В этой статье: история применения биогаза; состав биогаза; как повысить содержание метана в биогазе; температурные режимы при получении биогаза из органического субстрата; типы биогазовых установок; форма и место размещения биореактора, а также ряд других важных моментов в создании биореакторной установки своими руками.

Среди важных составляющих нашей жизни большое значение имеют энергоносители, цены на которые растут чуть ли не каждый месяц. Каждый зимний сезон пробивает брешь в семейных бюджетах, заставляя нести расходы на отопление, а значит, на топливо для отопительных котлов и печей. А как быть, ведь электроэнергия, газ, уголь или дрова стоят денег, и чем более удалены наши жилища от крупных энергетических магистралей, тем дороже обойдётся их обогрев. Между тем альтернативное отопление, независимое от каких-либо поставщиков и тарифов, можно построить на биогазе, добыча которого не требует ни геологоразведки, ни бурения скважин, ни дорогостоящего насосного оборудования.

Биогаз можно получить практически в домашних условиях, понеся при этом минимальные, быстро окупаемые затраты — много информации по этому вопросу вы найдёте в нашей статье.

Отопление биогазом — история

Интерес к горючему газу, образующемуся на болотах в тёплый сезон года, возник ещё у наших далеких предков — передовые культуры Индии, Китая, Персии и Ассирии экспериментировали с биогазом свыше 3 тысячелетий назад. В те же древние времена в родоплеменной Европе швабы-алеманны заметили, что выделяемый на болотах газ отлично горит — они использовали его в отоплении своих хижин, подводя к ним газ по кожаным трубам и сжигая в очагах. Швабы считали биогаз «дыханием драконов», которые, по их мнению, жили в болотах.

Спустя века и тысячелетия, биогаз пережил второе своё открытие — в 17-18 веках сразу два европейских учёных обратили на него внимание. Известный химик своего времени Ян Баптиста ван Гельмонт установил, что при разложении любой биомассы образуется горючий газ, а прославленный физик и химик Алессандро Вольта установил прямую зависимость между количеством биомассы, в которой идут процессы разложения, и количеством выделяемого биогаза. В 1804 году английский химик Джон Дальтон открыл формулу метана, а четырьмя годами позже англичанин Гемфри Дэви обнаружил его в составе болотного газа.

Слева: Ян Баптиста ван Гельмонт. Справа: Алессандро Вольта

Интерес к практическому применению биогаза возник с развитием газового освещения улиц — в конце 19-го века улицы одного района английского города Эксетера освещались газом, полученным из коллектора со сточными водами.

В 20-м веке потребность в энергоносителях, вызванная Второй мировой войной, вынудила европейцев искать альтернативные источники энергии. Биогазовые установки, в которых газ вырабатывался из навоза, распространились в Германии и Франции, частично в Восточной Европе. Однако после победы стран антигитлеровской коалиции о биогазе забыли — электроэнергия, природный газ и нефтепродукты полностью покрыли потребности производств и населения.

В СССР технология получения биогаза рассматривалась в основном с академической точки зрения и не считалась сколько-нибудь востребованной.

Сегодня отношение к альтернативным источникам энергии резко изменилось — они стали интересны, поскольку стоимость привычных энергоносителей возрастает год от года. По своей сути биогаз — реальный способ уйти от тарифов и расходов на классические энергоносители, получить свой собственный источник топлива, причём на любые цели и в достаточном количестве.

Наибольшее количество биогазовых установок создано и эксплуатируется в Китае: 40 миллионов установок средней и малой мощности, объём производимого метана — около 27 млрд м 3 за год.

Биогаз — что это

Это газовая смесь, состоящая в основном из метана (содержание от 50 до 85%), углекислого газа (содержание от 15 до 50%) и прочих газов в гораздо меньшем процентном содержании. Биогаз производит команда из трёх видов бактерий, питающихся биомассой — гидролизные бактерии, производящие пищу для кислотообразующих бактерий, которые в свою очередь снабжают пищей метанобразующие бактерии, формирующие биогаз.

Ферментация исходного органического материала (к примеру, навоза), продуктом которой и будет биогаз, проходит без доступа внешней атмосферы и называется анаэробной. Другой продукт такой ферментации, называемый компостным перегноем, хорошо известен сельским жителям, применяющим его для удобрения полей и огородов, а вот производимые в компостных кучах биогаз и тепловая энергия обычно не используются — и напрасно!

От каких факторов зависит выход биогаза с более высоким содержанием метана

Прежде всего — от температуры. Активность бактерий, ферментирующих органику, тем выше, чем выше температура окружающей их среды, при минусовых температурах ферментация замедляется или прекращается полностью. По этой причине выработка биогаза более всего распространена в странах Африки и Азии, расположенных субтропиках и тропиках. В климате России получение биогаза и полный переход на него, как на альтернативное топливо, потребует теплоизоляции биореактора и введение тёплой воды в массу органики, когда температура внешней атмосферы опускается ниже нулевой отметки.

Органический материал, закладываемый в биореактор, должен быть биологически разлагаемым, требуется вводить в него значительное количество воды — до 90% от массы органики. Важным моментом будет нейтральность органической среды, отсутствие в её составе компонентов, препятствующих развитию бактерий, вроде чистящих и моющих веществ, любых антибиотиков. Биогаз можно получить практически из любых отходов хозяйственного и растительного происхождения, сточных вод, навоза и т. д.

Процесс анаэробной ферментации органики лучше всего проходит, когда значение pH находится в диапазоне 6,8-8,0 — большая кислотность замедлит формирование биогаза, т. к. бактерии будут заняты потреблением кислот и производством углекислого газа, нейтрализующего кислотность.

Соотношение азота и углерода в биореакторе необходимо рассчитать, как 1 к 30 — в этом случае бактерии получат необходимое им количество углекислого газа, а содержание метана в биогаза будет наивысшим.

Лучший выход биогаза с достаточно высоким содержанием метана достигается, если температура в ферментируемой органике находится в диапазоне 32-35 °С, при более низких и более высоких значениях в биогазе увеличивается содержание двуокиси углерода, его качество падает. Бактерии, производящие метан, подразделяются на три группы: психрофильные, эффективны при температурах от +5 до +20 °С; мезофильные, их температурный режим от +30 до +42 °С; термофильные, работающие в режиме от +54 до +56 °С. Для потребителя биогаза наибольший интерес представляют мезофильные и термофильные бактерии, ферментирующие органику при большем выходе газа.

Мезофильная ферментация менее чувствительная к изменениям температурного режима на пару градусов от оптимального диапазона температур, требует меньших затрат энергии на обогрев органического материала в биореакторе. Её минусы, по сравнению с термофильной ферментацией, в меньшем выходе газа, большем сроке полной переработки органического субстрата (около 25 дней), разложенный в результате органический материал может содержать вредоносную флору, т. к. невысокая температура в биореакторе не обеспечивает 100% стерильности.

Подъём и поддержание внутриреакторной температуры на уровне, приемлемом для термофильных бактерий, обеспечит наибольший выход биогаза, полная ферментация органики пройдёт за 12 дней, продукты разложения органического субстрата полностью стерильны. Отрицательные характеристики: выход за пределы приемлемого для термофильных бактерий диапазона температур на 2 градуса понизит выход газа; высокая потребность в обогреве, как следствие — значительные затраты энергоносителей.

Содержимое биореактора необходимо промешивать с периодичностью 2 раза за день, иначе на его поверхности образуется корка, создающая преграду для биогаза. Помимо её устранения промешивание позволяет выровнять температуру и уровень кислотности внутри органической массы.

