между климатом и рельефом в ряде мест нарушается. Так, в северной половине Европы широко распространены формы рельефа, созданные деятельностью ледника, хотя в настоящее время никаких ледников здесь нет, и располагается этот регион в зоне гумидного климата умеренных широт. Объясняется это «несоответствие» тем, что в не­давнем прошлом (в эпохи оледенений) значительная часть Севера Европы была покрыта льдом и, следовательно, располагалась в зоне нивального климата. Здесь и сформировался сохранившийся до наших дней, но оказавшийся в несвойственных ему теперь кли­матических условиях рельеф ледникового происхождения. Такой рельеф получил название реликтового (лат. relictus - оставлен­ный). Изучение этого рельефа представляет большой научный ин­терес. Реликтовые формы рельефа наряду с осадочными горными породами и заключенными в них остатками растительных и живот­ных организмов дают возможность судить о палеоклиматах отдель­ных регионов и о положении климатических зон в те или иные этапы истории развития Земли. Сохранность реликтовых форм обусловлена тем, что рельеф меняет свой облик в связи с измене­нием климата значительно медленнее, чем это свойственно почвен­ному покрову и особенно растительному и животному миру.

Следовательно, облик экзогенного рельефа ряда регионов зем­ной поверхности определяется не только особенностями современ­ного климата, но и климата прошлых геологических эпох.

В отличие от тепла, света, влажности, почвы, рельеф, сам по себе, не выступает как прямой экологический фактор. Но его характер в определенной степени определяет действие абиотических факторов и влияет на условия жизни растений. В зависимости от масштаба и детализации различают несколько форм рельефа:

крутящий (горы, низины, расщелины и впадины):

мезорельефа (степные блюдца, карстовые впадины, овраги, буераки, дюны, холмы)

микрорельеф (ямы, мелкие впадины, приствольные поднятия, кочки).

Каждая из этих форм играет определенную роль в формировании комплекса экологических факторов для растений.

Крутящий

Наиболее существенное влияние на формирование растительных группировок имеет крутящий. В качестве примера можно вспомнить вертикальную зональность в горах, где каждые 100 м подъема сопровождаются снижением температуры в среднем на 0,5 ° С. Температурный градиент может колебаться в зависимости от особенностей гор и времени года. Для Кавказского хребта он составляет 0,48 ° С, для Альп - 0,51 ° С, для гор Калифорнии - 0,75 ° С. Температурный градиент летнего периода больше зимнего (табл. 7.1). С высотой снижается средняя температура возрастает суточный перепад температур, увеличивается количество осадков, скорость ветра и интенсивность солнечной радиации, снижается давление. Благодаря этому, в горной местности, по мере подъема, наблюдается вертикальная зональность распределения растительности, которая соответствует изменению зон по широте от экватора к полюсу (рис. 7.1).

Таблица 7.1

Изменение температурного градиента в зависимости от времени года

(По В. С. Гулисашвили, 1956)

Место наблюдения

Величина градиента в градусах

зима

весна

лето

осень

среднее

Кавказский хребет

Горный массив Гарц

Восточные Альпы (северные склоны)

Гора Этна

Северо-Западная Индия

Скалистые горы (Северная Америка)

Рис. 7.1. Вертикальная и широтная тональность растительности

Типичным примером вертикальной зональности растительности является высокие на планете Гималайские горы. Они отличаются разнообразием и богатством растительных поясов:

От подножия гор в Индостане до высоты 1000 м по южному склону поднимаются влажные тропики с огромными вечнозелеными фикусами, многочисленными большими деревьями, на которых поселяются различные эпифитные орхидеи и папоротники. Стволы деревьев перевитые лианами. Наряду растут бамбук и гигантские травы (до 3 - 4 м высотой)

Второй субтропический пояс вечнозеленых лесов расположен на высоте 1000-2000 м и сформирован субтропическими хвойными, пальмами, мимозовых и тому подобное;

Третий пояс расположен на высоте 2000 - 2800 м, его составляют вечнозеленые дубы, грецкий орех, гималайский кедр и тому подобное;

Четвертый пояс, простирающийся до высоты 3500 м, состоит из пихты Вебиана, сосны обыкновенной и других бореальных хвойных пород;

Пятый пояс состоит из кустарников, наиболее распространенными из которых являются рододендроны;

Шестой пояс формируют высокогорные луга бореального типа;

Выше расположены горные холодные пустыни и исконные снега.