В биореакторах непрерывного цикла наибольший выход биогаза происходит при одновременной выгрузке органики, прошедшей ферментацию, и загрузке новой органики в количестве, равном выгружаемому объёму. В небольших биореакторах, что обычно используют в дачных хозяйствах, каждые сутки необходимо извлекать и вносить органику в объёме, примерно равном 5% от внутреннего объёма камеры ферментации.

Выход биогаза напрямую зависит от типа органического субстрата, закладываемого в биореактор (ниже приведены средние данные на кг веса сухого субстрата):

  • навоз конский даёт 0,27 м 3 биогаза, содержание метана 57%;
  • навоз КРС (крупного рогатого скота) даёт 0,3 м 3 биогаза, содержание метана 65%;
  • свежий навоз КРС даёт 0,05 м 3 биогаза с 68% содержанием метана;
  • куриный помёт — 0,5 м 3 , содержание метана в нём составит 60%;
  • свиной навоз — 0,57 м 3 , доля метана составит 70%;
  • овечий навоз — 0,6 м 3 с содержанием метана 70%;
  • солома пшеницы — 0,27 м 3 , с 58% содержанием метана;
  • солома кукурузы — 0,45 м 3 , содержание метана 58%;
  • трава — 0,55 м 3 , с 70% содержанием метана;
  • древесная листва — 0,27 м 3 , доля метана 58%;
  • жир — 1,3 м 3 , содержание метана 88%.

Биогазовые установки

Эти устройства состоят из следующих основных элементов — реактор, бункер загрузки органики, отвод биогаза, бункер выгрузки ферментированной органики.

По типу конструкции биогазовые установки бывают следующих типов:

  • без обогрева и без промешивания ферментируемой органики в реакторе;
  • без обогрева, но с промешиванием органической массы;
  • с обогревом и промешиванием;
  • с обогревом, промешиванием и приборам, позволяющими контролировать и управлять процессом ферментации.

Биогазовая установка первого типа подходит для небольшого хозяйства и рассчитана на психрофильные бактерии: внутренний объём биореактора 1-10 м 3 (переработка 50-200 кг навоза за сутки), минимальная комплектация, полученный биогаз не хранится — сразу поступает к потребляющим его бытовым приборам. Такую установку можно использовать только в южных районах, она рассчитана на внутреннюю температуру 5-20 °С. Удаление ферментированной органики производится одновременно с загрузкой новой партии, отгрузка выполняется в ёмкость, объём которой должен быть равным или больше внутреннего объёма биореактора. Содержимое ёмкости храниться в ней до введения в удобряемую почву.

Конструкция второго типа также рассчитана на небольшое хозяйство, её производительность несколько выше биогазовых установок первого типа — в оснащение входит перемешивающее устройство с ручным или механическим приводом.

Третий тип биогазовых установок оснащён помимо промешивающего устройства принудительным обогревом биореактора, водогрейный котёл при этом работает на альтернативном топливе, производимом биогазовой установкой. Выработкой метана в таких установках занимаются мезофильные и термофильные бактерии, в зависимости от интенсивности обогрева и уровня температуры в реакторе.

Принципиальная схема биогазовой установки: 1 — подогрев субстрата; 2 — заливная горловина; 3 — ёмкость биореактора; 4 — ручная мешалка; 5 — ёмкость для сборки конденсата; 6 — газовый клапан; 7 — резервуар для переработанной массы; 8 — предохранительный клапан; 9 — фильтр; 10 — газовый котёл; 11 — газовый вентиль; 12 — газовые потребители; 13 — гидрозатвор

Последний тип биогазовых установок наиболее сложен и рассчитан на нескольких потребителей биогаза, в конструкцию установок вводятся электроконтактный манометр, предохранительный клапан, водогрейный котёл, компрессор (пневматическое промешивание органики), ресивер, газгольдер, газовый редуктор, отвод для загрузки биогаза в транспорт. Эти установки работают непрерывно, допускают установку любого из трёх температурных режимов благодаря точно настраиваемому обогреву, отбор биогаза выполняется в автоматическом режиме.

Биогазовая установка своими руками

Теплотворность биогаза, произведённого в биогазовых установках, примерно равна 5 500 ккал/м 3 , что немногим ниже калорийности природного газа (7 000 ккал/м 3). Для отопления 50 м 2 жилого дома и использования газовой плиты с четырьмя конфорками в течение часа потребуется в среднем 4 м 3 биогаза.

Предлагаемые на рынке России промышленные установки по производству биогаза стоят от 200 000 руб. — при их внешне высокой стоимости стоит отметить, что эти установки точно рассчитаны по объёму загружаемого органического субстрата и на них распространяются гарантии производителей.

Если же вы хотите создать биогазовую установку самостоятельно, то дальнейшая информация — для вас!

Форма биореактора

Наилучшая форма для него будет овальной (яйцеобразной), однако соорудить такой реактор крайне сложно. Более лёгким для конструирования будет биореактор цилиндрической формы, верхняя и нижняя части которого выполнены в виде конуса или полукруга. Реакторы квадратной или прямоугольной формы из кирпича или бетона будут малоэффективны, т. к. по углам в них со временем образуются трещины, вызванные давлением субстрата, в них также будут накапливаться затвердевшие фрагменты органики, мешающие процессу ферментации.

Стальные ёмкости биореакторов герметичны, устойчивы к высокому давлению, их не так сложно построить. Их минус — в слабой устойчивости к ржавчине, требуется нанесение на внутренние стенки защитного покрытия, к примеру, смолы. Снаружи поверхности стального биореактора необходимо тщательно зачистить и окрасить в два слоя.

Ёмкости биореакторов из бетона, кирпича или камня необходимо самым тщательным образом покрыть изнутри слоем смолы, способным обеспечить их эффективную водо- и газонепроницаемость, выдерживать температуру порядка 60 °С, агрессию сероводорода и органических кислот. Помимо смолы для защиты внутренних поверхностей реактора можно использовать парафин, разбавленный 4% моторного масла (нового) или керосина и разогретый до 120-150 °С — поверхности биореактора перед нанесением на них парафинового слоя необходимо прогреть горелкой.

При создании биореактора можно воспользоваться не подверженными ржавчине ёмкостями из пластика, но только из жёсткого с достаточно прочными стенками. Мягкий пластик можно использовать только в тёплый сезон, т. к. с наступлением холодов на нём будет сложно закрепить утеплитель, к тому же стенки его недостаточно прочны. Пластиковые биореакторы можно применять только для психрофильной ферментации органики.

Место размещения биореактора

Его размещение планируют в зависимости от свободного места на участке, удалённости от жилых построек, места размещения отходов и животных и т. д. Планирование наземного, полностью или частично погруженного в землю биореактора зависит от уровня грунтовых вод , удобства ввода и вывода органического субстрата в ёмкость реактора. Оптимальным будет размещение корпуса реактора ниже уровня земли — достигается экономия на оборудовании для введения органического субстрата, существенно повышается теплоизоляция, для обеспечения которой можно применить недорогие материалы (солому, глину).

Оснащение биореактора

Ёмкость реактора требуется оборудовать люком, с помощью которого можно выполнять ремонтные и профилактические работы. Между корпусом биореактора и крышкой люка необходимо проложить резиновую прокладку или слой герметика. Необязательным, но крайне удобным будет оснащение биореактора датчиком температуры, внутреннего давления и уровня органического субстрата.