К факторам, которые определяют высотное объясните, относятся изменение с

высотой температуры, количества осадков, атмосферного давления. Кроме того, для высокогорья характерны понижение температуры (частые заморозки), сильные ветры, низкое содержание углекислого газа. На растительность влияет характер горных пород и экспозиция и крутизна склонов.

Интенсивность солнечной радиации в горах выше, чем на равнине, объясняется некоторым разрежением атмосферы и ее прозрачностью. Так, в высокогорье Памира освещенность в дневные часы составляет около 130 000 лк, то есть почти столько, как на границе земной атмосферы. С высотой возрастает значение солнечной постоянной, что определяется как количество солнечной энергии, падающей 1 см2 горизонтальной поверхности за единицу времени (табл. 7.2). У верхней границы атмосферы она составляет в среднем 1,94 кал / (см2 мин.). Кроме того, на такой высоте значительно интенсивнее ультрафиолетовое излучение, вредное в высоких дозах.

Таблица 7.2

Интенсивность солнечной радиации на разной высоте над уровнем моря

(По Η. Н. Калитин и В. С. Гулисашвили, 1956)

В некоторых местностях в ясные ночи, особенно зимой, наблюдается явление температурной инверсии - воздух на склонах и вершине до определенной высоты теплее, чем в долинах. Считается, что ночью холодный воздух спускается с гор вниз, вытесняя теплый воздух вверх. Распределение тепла в значительной степени зависит от экспозиции и крутизны склонов (табл. 7.3). Пологие склоны, при одной и той же экспозиции, как при ясной, так и при облачной погоде получают больше тепла, чем крутые. То есть, чем круче склон, тем меньше тепла он получает. В северных широтах южные склоны при одинаковой крутизне, при любой погоде, получают больше тепла, чем северные. Такое перераспределение климатических характеристик, связанный с рельефом, влияет на формирование растительности. На южных склонах образуются лесные фитоценозы с ксерофитных древесных пород (сосны, дуба), а на склонах северной экспозиции - с мезофитных древесных пород (бук, ель). Кроме того, одна и та же древесина на южных склонах поднимается к большей высоты, чем на северных (табл. 7.4). Достаточно показательна высота альпийской границе леса на склонах определенной экспозиции (табл. 7.5). Выше поднимается альпийская граница леса и границы распространения древесной растительности на южных, юго-западных и юго-восточных склонах.

Таблица 7.3

Зависимость теплового режима от экспозиции и крутизны склонов

(По В. С. Гулисашвили, 1956)

Место

наблюдения

крутизна

склона,

градус

Сумма тепла за вегетационный период с апреля по август, (г кал) / 1 см2

при ясной погоде

при облачной погоде

полная радиация

горизонтальная поверхность

южный склон

восточный склон

западный склон

северный склон

южный склон

восточный склон

западный склон

северный склон

Таблица 7.4

Верхняя граница распространения лесных пород в горах Приморского края (43 ° северной широты)

(По Л. С. Бергом и В. С. Гулисашвили, 1956)

Таблица 7.5

Влияние экспозиции склона на альпийскую границу леса

(По В. 3. Гулисашвили, 1956)

экспозиция склона

Высота прохождения альпийской границе леса в Швейцарских Альпах, г.

Максимальная высота распространения ели, г.

Юго-восточная

П ивденно-западная

Западная

Северо-западная

Северная

Северо-восточная

Восточная

Гидрологический режим в горах довольно разный. В горных массивах Альп, Карпат. Западного Кавказа влажность присутствует в достаточном количестве. В горах Памира, Тянь-Шаня растения живут в условиях значительной засухи. Своеобразные условия складываются непосредственно у массивов снега и льда. В целом, высокогорные условия для растений достаточно критичны, что влияет на их строение, физиологию, развитие.

Особенность распространения растений в горах связана с тем, что специфические экологические условия на каждом склоне и отличаются в отдельных массивах. Это объясняется самой особенностями геологического строения конкретной горы, процессами ее разрушения и зарастание. Поэтому на склонах формируется значительная мозаичность экологических условий, в дальнейшем приводит к формированию специфических растительных сообществ. Например, в пределах одного только альпийского пояса возникают совершенно разные (по экологическим факторами) условия роста: сухие и заболоченные, крутые склоны без снежного покрова и места где снег сохраняется в течение года, площади защищены от ветра и такие, что постоянно продуваются (рис. 7.2).

Высокогорные растения характеризуются низкорослостью. Независимо от расположения горных массивов, здесь преобладают кустарники и кустарнички, стелющиеся, розеточные многолетние травы, дерновые злаки и осоки, мхи и лишайники. Но иногда, например, в Южных Андах и Африке, на высокогорье можно наблюдать древовидные розеточные растения с высокими Колонноподобные стволами. Еще один характерный признак растений высокогорья - большая масса подземной части растений над надземной. Низкорослость высокогорных растений связывается с действием низких температур, сильного ветра и формообразующие действием радиации, ведь коротковолновое излучение замедляет ростовые процессы. Преобладающее значение этих абиотических условий подтверждается опытами по переносу достаточно высокорослых растений из низины в горы. Результаты свидетельствуют, что высокие растения находясь на высокогорье через 3-4 года адаптируются к новым условиям, приостанавливаются в росте и становятся низкорослыми.

Рис. 7.2. Мозаичность распределения типов мисцезростання и растительности в альпийском поясе на небольшой площади

Высокогорные растения имеют также ряд анатомических приспособлений для защиты от солнечной радиации и сохранения влаги:

Утолщенные покровные ткани;

Усиленное развитие механических тканей;

Уменьшение размеров клеток;

Уменьшение размеров и увеличение количества устьиц;

Опушки и восковой налет.

Последнее приспособление не универсальны - в горах довольно часто встречаются растения без опушки или без воскового покрова.

Низкие температуры и интенсивное освещение обеспечивают образование в растениях антоцианов, что создает гамму цветов в окраске различных частей растений. Сочетание насыщенных цветов больших цветов и мелких листьев - это характерный признак высокогорных растений.

Антоцианы - пигменты из группы флавоноидов, содержащихся в клеточном соке растений, плодов, листьев растений, окрашивая их в красный, фиолетовый, голубой цвета или их комбинации.

Главные физиологические процессы в высокогорных растений протекают очень интенсивно. В первую очередь, это касается газообмена. На больших высотах фотосинтез проходит очень интенсивно - поглощается 50-100 мг СО2 на 1 г листа за 1:00. У некоторых растений даже не наблюдается насыщение светом фотосинтетическая деятельность постоянно растет при увеличении освещенности. Влияние низких температур в условиях высокогорья проявляется в росте концентрации растворимых углеводов, органических кислот (например, аскорбиновой), ароматических веществ. Именно поэтому высокогорные растения очень ценятся в пищевой и медицинской промышленности, пчеловодстве, и как кормовые. Характерной чертой высокогорных растений является повышенная интенсивность окислительно-восстановительных процессов, увеличение активности ферментов даже при низких температурах. Большинство исследователей отмечают усиленное дыхание растений на высоте, что приводит к увеличению энергии, освобождается при распаде сложных соединений.

Существенно изменяется при поднятии в горы сезонное развитие растений. Чем выше, тем позже тает снег весной прежнему выпадает осенью, тем короче вегетационный период. Поднимаясь в горы в течение одного дня можно наблюдать все фазы развития растений одного вида: фазу цветения, бутонизации, распускания листьев.

Различные виды растений по-разному реагируют на высотную зональность. Одни имеют широкий высотный диапазон и растут в разных поясах, другие - очень узкую экологическую приспособленность. Например, черника (Vaccinium myrtillus ) в Карпатах, а типчак (Festuca valesiaca ) на Кавказе поднимаются до альпийского пояса. Эти виды имеют высокую экологическую пластичность.

Горные цепи достаточно часто выступают как своеобразный климатический барьера и барьер на пути распространения различных видов растений. Типичным примером является пустыня Атанама в Чили, которая образовалась благодаря тому, что горы задерживают дождевые облака. Кстати, в Чили на побережье океана так называемые "леса туманов". Они расположены на склонах гор, которые также задерживают дождевые облака. Своеобразие условий создается еще и потому, что к берегам подходит холодная океанская течение Гумбольдта. Благодаря разнице температур здесь постоянно образуются туманы. Это формирует специфические экологические условия для роста растений. Есть много и других подобных примеров. В Центральной Азии существует памирских нагорье (Россия), которое расположено бы в тени высоких гор на Земле. Но Гималаи как раз и становятся на пути передвижения влажных воздушных масс в глубину континента. Именно в такую зону влияния попало памирских нагорья, где сформировалась высокогорная пустыня (средняя высота над уровнем моря 4000 м). На ее территории выпадает очень мало осадков -от 15 до 150 мм в год. В то же время, имеет место интенсивное испарение, низкая влажность и высокая температура воздуха. Благодаря этим особенностям в разных районах Памирского нагорья образовались своеобразные растительные группировки. В южной части они напоминают сухие альпийские луга, в центральной - бедный Ковыльном степь, в восточной - пустыню.