Теплоизоляция биореактора

Её отсутствие не позволит эксплуатировать биогазовую установку круглый год, лишь в тёплое время. Для утепления заглубленного или полузаглубленного биореактора используется глина, солома, сухой навоз и шлак. Укладка утеплителя выполняется слоями — при установке заглубленного реактора котлован перекрывается слоем ПВХ-плёнки, препятствующей прямому контакту теплоизоляционного материала с почвой. До установки биореактора на дно котлована насыпается солома, поверх неё слой глины, затем выставляется биореактор. После этого все свободные участки между ёмкостью реактора и проложенным ПВХ-плёнкой котлованом засыпаются соломой практически до торца ёмкости, сверху засыпается 300 мм слой глины вперемешку со шлаком.

Загрузка и выгрузка органического субстрата

Диаметр труб загрузки в биореактор и выгрузки из него должен быть не меньше 300 мм, иначе они забьются. Каждую из них в целях сохранениях анаэробных условий внутри реактора следует оснастить винтовыми или полуоборотными задвижками. Объём бункера для подачи органики, в зависимости от типа биогазовой установки, должен быть равным суточному объёму вводимого сырья. Бункер подачи следует расположить на солнечной стороне биореактора, т. к. это будет способствовать повышению температуры во вводимом органическом субстрате, ускоряя процессы ферментации. Если же биогазовая установка связана непосредственно с фермой, то бункер следует разместить под её строением так, чтобы органический субстрат поступал в него под действием сил гравитации.

Трубопроводы загрузки и выгрузки органического субстрата следует расположить по противоположным сторонам биореактора — в этом случае вводимое сырьё будет распределено равномерно, а ферментированная органика будет легко извлекаться под воздействием гравитационных сил и массы свежего субстрата. Отверстия и монтаж трубопровода под загрузку и выгрузку органики следует выполнить до монтажа биореактора на место установки и до размещения на нём слоёв теплоизоляции. Герметичность внутреннего объёма биореактора достигается тем, что вводы труб расположены под острым углом, при этом уровень жидкости внутри реактора выше точек ввода труб — гидравлический затвор блокирует доступ воздуха.

Ввод нового и вывод прошедшего ферментацию органического материала проще всего проводить по принципу перелива, т. е. подъём уровня органики внутри реактора при вводе новой порции выведет через трубу выгрузки субстрат в объёме, равном объёму вводимого материала.

Если необходима быстрая загрузка органики, а эффективность ввода материала самотёком низка из-за недостатков рельефа, потребуется установка насосов. Способов два: сухой, при котором насос устанавливается внутрь загрузочной трубы и органика, поступая к насосу по вертикальной трубе, прокачивается им; влажный, при котором насос установлен в бункер загрузки, его привод осуществляется мотором, также установленным в бункер (в непроницаемом корпусе) либо через вал, мотор при этом установлен вне бункера.

Как собирать биогаз

Эта система включает в себя газовый трубопровод, распределяющий газ по потребителям, запорную арматуру, ёмкости для сбора конденсата, предохранительный клапан, ресивер, компрессор, газовый фильтр, газгольдер и приборы потребления газа. Монтаж системы выполняется лишь после полной установки биореактора в месте размещения.

Вывод для сбора биогаза выполняется в наиболее высшей точке реактора, к нему последовательно подключаются: герметичная ёмкость для сбора конденсата; предохранительный клапан и водяной затвор — ёмкость с водой, ввод газопровода в которую выполнен ниже уровня воды, вывод — выше (трубу газопровода перед водяным затвором следует изогнуть, чтобы вода не проникала в реактор), который не позволит двигаться газу в обратном направлении.

Образованный в ходе ферментации органического субстрата биогаз содержит в себе значительное количество паров воды, образующих конденсат по стенкам газопровода и в некоторых случаях блокирующих поступление газа к потребителям. Поскольку сложно выстроить газопровод таким образом, чтобы по всей его длине существовал уклон по направлению к реактору, куда бы стекал конденсат, то в каждом его низком участке требуется установить водяные затворы в виде ёмкостей с водой. Во время работы биогазовой установки периодически требуется удалять из них часть воды, иначе её уровень полностью перекроет поступление газа.

Газопровод должен быть построен трубами одного диаметра и одного типа, все клапаны и элементы системы также должны иметь один и тот же диаметр. Стальные трубы диаметром от 12 до 18 мм применимы для биогазовых установок малой и средней мощности, расход биогаза, поступающего по трубам этих диаметров, не должен быть выше 1 м 3 /ч (при расходе 0,5 м 3 /ч не допускается использование труб диаметром 12 мм на длину свыше 60 м). Это же условие действует при использовании в газопроводе пластиковых труб, кроме того, эти трубы необходимо закладывать ниже уровня земли на 250 мм, т. к. их пластик чувствителен к солнечному свету и теряет под воздействием солнечной радиации прочность.

При прокладке газопровода требуется самым тщательным образом убедиться в отсутствии протечек и газонепроницаемости мест соединений — проверка выполняется мыльным раствором.

Газовый фильтр

В биогазе содержится небольшое количество сероводорода, соединение которого с водой создаёт кислоту, активно коррозирующую металл — по этой причине нефильтрованный биогаз нельзя использовать для двигателей внутреннего сгорания. Между тем удалить сероводород из газа можно простым фильтром — 300 мм отрезком газовой трубы, наполненным сухой смесью металлической и деревянной стружки. Через каждый 2 000 м 3 биогаза, пройдённого через такой фильтр, необходимо извлечь его содержимое и выдержать около часа на отрытом воздухе — стружка будет полностью очищена от серы и её можно использовать повторно.

Запорная арматура и клапаны

В непосредственной близости от биореактора устанавливается основной газовый клапан, в магистраль газопровода следует врезать клапан, сбрасывающий биогаз при давлении более 0,5 кг/см 2 . Лучшими кранами для газовой системы будут шаровые клапаны с хромированным покрытием, использовать краны, предназначенные для водопроводных систем, в газовой нельзя. На каждом из потребителей газа установка шарового крана обязательна.

Механическое перемешивание

Для биореакторов небольшого объёма мешалки с ручным приводом подойдут лучше всего — они просты по своей конструкции и не требуют каких-то особых условий в процессе эксплуатации. Мешалка с механическим приводом устроена так — горизонтальный или вертикальный вал, размещённый внутри реактора по его центральной оси, на нём закреплены лопасти, при вращении перемещающие массы органики, богатую бактериями, от участка выгрузки ферментированного субстрата к месту загрузки свежей порции. Будьте внимательны — мешалка должна вращаться только в направлении промешивания от участка выгрузки к участку загрузки, перемещение метанообразующих бактерий от созревшего субстрата к вновь поступившему ускорит созревание органики и выработку биогаза с высоким содержанием метана.

Как часто следует промешивать органический субстрат в биореакторе? Необходимо определить периодичность путём наблюдения, ориентируясь на выход биогаза — излишне частое промешивание нарушит ферментацию, т. к. помешает деятельности бактерий, кроме того, вызовет вывод непереработанной органики. В среднем промежуток времени между перемешиваниями должен составлять от 4-х до 6-ти часов.

Обогрев органического субстрата в биореакторе

Без обогрева реактор может вырабатывать биогаз только в психрофильном режиме, в результате количество вырабатываемого газа будет меньше, а качество удобрений хуже, чем при более высокотемпературных мезофильном и термофильном рабочих режимах. Нагрев субстрата может производиться двумя способами: подогрев паром; соединение органики с горячей водой или подогрев с помощью теплообменника, в котором циркулирует горячая вода (без смешивания с органическим материалом).