Этот фактор я постараюсь доказать на примере России.

Существенное влияние на формирование климата России оказывает рельеф. Размещение гор по восточной и, частично, по южной окраинам страны, открытость ее к северу и северо-западу обеспечивают влияние Северной Атлантики и Северного Ледовитого океана на большую часть территории России, ограничивают влияние Тихого океана и Центральной Азии. В то же время влияние Средней Азии прослеживается сильнее, чем влияние Черного моря или Переднеазиатских нагорий. Высота гор и их размещение по отношению к господствующим воздушным потокам определяют различную степень их влияния на климат соседних территорий (Кавказ и Урал). В горах формируется особый, горный, климат, изменяющийся с высотой. Горы обостряют циклоны. Наблюдаются различия в климате подветренных и наветренных склонов, горных хребтов и межгорных котловин. На равнинах наблюдаются различия в климате возвышенностей и низменностей, речных долин и междуречий, хотя они значительно менее существенны, чем в горах. Вытянутый по меридиану Уральский хребет способствует возникновению волн холода в пределах округа и проникновению их далеко на юг. При движении арктических воздушных масс с Таймыра на запад нередко происходит накопление их перед горным хребтом в его северной части. В результате увеличения барических градиентов наступает прорыв этих холодных воздушных масс к югу. Депрессии, в тылу которых происходит такой прорыв, нередко углубляются вследствие увеличения термических градиентов и ускоряют свое движение на северо-восток.

Повышение местности на правом берегу Енисея в сторону Средне-Сибирского плоскогорья и преобладающие над плоскогорьем зимой области высокого давления нередко вызывают стационирование циклонов, продвигающихся к северо-востоку. В результате на фронтах этих циклонов в зимнее время выпадают обильные осадки, обусловливающие образование максимума снежного покрова на востоке округа (Нижневартовский район до 80 см). Уральские горы также играют большую роль в формировании режима осадков, главным образом в зимнее время, отбирая часть влаги, переносимой с Атлантики, и осаждая ее на своем западном склоне, в пределах восточной части ETР из-за усиления восходящих токов в неустойчивых теплых массах воздуха, заполняющего теплые секторы циклонов. За Уралом, в пределах Западно-Сибирской низменности, в холодное время года и особенно зимой, т.е. в период наиболее ярко выраженного западного переноса, хорошо видно уменьшение осадков по сравнению с теми же широтами на ETР («тень» Урала). При смещении далее на восток воздушных масс количество осадков увеличивается из-за обострения фронтов и увеличения лесистости вдоль Оби.

К важнейшим климатообразующим свойствам рельефа относится равнинность территории. По равнинам европейской части и Западной Сибири воздух Атлантики проникает далеко на восток. Удалясь от океана, воздух постепенно трансформируется и превращается в континентальный. Таким образом, континентальность климата постепенно нарастает с запада на восток. Невысокие Уральские горы не являются препятствием для распространения атлантического воздуха с запада. Примыкающие друг к другу равнины Западной Сибири способствуют проникновению далеко на юг арктических воздушных масс. Высокие горы юга нашей страны - Кавказ, Копетдаг, Тянь-Шань и Памир препятствуют дальнейшему движению на юг воздушных масс с севера. Благодаря их защите вдоль южных границ Каспия находятся территории с субтропическим климатом. В умеренном поясе, в пределах которого располагается большая часть территории России, отчетливо выражены времена года. Наиболее суровым сезоном на большей части нашей страны является зима. В умеренных и высоких широтах радиационный баланс в это время года отрицательный. Только на самом крайнем юге он имеет положительное значение. Земная поверхность зимой сильно выхолаживается и охлаждает нижние слои воздуха. Особенно интенсивно этот процесс протекает над районами Восточной Сибири, удаленными от океанов. На северо-востоке Сибири в межгорных котловинах среднеянварские температуры опускаются ниже? 40° С, в районе Оймякона до -48 -50°С. Здесь формируется область повышенного давления, которая распространяется на всю Сибирь и дает два отрога. Один отрог разрастается на северо-восток до Чукотки, а второй - на юго-запад через юг Западной Сибири и Приволжской возвышенности к низовьям Днестра. Во внутренних районах Сибири в пределах области повышенного давления зимой господствуют нисходящие токи воздуха. Поэтому устанавливается безветренная малооблачная морозная погода. Безветрие и большая сухость воздуха позволяют легче переносить морозы и приспосабливаться к ним. Зимой давление воздуха над Россией повышенное, а над окружающими морями и океанами пониженное. Поэтому господствует растекание воздуха с территории страны в сторону океанов, за исключением европейской части страны. На побережьях тихоокеанских морей зимой господствуют северо-западные ветры (зимний муссон), которые несут холодный сухой воздух из континентальной Сибири. В связи с этим почти во всех районах Дальнего Востока зима малоснежная и холодная. Во Владивостоке, который находится на широте Сочи, средняя температура января -12°С, а в Сочи +6°С. Над побережьями Камчатки и острова Сахалин, где сталкиваются континентальные и морские воздушные массы, возникают фронтальные процессы, которые нередко сопровождаются шквальными ветрами и обильными снегопадами. На побережьях морей Северного Ледовитого океана зимой господствуют юго-западные и южные ветры, которые несут на север континентальный воздух умеренных широт, оттекающий от Азиатского максимума. По окраинам северных морей он встречается с арктическим воздухом, вследствие чего возникает арктический фронт. Наиболее хорошо этот фронт выражен над Охотским и Баренцевым морями, где он вызывает частые и сильные штормы и туманы.