Серьёзный недостаток подогрева паром (прямого подогрева) заключается в потребности включения в биогазовую установку системы парогенерации, включающую в себя систему очистки воды от присутствующей в ней соли. Парогенерационная установка выгодна только для действительно больших установок, перерабатывающих большие объёмы субстрата, к примеру, сточные воды. Кроме того, нагрев паром не позволит точно контролировать температуру нагрева органики, в результате возможен её перегрев.

Теплообменики, размещённые внутри или снаружи биореакторной установки, производят непрямой подогрев органики внутри реактора. Сразу стоит отбросить вариант с обогревом через пол (фундамент), т. к. скопление твёрдого осадка на дне биореактора ему препятствует. Наилучшим вариантом будет ввод теплообменника внутрь реактора, однако образующий его материал должен быть достаточно прочным и успешно выдерживать напор органики при её промешивании. Теплообменник большей площади лучше и однороднее обогреет органику, улучшая тем самым ферментационный процесс. Внешний обогрев, при его меньшей эффективности из-за теплопотери стенок, привлекателен тем, что ничто внутри биореактора не помешает движению субстрата.

Оптимальная температура в теплообменнике должна быть порядка 60 °С, сами теплообменники выполняются в виде радиаторных секций, змеевиков, параллельно сваренных труб. Поддержание температуры теплоносителя на уровне 60 °С снизит угрозу налипания на стенки теплообменника частиц взвесей, скопление которых существенно снизит теплопередачу. Оптимальное место размещения теплообменника — вблизи промешивающих лопастей, в этом случае угроза осаждения частиц органики на его поверхности минимальна.

Отопительный трубопровод биореактора выполняется и оснащается аналогично обычной системе отопления, т. е. должны соблюдаться условия возврата охлаждённой воды в наиболее низкую точку системы, требуются вентили спуска воздуха в её верхних точках. Контроль температуры органической массы внутри биореактора выполняется термометром, которым реактор следует оснастить.

Газгольдеры для сбора биогаза

При постоянном потреблении газа потребность в них отпадает, разве что они могут использоваться для выравнивания давления газа, что существенно улучшит процесс горения. Для биореакторных установок небольшой производительности на роль газгольдеров подойдут автомобильные камеры большого объёма, которые можно соединить между собой параллельно.

Более серьёзные газгольдеры, стальные или пластиковые, подбираются под конкретную биореакторную установку — в лучшем варианте газгольдер должен вмещать в себя объём биогаза суточной выработки. Требуемая ёмкость газгольдера зависит от его типа и давления, на которое он рассчитан, как правило, его объём 1/5...1/3 от внутреннего объёма биореактора.

Стальной газгольдер. Существуют три типа газгольдеров из стали: низкого давления, от 0,01 до 0,05 кг/см 2 ; среднего, от 8 до 10 кг/см 2 ; высокого, до 200 кг/см 2 . Стальные газгольдеры низкого давления использовать нецелесообразно, лучше заменить их пластиковыми газгольдерами — они дороги и применимы только при значительной дистанции между биогазовой установкой и приборами-потребителями. Газгольдеры низкого давления применяются в основном для выравнивания разницы между суточным выходом биогаза и его фактическим потреблением.

В стальные газгольдеры среднего и высокого давления биогаз закачивается компрессором, они используются только на биореакторах средней и крупной мощности.

Газгольдеры необходимо оснастить следующими контрольно-измерительными приборами: предохранительным клапаном, водяным затвором, редуктором давлений и манометром. Газгольдеры из стали обязательно подлежат заземлению!

Видео по теме

Экология потребления.Усадьба: Выгодно ли производить биотопливо в домашних условиях в малых количествах в личном подсобном хозяйстве? Если у вас есть несколько металлических бочек и прочего железного хлама, а также бездна свободного времени и вы не знаете, как им распорядиться - да.

Предположим, природного газа в вашей деревне не было и не будет. А даже если есть, он денег стоит. Хотя и на порядок дешевле, чем разорительное отопление электричеством и жидким топливом. Ближайший цех по производству пеллет находится в паре сотен километров, везти накладно. Дрова купить с каждым годом всё сложнее, да и топить ими хлопотно. На этом фоне весьма заманчиво выглядит идея получать дармовой биогаз на собственном подворье из сорняков, куриного помёта, навоза от любимой свинки или содержимого хозяйского нужника. Достаточно лишь смастерить биореактор! По телевизору рассказывают, как экономные немецкие фермеры согревают себя «навозными» ресурсами и никакой «Газпром» им теперь не нужен. Вот уж где справедлива поговорка «с фекалий плёнку снимет». Интернет пестрит статьями и роликами на тему «биогаз из биомасс» и «биогазовая установка своими руками». Но о практическом применении технологии у нас мало что известно: про производство биогаза в домашних условиях говорят все, кому не лень, но конкретные примеры в деревне, так же, как и легендарный Ё-Мобиль на дороге, мало кто видел живьём. Попробуем разобраться, почему это так и каковы перспективы прогрессивных биоэнергетических технологий на селе.

Что такое биогаз + немного истории

Биогаз образуется в результате последовательного трёхступенчатого разложения (гидролиз, кислото- и метанообразование) биомассы различными видами бактерий. Полезная горючая составляющая - метан, может присутствовать также водород.

Процесс бактериального разложения, в результате которого образуется горючий метан

В большей или меньшей степени горючие газы образуются в процессе разложения любых остатков животного и растительного происхождения.

Ориентировочный состав биогаза, конкретные пропорции составляющих зависят от применяемых сырья и технологии

Люди издавна пытаются использовать этот вид природного топлива, в средневековых хрониках содержатся упоминания о том, что жители низменных районов нынешней Германии ещё тысячелетие назад получали биогаз из гниющей растительности, погружая в болотную жижу кожаные мехи. В тёмные средние века и даже просвещённые столетия наиболее талантливые метеористы, благодаря специально подобранной диете умевшие пустить и вовремя поджечь обильный метановый flatus, вызывали неизменный восторг публики на весёлых ярмарочных представлениях. Промышленные биогазовые установки с переменным успехом начали строить с середины XIX века. В СССР в 80-е годы прошлого века была принята, но не реализована госпрограмма по развитию отрасли, хотя с десяток производств всё же запустили. За рубежом технология получения биогаза совершенствуется продвигается относительно активно, общее число работающих установок исчисляется десятками тысяч. В развитых странах (ЕЭС, США, Канада, Австралия) это высокоавтоматизированные крупные комплексы, в развивающихся (Китай, Индия) - полукустарные биогазовые установки для дома и небольшого крестьянского хозяйства.

Процентное соотношение числа биогазовых установок в странах Евросоюза. Отчётливо видно, что технология активно развивается только в Германии, причина - солидные государственные дотации и налоговые льготы

Какое применение находит биогаз

Понятно, что в качестве топлива, раз он горит. Отопление производственных и жилых зданий, генерация электроэнергии, приготовление пищи. Однако не всё так просто, как показывают в роликах, разбросанных по ютюбу. Биогаз должен стабильно гореть в теплогенерирующих установках. Для этого его параметры газовой среды необходимо привести к довольно жёстким стандартам. Содержание метана должно быть не ниже 65% (оптимум 90-95%), водород отсутствовать, водяные пары выведены, углекислый газ удалён, оставшиеся составляющие инертны к высоким температурам.

Использовать биогаз «навозно-животного» происхождения, не освобождённый от зловонных примесей, в жилых домах невозможно.

Нормируемое давление - 12,5 бар, при значении менее 8-10 бар автоматика в современных моделях отопительного оборудования и кухонного оборудования прекращает подачу газа. Очень важно, чтобы характеристики поступающего в теплогенератор газа были стабильными. В случае скачка давления за пределы нормы сработает клапан, включать обратно придётся вручную. Плохо, если используются устаревшие газовые приборы, не оснащённые системой газ-контроля. В лучшем случае может выйти из строя горелка отопительного котла. Худший вариант - газ потухнет, но его поступление не прекратится. А это уже чревато трагедией. Обобщим сказанное: характеристики биогаза необходимо привести к необходимым параметрам, а технику безопасности соблюдать неукоснительно. Упрощённая технологическая цепочка получения биогаза. Важный этап - сепарация и газоотделение

Какое сырьё используют для получения биогаза

Растительное и животное сырьё

  • Растительное сырьё отлично подходит для производства биогаза: из свежей травы можно получить максимальный выход топлива - до 250 м3 на тонну сырья, содержание метана до 70%. Несколько меньше, до 220 м3 можно получить из кукурузного силоса, до 180 м3 из свекольной ботвы. Пригодны любые зелёные растения, хороши водоросли, сено (100 м3 из тонны), но пускать ценные корма на топливо имеет смысл лишь при их явном избытке. Невелик выход метана из жома, образующегося при изготовлении соков, масел и биодизеля, но и материал дармовой. Недостаток растительного сырья - длительный производственный цикл, 1,5-2 месяца. Можно получать биогаз и из целлюлозы, других медленно разлагающихся растительных отходов, но эффективность крайне низкая, метана образуется мало, производственный цикл очень длительный. В заключение скажем, что растительное сырьё обязательно должно быть мелко измельчено.
  • Сырьё животного происхождения: традиционные рога и копыта, отходы молокозаводов, боен и перерабатывающих предприятий также пригодно и тоже в измельчённом виде. Самая богатая «руда» - животные жиры, выход высококачественного биогаза с концентрацией метана до 87% достигает 1500 м3 на тонну. Тем не менее, животное сырьё в дефиците и, как правило, ему находят иное применение.

Горючий газ из экскрементов

  • Навоз дёшев и во многих хозяйствах имеется в достатке, однако выход и качество биогаза значительно ниже, чем из других видов. Коровьи лепёшки и лошадиные яблочки можно использовать в чистом виде, ферментация начинается сразу, выход биогаза 60 м2 на тонну сырья с невысоким содержанием метана (до 60%). Производственный цикл короткий, 10-15 дней. Свиной навоз и куриный помёт токсичны - чтобы полезные бактерии могли развиваться, его смешивают с растительными отходами, силосом. Большую проблему представляют моющие составы, ПАВы, которые применяются при уборке животноводческих помещений. Вкупе с антибиотиками, которые в большом количестве попадают в навоз, они угнетают бактериальную среду и тормозят образование метана. Не применять дезинфицирующих средств вовсе невозможно и агропредприятия, вложившиеся в производство газа из навоза, вынуждены искать компромисс между гигиеной и контролем над заболеваемостью животных с одной стороны и поддержанием продуктивности биореакторов с другой.
  • Человеческие экскременты, совершенно бесплатные, тоже подходят. Но использовать обычные канализационные стоки нерентабельно, слишком мала концентрация фекалий и высока дезинфицирующих средств, ПАВ. Технологи утверждают, что их можно было бы использовать лишь в случае, если в канализацию будут поступать «продукты» только из унитаза при условии, что смыв чаши осуществляется лишь одним литром воды (стандарт 4/8 л). И без моющих средств, естественно.

Дополнительные требования к сырью

Серьёзная проблема, с которой сталкиваются хозяйства, установившие у себя современное оборудование для получения биогаза - сырьё не должно содержать твёрдых включений, случайно попавший в массу камень, гайка, кусок проволоки или доска закупорит трубопровод, выведет из строя дорогостоящий фекальный насос или мешалку. Нужно сказать, что приведенные данные по максимальному выходу газа из сырья соответствуют идеальным лабораторным условиям. Чтобы приблизиться в реальном производстве к этим цифрам, необходимо соблюсти ряд условий: поддерживать необходимую температуру, периодически перемешивать мелко измельчённое сырье, вносить добавки, активизирующие ферментацию и т.д. На кустарной установке, собранной по рекомендациям статей о «получении биогаза своими руками», едва лишь можно достичь 20% от максимального уровня, высокотехнологические установки позволяют добиваться значений в 60-95%.

Достаточно объективные данные по максимальному выходу биогаза для различных типов сырья

Устройство биогазовой установки


Выгодно ли заниматься производством биогаза

Мы уже упоминали, что в развитых странах строят крупные промышленные установки, а в развивающихся главным образом мелкие, для небольшого хозяйства. Объясним, почему так:


Имеет ли смысл производить биотопливо в домашних условиях

Выгодно ли производить биотопливо в домашних условиях в малых количествах в личном подсобном хозяйстве? Если у вас есть несколько металлических бочек и прочего железного хлама, а также бездна свободного времени и вы не знаете, как им распорядиться - да. Но экономия, увы, мизерная. А уж вкладывать деньги в высокотехнологичное оборудование при небольших объёмах поступления сырья и производства метана не имеет смысла ни при каком раскладе.

Очередной ролик отечественного Кулибина

ПОДПИСЫВАЙТЕСЬ на НАШ youtube канал Эконет.ру, что позволяет смотреть онлайн, скачать с ютуб бесплатно видео об оздоровлении, омоложении человека..

Ставьте ЛАЙКИ, делитесь с ДРУЗЬЯМИ!

https://www.youtube.com/channel/UCXd71u0w04qcwk32c8kY2BA/videos

Без перемешивания сырья и активации процесса ферментации выход метана составит не более 20% от возможного. Значит, в лучшем случае с 100 кг (загрузка бункера) отборной травы можно получить 5 м3 газа без учёта сжатия. И будет хорошо, если содержание метана превысит 50% и не факт, что он будет гореть в теплогенераторе. По утверждению автора, сырьё загружается ежедневно, то есть производственный цикл у него - одни сутки. На самом деле необходимое время - 60 суток. Количества полученного изобретателем биогаза, содержащегося в 50-литровом баллоне, который он сумел заполнить, в морозную погоду для отопительного котла мощностью 15 кВт (жилой дом около 150 м2) хватит на 2 минуты.

Тем, кого возможность производства биогаза заинтересовала, рекомендуется внимательно изучить проблему, особенно с финансовой точки зрения, с техническими вопросами обратиться к специалистам, имеющим опыт подобных работ. Весьма ценной будет практическая информация, полученная в тех хозяйствах, где биоэнергетические технологии уже используются какое-то время. опубликовано

Фермерские хозяйства ежегодно сталкиваются с проблемой утилизации навоза. В никуда уходят немалые средства, которые требуются для организации его вывоза и захоронения. Но есть способ, позволяющий не только сэкономить свои деньги, но и заставить служить себе во благо этот природный продукт.

Рачительные хозяева уже давно применяют на практике экотехнологию, позволяющую получить биогаз из навоза и использовать результат в качестве топлива.

Поэтому в нашем материале речь пойдет о технологии получения биогаза, также мы расскажем о том, как соорудить биоэнергетическую установку.

Определение требующегося объема

Объем реактора определяется исходя из суточного количества навоза, производимого в хозяйстве. Также необходимо учитывать тип сырья, температурный режим и время брожения. Чтобы установка полноценно работала, емкость заполняется на 85-90% объема, как минимум 10% должно оставаться свободным для выхода газа.