Над равнинами Средней Азии и юга европейской части страны господствуют северо-восточные ветры. Они вызваны оттеканием воздушных масс на юг от отрога области повышенного давления. Поскольку воздух движется с северо-востока, он приносит в южные районы страны похолодание и относительную сухость, поэтому здесь выпадает мало снега, а в суровые зимы замерзает Азовское море и северные части Каспийского и Черного морей. В центральных и северных частях Восточно-Европейской равнины к северу от отрога повышенного давления господствуют западные потоки воздуха со стороны Атлантического океана. Эти воздушные массы всегда приносят влагу в виде снега или дождя. Но их температуры бывают разными. Если юго-западные ветры приносят зимой оттепели, то северо-западные - относительно холодный воздух из районов Северной Атлантики и Скандинавии. Над большей частью Европейской равнины в течение зимы перемещается большое количество циклонов. Они возникают вдоль полярного фронта, проходящего к западу от нашей страны над Северным морем. Отсюда циклоны движутся на восток, проходя над Западной и Восточной Европой. Космический и наземный контроль за их движением позволяет прогнозировать погоду на территории европейской части страны. При взаимодействии континентальных и морских воздушных масс умеренных широт в центральной части Восточно-Европейской равнины часто формируется полярный фронт. В тылу циклонов, пересекающих равнину с запада на восток, оттекают к югу холодные арктические воздушные массы. Таким образом, над территорией Восточно-Европейской равнины происходит интенсивное взаимодействие атлантических и арктических воздушных масс, морского и континентального воздуха умеренных широт. Поэтому погода здесь чаще всего бывает еустойчивой и очень контрастной, с частой сменой холодов и оттепелей. В течение нескольких часов температура воздуха зимой может измениться от нескольких градусов тепла до 21-24 градусов мороза, а дождь смениться снегом. Такая смена сопровождается оттепелями и гололедом, крайне неблагоприятно сказывающимися на хозяйственной деятельности людей. От гололеда страдает транспорт; оттепели могут привести к гибели озимых культур. Чередование морозов и оттепелей ведет к разрушению дорог и различных сооружений. Интенсивная циклоническая деятельность приводит также к несхожести зимних погод разных лет. Например, в Москве в январе 1988 и 1990 гг. температуры поднимались до +4°С, а в 1940 г. они опускались до -42°С. Теплые атлантические воздушные массы, перемещаясь на восток, постепенно остывают. Поэтому изотермы над европейской территорией России имеют меридиональное направление. Над Восточной Сибирью изотермы имеют замкнутый кольцеобразный характер, отражающий континентальность климата этой территории. Тихий океан оказывает меньшее отепляющее влияние на континент по сравнению с Атлантикой. Поэтому на побережье Тихого океана изотермы располагаются меридионально лишь в пределах неширокой полосы. Над южными районами страны изотермы протягиваются широтно в соответствии с направлением изменения величины суммарной солнечной радиации и радиационного баланса.

1. АФРИКА: ОБЩИЙ ОБЗОР

Африка - второй по величине после Евразии материк Земли. Вместе с относящимися к ней островами ее площадь - 30,3 млн км 2 , без островов - 29,5 млн км 2 .

Африканский материк тесно связан с Евразией; их разделяют только Красное и Средиземное моря. Африка и Евразия составляют единый массив суши восточного полушария, отделенной от других материков огромными океаническими пространствами.