Процесс разложения органики в мезофильной установке при средней температуре 35 градусов длится от 12 суток, после чего ферментированные остатки извлекаются, и реактор заполняется новой порцией субстрата. Поскольку перед отправкой в реактор отходы разбавляются водой до 90%, то количество жидкости также нужно учитывать при определении суточной загрузки.

Исходя из приведенных показателей, объем реактора будет равен суточному количеству подготовленного субстрата (навоза с водой) умноженному на 12 (время необходимое для разложения биомассы) и увеличенному на 10% (свободный объем емкости).

Строительство подземного сооружения

Теперь поговорим о простейшей установке, позволяющей получить с наименьшими затратами. Рассмотрим строительство подземной системы. Чтобы ее изготовить нужно вырыть яму, ее основание и стены заливаются армированным керамзитобетоном.

С противоположных сторон камеры выводятся входное и выходное отверстия, куда монтируются наклонные трубы для подачи субстрата и откачки отработанной массы.

Выходная труба диаметром примерно 7 см должна находиться практически у самого дна бункера, другой ее конец монтируется в компенсирующую емкость прямоугольной формы, в которую будут откачиваться отходы. Трубопровод для подачи субстрата располагается приблизительно на расстоянии 50 см от дна и имеет диаметр 25-35 см. Верхняя часть трубы входит в отсек для приема сырья.

Реактор должен быть полностью герметичным. Чтобы исключить возможность попадания воздуха, емкость необходимо покрыть слоем битумной гидроизоляции

Верхняя часть бункера – газгольдер, имеющий купольную или конусную форму. Он изготавливается из металлических листов или кровельного железа. Можно также конструкцию завершить кирпичной кладкой, которая затем оббивается стальной сеткой и штукатурится. Сверху газгольдера нужно сделать герметичный люк, вывести газовую трубу, проходящую через гидрозатвор и установить клапан для сброса давления газа.

Для перемешивания субстрата можно оборудовать установку дренажной системой, действующей по принципу барботажа. Для этого внутри конструкции вертикально закрепите пластиковые трубы, чтобы их верхний край был выше слоя субстрата. Проделайте в них множество отверстий. Газ под давлением будет опускаться вниз, а поднимаясь вверх, пузырьки газа будут перемешивать находящуюся в емкости биомассу.

Если вы не желаете заниматься строительством бетонного бункера, можно купить готовую емкость из ПВХ. Для сохранения тепла ее нужно обложить вокруг слоем теплоизоляции – пенополистиролом. Дно ямы заливается армированным бетоном слоем 10 см. Резервуары из поливинилхлорида допускается использовать, если объем реактора не превышает 3 м3.

Выводы и полезное видео по теме

Как сделать самую простейшую установку из обычной бочки, вы узнаете, если посмотрите видео:

Простейший реактор можно сделать за несколько дней своими руками, используя подручные средства. Если хозяйство крупное, то лучше всего купить готовую установку или обратиться к специалистам.

Экология потребления. Усадьба: Фермерские хозяйства ежегодно сталкиваются с проблемой утилизации навоза. В никуда уходят немалые средства, которые требуются для организации его вывоза и захоронения. Но есть способ, позволяющий не только сэкономить свои деньги, но и заставить служить себе во благо этот природный продукт.

Фермерские хозяйства ежегодно сталкиваются с проблемой утилизации навоза. В никуда уходят немалые средства, которые требуются для организации его вывоза и захоронения. Но есть способ, позволяющий не только сэкономить свои деньги, но и заставить служить себе во благо этот природный продукт. Рачительные хозяева уже давно применяют на практике экотехнологию, позволяющую получить биогаз из навоза и использовать результат в качестве топлива.

О преимуществах использования биотехнологий

Технология получения биогаза из различных природных источников не нова. Исследования в этой области начались еще в конце 18 века и успешно развивались в 19 столетии. В Советском Союзе первая биоэнергетическая установка была создана в сороковых годах прошлого века.

Технология переработки навоза в биогаз позволяет уменьшить количество вредных выбросов метана в атмосферу и получить дополнительный источник тепловой энергии

Биотехнологии давно применяются во многих странах, но именно сегодня они приобретают особое значение. Вследствие ухудшения экологической обстановки на планете и высокой стоимости энергоносителей, многие устремляют свои взоры в сторону альтернативных источников энергии и тепла.

Безусловно, навоз является очень ценным удобрением, и если в хозяйстве имеется две коровы, то и проблем с его применением не возникает. Другое дело, когда речь идет о фермерских хозяйствах с большим и средним поголовьем, где в год образуются тонны зловонного и гниющего биологического материала.

Чтобы навоз превратился в качественное удобрение, нужны площади с определенным температурным режимом, а это лишние расходы. Поэтому многие фермеры складируют его, где придется, а затем вывозят на поля.

При несоблюдении условий хранения из навоза улетучиваются до 40% азота и основная часть фосфора, что значительно ухудшает его качественные показатели. Кроме того, в атмосферу выделяется газ метан, оказывающий негативное влияние на экологическую обстановку планеты.

В зависимости от объема сырья, образующегося в сутки, следует подбирать габариты установки и степень ее автоматизации

Современные биотехнологии позволяют не только нейтрализовать вредное воздействие метана на экологию, но и заставить его служить на благо человека, извлекая при этом немалую экономическую выгоду. В результате переработки навоза образуется биогаз, из которого затем можно получить тысячи кВт энергии, а отходы производства представляют собой очень ценное анаэробное удобрение.

Что представляет собой биогаз

Биогаз – это летучее вещество без цвета и какого-либо запаха, в котором содержится до 70% метана. По своим качественным показателям он приближается к традиционному виду топлива – природному газу. Отличается хорошей теплотворной способностью, 1м3 биогаза выделяет столько тепла, сколько получается при сгорании полутора килограмм угля.

Образованию биогаза мы обязаны анаэробным бактериям, которые активно трудятся над разложением органического сырья, в качестве которого используются навоз сельскохозяйственных животных, птичий помет, отходы любых растений.

В самостоятельном производстве биогаза может использоваться птичий помет и продукты жизнедеятельности мелкого и крупного домашнего скота. Сырье может применяться в чистом виде и в форме смеси с включением травы, листвы, старой бумаги

Для активизации процесса необходимо создать благоприятные условия для жизнедеятельности бактерий. Они должны быть схожи с теми, в которых микроорганизмы развиваются в естественном резервуаре – в желудке животных, где тепло и отсутствует кислород. Собственно это и есть два основных условия, способствующих чудесному превращению гниющей навозной массы в экологически чистое топливо и ценные удобрения.

Механизм образования газа из органического сырья

Для получения биогаза нужен герметичный реактор без доступа воздуха, где будет происходить процесс брожения навоза и разложения его на составляющие:

  • Метан (до 70%).
  • Углекислый газ (примерно 30%).
  • Другие газообразные вещества (1-2%).

Образовавшиеся газы поднимаются кверху емкости, откуда их затем выкачивают, а вниз оседает остаточный продукт – высококачественное органическое удобрение, сохранившее в результате обработки все ценные вещества, имеющиеся в навозе – азот и фосфор, и потерявшее значительную часть патогенных микроорганизмов.

Реактор для получения биогаза должен иметь полностью герметичную конструкцию, в которой отсутствует кислород, в противном случае процесс разложения навоза будет проходить крайне медленно

Второе важное условие для эффективного разложения навоза и образования биогаза – соблюдение температурного режима. Бактерии, принимающие участие в процессе, активизируются при температуре от +30 градусов. Причем в навозе содержится два вида бактерий:

  • Мезофильные. Их жизнедеятельность происходит при температуре +30 – +40 градусов;
  • Термофильные. Для их размножения необходимо соблюсти температурный режим +50 (+60) градусов.