Берега Африки омывают воды Атлантического и Индийского океанов. Атлантический океан образует у ее берегов такой крупный залив как Гвинейский. Вдоль малорасчлененного западного берега Африки протягивается неширокая (до 100 км) полоса материковой отмели, крутой склон которой обрывается к подводным плато и разделяющим их впадинам.

Крайние точки материка на севере - мыс Бен-Секка (37° 2Г с.ш.), на юге - мыс Игольный (34°52" ю.ш.). С севера на юг Африка протягивается на 8 тыс. км. Наиболее широкая часть материка находится к северу от экватора между 10 и 16°, где Африка простирается от 17°32" з.д. (мыс Альмади) до 51°23" в.д. (мыс Рас-Хафун) и достигает ширины 7500 км.

Острова у берегов Африки немногочисленны. Самый большой из них - Мадагаскар. Кроме него, в Индийском океане расположены острова Сокотра, Занзибар, Пемба, Мафия, Коморские, Маскаренские, Сейшельские, Амирантские.

В Атлантическом океане находятся материковые и вулканические острова - Мадейра, Канарские, Зеленого Мыса, Биоко, Принсипи, Сан-Томе.

Африка отличается единством строения поверхности и простотой очертаний. В ее рельефе преобладают равнины и плоскогорья с высотами от 200 до 1500 м. Менее 10 % поверхности занимают низменности, несколько более 20 % -горные области. Окраинные части материка, как правило, приподняты по сравнению с внутренними районами. Средняя высота составляет 750 м.

Положение Африки по обе стороны от экватора, главным образом в пределах тропико-экваториального пространства, обусловливает высокие температуры, а слабая расчлененность и замкнутость внутренних областей создают характерную для Африки континентальность климата. Преобладание равнинного рельефа и географическое положение способствуют яркому проявлению зональности. Полосы субширотного простирания с относительно однородными природными условиями закономерно сменяют друг друга от экватора к северу и югу. Особенно четко зональная структура проявляется в наиболее массивной и однообразной по рельефу северной части материка.

Еще за много веков до нашей эры побережье и внутренние районы материка посещали представители народов Азии и Северной Африки: финикийцы, египтяне, карфагеняне. В раннем средневековье в Восточную и Северную Африку проникли с Аравийского полуострова арабы.

В XV в. в поисках пути к Индии на побережье Африки побывали португальцы. С этого времени началось покорение европейцами африканских стран. В конце XVIII в. и в XIX в. Англия и Франция основали ряд колоний во внутренних частях материка, открывая и исследуя новые земли. В 1788 г. англичане создали «Ассоциацию для содействия открытию внутренних частей Африки», которая организовала крупные экспедиции. Положительным итогом исследований XIX в. было решение основных географических проблем, связанных с изучением бассейнов крупнейших рек Африки: Нигера, Нила, Конго и Замбези. Большой вклад в изучение Центральной и Южной Африки внес английский ученый Д. Ливингстон. В течение 30 лет (1843-1873) он изучал огромные пространства от Атлантического до Индийского океана и от Кейптауна почти до экватора.

Во второй половине XIX в. русский ученый В. В. Юнкер исследовал водораздел между Нилом и Конго. В первой половине XX в. были написаны крупные сводные работы по географии всего континента в целом и отдельных его частей или стран.

Большое оживление в исследовании Африки началось с 1960 г., когда на месте бывших колоний стали возникать молодые независимые государства. Правительства многих из них организовали работы, связанные с поисками и использованием богатейших природных ресурсов: полезных ископаемых, гидроэнергетических ресурсов, запасов пресных подземных вод и др. В настоящее время международные экологические организации, в частности ЮНЕП, занимаются проблемами антропогенных изменений природной среды в зоне Сахеля и бассейне Конго. Кроме того, в различных районах Африки проводят исследовательские работы, имеющие большое теоретическое значение: комплексное изучение рифтовых зон Восточной Африки, изучение палеогеографии четвертичного периода, в том числе предыстории человека, и т.д.

2. ОСНОВНЫЕ ЭТАПЫ ФОРМИРОВАНИЯ ПРИРОДЫ АФРИКИ

Почти вся Африка, за исключением ее северо-западной и южной горных окраин, представляет собой единую литосферную плиту, входившую в состав Гондваны и являющуюся ее наиболее крупным стабильным и древним участком.

В триасе единый «праматерик» Пангея начал разделяться на две части: Северную - Лавразию и Южную - Гондвану). Процесс этот происходил путем постепенного раскрытия Тетиса, который развивался с востока на запад в виде залива уже существовавшего Тихого океана.

Затем началось распадение Гондваны и формирование современных южных материков и разделяющих их океанов. Но многие особенности геологического строения и крупные черты рельефа Африки, как и других «гондванских» материков, определились еще в период, когда они составляли одно целое. Так, на территории Африки наметилось различное направление в развитии северной и южной частей. Меньшая, северная, часть с начала палеозоя была в основном областью морского, а в мезозое - континентального осадконакопления (Сахарская плита). Большая, южная и восточная, часть в течение всей постпротерозойской истории испытывала преимущественно воздымание. Границу между ними различные авторы проводят по-разному. Примерное ее положение - между Камеруном и северной частью Красного моря.

Наиболее мощная морская трансгрессия в северной части Африки была в первой половине палеозоя. С середины карбона море отступает и усиливается аридность климата, что способствовало накоплению красноцветных толщ. В южной части Африки в это время преобладало поднятие. Прогибание и осадконакопление были характерны только для Капской зоны, где формировалась мощная континентальная капская формация.

В конце палеозоя произошло общее поднятие Гондваны, которое сопровождалось оледенением. Ледниковые и водно-ледниковые отложения образуют серию Двейка, местами достигающую мощности 300 м. Она заполнила прогибы в южной половине континента - впадины Кару, Калахари и Конго. Поверх нее накапливались мощные континентальные формации карру. Основные центры оледенения находились в пределах древних массивов к востоку от синеклизы Конго, а также на Нубийско-Аравийском щите.

Образование формации карру продолжалось в течение триаса. Одновременно на юге произошло смятие в складки, поднятие толщ капской формации и образование Капской горной системы. Верхний триас и начало юры ознаменовались тектонической деятельностью, которая завершилась интенсивным вулканизмом на юге, востоке и северо-западе Африки.

В течение юры и начале мела большая часть Африки испытывала поднятие. Во впадинах накапливались континентальные отложения, происходило внедрение гранитов и карбонатитов и образование кимберлитовых трубок. На этой же стадии формировались современные контуры Африки и происходило образование сначала Индийского, а затем Атлантического океанов. На севере заложился перикратонный прогиб при переходе к Тетису.

Во второй половине мела и в эоцене Сахарская плита вновь была охвачена трансгрессиями, в результате которых море Тетис соединялось с Гвинейским заливом. Море распространилось также до окраин Нубийско-Аравийского щита и захватило широкую полосу Индоокеанского побережья на материке и Мадагаскаре. Во внутренних районах Африки с конца мела происходили поднятия и усиление вулканической активности.

Вторая половина мелового периода и начало кайнозоя для Африки характеризуются особыми чертами влажного и жаркого тропического климата, благоприятствовавшего распространению богатой древесной тропической флоры и фауны, в частности, позвоночных животных. На поверхности суши формировались гидроморфные красноцветные коры. Эти условия распространялись не только на центральные, но и на северные и южные районы материка. На формирование видового состава органического мира оказали влияние ранее существовавшие связи между Африкой, Мадагаскаром, Австралией, прекратившиеся еще в меловом периоде, связи с Южной Америкой, окончательно прервавшиеся только к началу кайнозоя, а также продолжавшая существовать в течение почти всего кайнозоя связь с Евразией через Аравию. Особенно сильно влияние других материков проявилось в формировании флоры. Фауна Африки, начиная с палеогена и до наших дней, отличается гораздо большей самобытностью.

В конце эоцена и начале олигоцена почти вся Африка была охвачена интенсивной тектонической деятельностью. Это можно считать началом последнего и важнейшего с точки зрения формирования современных природных условий этапа в развитии материка. Интенсивные поднятия, вулканизм, образование разломов проявлялись в разных частях Африки, но особенно на востоке. Одновременно с этим началось постепенное иссушение климата вне-тропических районов, отступление тропической флоры и фауны к экватору, уменьшение гидрофитов и распространение сухолюбивых растений и животных, распространение карбонатных кор, сменивших красноцветные гидроморфные коры.

Пароксизмы тектонической активности сменялись периодами относительного спокойствия, в течение которых шло выравнивание, накопление осадков во впадинах и трансгрессии моря на окраинах материка.