Время переработки сырья в установках первого типа зависит от состава смеси и составляет от 12 до 30 суток. При этом 1 литр полезной площади реактора дает 2 л биотоплива. При использовании установок второго типа время выработки конечного продукта сокращается до трех дней, а количество биогаза возрастает до 4,5 л.

Эффективность термофильных установок видна невооруженным глазом, однако и цена их обслуживания очень высока, поэтому прежде чем выбрать тот или иной способ получения биогаза, необходимо очень тщательно все просчитать (кликните для увеличения)

Несмотря на то, что эффективность термофильных установок в десятки раз выше, применяются они гораздо реже, поскольку поддержание высоких температур в реакторе связано с большими расходами. Обслуживание и содержание установок мезофильного типа дешевле, поэтому большинство фермерских хозяйств для получения биогаза используют именно их.

Биогаз по критериям энергетического потенциала немногим уступает привычному газовому топливу. Однако в его составе есть сернокислые испарения, наличие которых следует учесть при выборе материалов для сооружения установки

Расчеты эффективности применения биогаза

Оценить все преимущества использования альтернативного биотоплива, помогут несложные расчеты. Одна корова весом 500 кг производит в сутки примерно 35-40 кг навоза. Этого количества хватит для получения около 1.5 м3 биогаза, из которого в свою очередь можно выработать 3 кВт/ч электроэнергии.

Используя данные из таблицы, нетрудно рассчитать, сколько м3 биогаза можно получить на выходе в соответствии с имеющимся в фермерском хозяйстве поголовьем скота

Для получения биотоплива можно использовать как один вид органического сырья, так и смеси из нескольких компонентов, имеющих влажность 85-90%. Важно, чтобы они не содержали посторонние химические примеси, отрицательно влияющие на процесс переработки.

Самый простой рецепт смеси придумал еще в 2000 году один русский мужик из Липецкой области, который построил своими руками простейшую установку для получения биогаза. Он смешивал 1500 кг коровьего навоза с 3500 кг отходов различных растений, добавлял воду (примерно 65% от веса всех ингредиентов) и разогревал смесь до 35 градусов.

Через две недели бесплатное топливо готово. Эта небольшая установка вырабатывала 40 м3 газа в день, что вполне хватало для обогрева дома и хозпостроек в течение полугода.

Варианты изготовления установок для получения биотоплива

После проведения расчетов необходимо определиться, как изготовить установку, чтобы получить биогаз в соответствии с потребностями своего хозяйства. Если поголовье скота небольшое, то подойдет простейшая установка, которую нетрудно изготовить из подручных средств своими руками.

Крупным фермерским хозяйствам, у которых есть постоянный источник большого количества сырья, целесообразно построить промышленную автоматизированную биогазовую систему. В этом случае вряд ли получится обойтись без привлечения специалистов, которые разработают проект и смонтируют установку на профессиональном уровне.

На схеме наглядно показано, как работает промышленный автоматизированный комплекс по получению биогаза. Строительство таких масштабов можно организовать сразу нескольким фермерским хозяйствам, расположенным поблизости

Сегодня существуют десятки компаний, которые могут предложить множество вариантов: от готовых решений, до разработки индивидуального проекта. Для удешевления строительства можно скооперироваться с соседними хозяйствами (если такие имеются поблизости) и построить одну на всех установку для получения биогаза.

Следует учесть, что для постройки даже небольшой установки необходимо оформить соответствующие документы, сделать технологическую схему, план размещения оборудования и вентиляции (если оборудование устанавливается в помещении), пройти процедуры согласования с СЭС, пожарной и газовой инспекцией.

Конструктивные особенности биогазовой системы

Полноценная биогазовая установка представляет собой сложную систему, состоящую из:

  1. Биореактора, где протекает процесс разложения навоза;
  2. Автоматизированной системы подачи органических отходов;
  3. Устройства для перемешивания биомассы;
  4. Оборудования для поддержания оптимального температурного режима;
  5. Газгольдера – емкости для хранения газа;
  6. Приемника отработанных твердых отходов.

Все вышеперечисленные элементы устанавливаются в промышленные установки, работающие в автоматическом режиме. Бытовые реакторы, как правило, имеют более упрощенную конструкцию.

На схеме представлены основные составляющие автоматизированной биогазовой системы. Объем реактора зависит от суточного поступления органического сырья. Для полноценного функционирования установки реактор должен быть заполнен на две трети объема

Принцип работы и устройство установки для производства биогаза

Основным элементом системы является биореактор. Существует несколько вариантов его исполнения, главное – обеспечить герметичность конструкции и исключить попадание кислорода. Он может быть выполнен в виде металлической емкости различной формы (чаще цилиндрической), расположенной на поверхности. Нередко для этих целей используются 50-ти кубовые пустые топливные цистерны.

Можно приобрести готовые емкости разборной конструкции. Их преимущество – возможность быстрой разборки, и при необходимости – перевозки в другое место. Промышленные поверхностные установки целесообразно применять в крупных хозяйствах, где есть постоянный приток большого количества органического сырья.

Для небольших подворий больше подходит вариант подземного размещения резервуара. Поземный бункер строится из кирпича или бетона. Можно закопать в землю готовые емкости, например, бочки из металла, нержавеющей стали или ПВХ. Возможно также их поверхностное размещение на улице или в специально отведенном помещении с хорошей вентиляцией.

Для изготовления установки по производству биогаза можно приобрести готовые емкости из ПВХ и установить их в помещении, оборудованном системой вентиляции

Независимо от того, где и как размещается реактор, он снабжается бункером для загрузки навоза. Прежде чем загрузить сырье, оно должно пройти предварительную подготовку: его измельчают на фракции не больше 0,7 мм и разбавляют водой. В идеале влажность субстрата должна быть около 90%.

Автоматизированные установки промышленного типа оснащаются системой подачи сырья, включающей приемник, в котором смесь доводится до необходимого увлажнения, трубопровод для подачи воды и насосную установку для перекачки массы в биореактор.

В домашних установках для подготовки субстрата используются отдельные емкости, где отходы измельчаются и перемешиваются с водой. Затем масса загружается в приемный отсек. В реакторах, расположенных под землей, бункер для приема субстрата выводится наружу, подготовленная смесь самотеком по трубопроводу поступает в камеру для брожения.

Если реактор размещен на земле или в помещении, входная труба с приемным устройством могут располагаться в нижней боковой части емкости. Возможно также трубу вывести в верхнюю часть, а на ее горловину надеть раструб. В этом случае биомассу придется подавать при помощи насоса.

В биореакторе также необходимо предусмотреть выходное отверстие, которое делают практически на дне емкости с противоположной стороны от входного бункера. При подземном размещении выходная труба устанавливается косо вверх и ведет в приемник для отходов, по форме напоминающий ящик прямоугольной формы. Его верхний край дожжен находиться ниже уровня входного отверстия.

Входная и выходные трубы располагаются косо вверх на разных сторонах емкости, при этом компенсирующая емкость, в которую поступают отходы, должна быть ниже приемного бункера

Процесс протекает следующим образом: входной бункер принимает новую партию субстрата, которая стекает в реактор, одновременно такое же количество отработанного шлама по трубе поднимается в приемник для отходов, откуда он в дальнейшем вычерпывается и используется в качестве высококачественного биоудобрения.

Хранение биогаза осуществляется в газгольдере. Чаще всего он находится прямо на крыше реактора и имеет форму купола или конуса. Он изготавливается из кровельного железа, а затем, чтобы предотвратить коррозийные процессы, окрашивается несколькими слоями масляной краски. В промышленных установках, рассчитанных на получение большого количества газа, газгольдер нередко выполняется в виде отдельно стоящего резервуара, соединенного с реактором трубопроводом.