После начальной фазы тектонической деятельности, когда по всей Африке происходили излияния базальтов по трещинам, образовавшимся вдоль обширных сводовых поднятий Эфиопии, Мадагаскара, Тибести и других районов, наступил период относительной стабильности; тектонические процессы возобновились во второй половине миоцена. Эта фаза тектонической активизации платформы совпала с началом главного горообразования в Альпийском поясе, когда возникла и причленилась к платформенной Африке система Атласа. В это время произошло образование рифтов Красного моря, Суэцкого и Аденского заливов, Эритрейской и западной рифтовой зоны Восточной Африки, поднятие рядом с ними горстовых глыб с вертикальными амплитудами до 2 км, излияние кислых и щелочных лав, формирование огромных вулканических массивов.

В Древней Греции считали, что погода зависит исключительно от широты и расположения Солнца над горизонтом.


Сегодня благодаря развитию науки и новым исследованиям мы хорошо знаем, что климат формируется под воздействием множества разных факторов, среди которых не последнюю роль играет рельеф.

Каково значение высоты местности над уровнем моря в формировании погодных условий?

Орография местности оказывает существенное влияние на метеорологические процессы и приводит к значительным различиям в распределении воздушных потоков, осадков, облачности и температуры. Расположение территории на небольшой высоте обеспечивает мягкие зимы и усиливает летнюю жару, а высокогорные районы, напротив, переживают суровые морозы и летнюю прохладу.

С подъемом на каждую тысячу метров над уровнем моря температура воздуха понижается примерно на 7 градусов, поэтому в горной тропической местности гораздо холоднее, чем на низменных морских берегах, простирающихся на той же широте.

В горных областях, находящихся на высоте более 4000 метров над уровнем моря, всегда царит морозная погода. К примеру, на гималайской горе Джомолунгма средняя температура воздуха составляет -28 °С, а на пике Коммунизма достигает -11 °С.

Как горные хребты влияют на формирование осадков?

Крупные виды рельефа оказывают особое воздействие на влажность и выступают препятствием для ветров, задерживая проникновение воздушных масс в низменные регионы.


При прохождении горных хребтов потоки воздуха отклоняются от своего первоначального направления, попадают в узкие коридоры между горами и приводят к образованию местной циркуляции – ледниковым и горно-долинным ветрам.

Когда влажный ветер с океана поднимается над гористой местностью, он способствует образованию облаков. На склоны хребтов , которые делают воздушный поток более теплым. Именно поэтому горные фланги, обращенные в сторону океана, всегда пропитаны влагой. С сухой подветренной стороны гор образуются ветра, называемые фены, которые приводят к понижению влажности и росту температуры воздуха в долинах, простирающихся за хребтами.

Какое влияние на климат оказывают океанические течения?

Холодные океанские течения приносят прохладу в прибрежную местность. Так, водные потоки, проходящие вдоль западных берегов Южной Америки и вдоль юго-западного побережья Африки, охлаждают тропические районы. Если бы этих течений не существовало, в тропиках было бы значительно жарче.


Теплый Гольфстрим, напротив, обеспечивает более мягкий и теплый климат в северных регионах. Течение проходит через Атлантику от северо-западного побережья Европы до Мексиканского залива и в сочетании с морскими ветрами дарит европейским странам более теплые и влажные погодные условия.

Как моря и океаны влияют на климат?

В местности, отдаленной от мягкого воздействия океана, царит более прохладный континентальный климат. Как и в случае с высотой над уровнем моря, регионы, расположенные на одной широте, но на разном расстоянии от побережья, имеют различные погодные условия. Рядом с морем зимы теплее, а лето прохладнее. Вдали от океанских берегов, напротив, холодное время года более морозное, лето более жаркое.

В теплый сезон средняя температура воздуха на побережье составляет +15…+20 °С, тогда как в отдалении от морей и океанов эти показатели могут достигать +25…+30 °С. Иногда в зимний период в прибрежные регионы вторгаются приполярные или континентальные воздушные массы. В таком случае происходит снижение температуры, начинаются снегопады, которые держатся до нескольких недель.

Море влияет не только на температуру, но и на влажность в местности. В прибрежных горах выпадает намного больше осадков, чем на отдаленных равнинных территориях. Теплый воздух в районе экватора вбирает с поверхности океана огромное количество испаряемой влаги, которая во время поднятия конденсируется и преобразуется в большие , приносящие на побережье долговременные дожди и грозы.


Аналогичные процессы происходят и в умеренных широтах, однако осадков здесь несколько меньше, поскольку в условиях более высокого атмосферного давления (по сравнению с экватором) теплые воздушные массы не способны вбирать много испаряемой влаги с океана.