Газ, полученный в результате брожения, не подходит для использования, поскольку в нем содержится большое количество водяных паров, и в таком виде он не будет гореть. Чтобы очистить его от фракций воды, газ пропускают через гидрозатвор. Для этого из газгольдера выводится труба, по которой биогаз поступает в емкость с водой, а уже оттуда он по пластиковой или металлической трубе подается потребителям.

Схема установки, расположенной под землей. Входное и выходное отверстия должны располагаться на противоположных сторонах емкости. Над реактором находится водяной затвор, через который для осушения пропускается полученный газ

В некоторых случаях для хранения газа используются специальные мешки-газгольдеры, изготовленные из поливинилхлорида. Мешки помещаются рядом с установкой и постепенно заполняются газом. По мере наполнения, эластичный материал раздувается, и объем мешков увеличивается, позволяя при необходимости временно сохранить большее количество конечного продукта.

Условия эффективной работы биореактора

Для эффективной работы установки и интенсивного выделения биогаза необходимо равномерное брожение органического субстрата. Смесь должна находиться в постоянном движении. В противном случае на ней образуется корка, процесс разложения замедляется, в итоге газа получается меньше, чем изначально рассчитано.

Чтобы обеспечить активное перемешивание биомассы, в верхней или боковой части типового реактора устанавливаются мешалки погружного или наклонного вида, оборудованные электроприводом. В установках кустарного вида перемешивание производится механическим способом при помощи устройства, напоминающего бытовой миксер. Им можно управлять вручную или снабдить электроприводом.

При вертикальном расположении реактора рукоятка мешалки выводится в верхнюю часть установки. Если емкость установлена горизонтально, шнек также располагается в горизонтальной плоскости, и ручка находится сбоку биореактора

Одним из самых главных условий для получения биогаза является поддержание в реакторе необходимого температурного режима. Обогрев может осуществляться несколькими способами. В стационарных установках применяются автоматизированные системы подогрева, которые включаются в работу при падении температуры ниже заданного уровня, и отключаются при наборе необходимого температурного режима.

Для обогрева можно использовать газовые котлы, осуществлять прямой нагрев электрическими отопительными приборами, или встроить в основание емкости нагревательный элемент. Чтобы уменьшить потери тепла рекомендуется вокруг реактора соорудить небольшой каркас со слоем стекловаты или укрыть установку теплоизоляцией. Хорошими теплоизоляционными свойствами обладает пенополистирол.

Чтобы обустроить систему обогрева биомассы, можно провести трубопровод от домового отопления, которое питается от реактора

Как определить нужный объем реактора

Объем реактора определяется исходя из суточного количества навоза, производимого в хозяйстве. Также необходимо учитывать тип сырья, температурный режим и время брожения. Чтобы установка полноценно работала, емкость заполняется на 85-90% объема, как минимум 10% должно оставаться свободным для выхода газа.

Процесс разложения органики в мезофильной установке при средней температуре 35 градусов длится от 12 суток, после чего ферментированные остатки извлекаются, и реактор заполняется новой порцией субстрата. Поскольку перед отправкой в реактор отходы разбавляются водой до 90%, то количество жидкости также нужно учитывать при определении суточной загрузки.

Исходя из приведенных показателей, объем реактора будет равен суточному количеству подготовленного субстрата (навоза с водой) умноженному на 12 (время необходимое для разложения биомассы) и увеличенному на 10% (свободный объем емкости).

Строительство подземной установки по производству биогаза

Теперь поговорим о простейшей установке, позволяющей получить биогаз в домашних условиях с наименьшими затратами. Рассмотрим строительство подземной установки. Чтобы ее изготовить нужно вырыть яму, ее основание и стены заливаются армированным керамзитобетоном. С противоположных сторон камеры выводятся входное и выходное отверстия, куда монтируются наклонные трубы для подачи субстрата и откачки отработанного шлама.

Выходная труба диаметром примерно 7 см должна находиться практически у самого дна бункера, другой ее конец монтируется в компенсирующую емкость прямоугольной формы, в которую будут откачиваться отходы. Трубопровод для подачи субстрата располагается приблизительно на расстоянии 50 см от дна и имеет диаметр 25-35 см. Верхняя часть трубы входит в отсек для приема сырья.

Реактор должен быть полностью герметичным. Чтобы исключить возможность попадания воздуха, емкость необходимо покрыть слоем битумной гидроизоляции

Верхняя часть бункера – газгольдер имеет купольную или конусную форму. Она изготавливается из металлических листов или кровельного железа. Можно также конструкцию завершить кирпичной кладкой, которая затем оббивается стальной сеткой и штукатурится. Сверху газгольдера нужно сделать герметичный люк, вывести газовую трубу, проходящую через гидрозатвор и установить клапан для сброса давления газа.

Для перемешивания субстрата можно оборудовать установку дренажной системой, действующей по принципу барботажа. Для этого внутри конструкции вертикально закрепите пластиковые трубы, чтобы их верхний край был выше слоя субстрата. Проделайте в них множество отверстий. Газ под давлением будет опускаться вниз, а поднимаясь вверх, пузырьки газа будут перемешивать находящуюся в емкости биомассу.

Если вы не желаете заниматься строительством бетонного бункера, можно купить готовую емкость из ПВХ. Для сохранения тепла ее нужно обложить вокруг слоем теплоизоляции – пенополистиролом. Дно ямы заливается армированным бетоном слоем 10 см. Резервуары из поливинилхлорида допускается использовать, если объем реактора не превышает 3 м3.

Видео о получении биогаза из навоза

Как происходит строительство подземного реактора, вы можете посмотреть в видеосюжете:

Установка по получению биогаза из навоза позволит существенно сэкономить на оплате тепла и электроэнергии, и пустить на благое дело органический материал, который в избытке имеется в каждом фермерском хозяйстве. Прежде чем начать строительство, необходимо все тщательно просчитать и подготовить.

Простейший реактор можно сделать за несколько дней своими руками, используя подручные средства. Если хозяйство крупное, то лучше всего купить готовую установку или обратиться к специалистам. опубликовано

Постоянное повышение стоимости традиционных энергоносителей подталкивает домашних мастеров на создание самодельного оборудования, позволяющего получать из отходов биогаз своими руками. При таком подходе к ведению хозяйства удается не только получить дешевую энергию для отопления дома и других нужд, но и наладить процесс утилизации органических отходов и получения бесплатных удобрений для последующего внесения в почву.

Излишки произведенного биогаза, как и удобрений, можно реализовать по рыночной стоимости заинтересованным потребителям, превратив в деньги то, что буквально «валяется под ногами». Крупные фермеры могут позволить себе купить готовые станции по выработке биогаза, собранные в заводских условиях. Стоимость такого оборудования довольно высока. Однако и отдача от его эксплуатации соответствует сделанным вложениям. Менее мощные установки, работающие по тому же принципу, можно собрать своими силами из доступных материалов и деталей.

Что такое биогаз и как он образуется

В результате переработки биомассы получается биогаз

Биогаз относят к экологически чистым видам топлива. По своим характеристикам биогах во многом сходится с природным газом, добываемым в промышленных масштабах. Представить технологию получения биогаза можно следующим образом:

  • в специальной емкости, называемой биореактором, происходит процесс переработки биомассы с участием анаэробных бактерий в условиях безвоздушного брожения в течение определенного периода, длительность которого зависит от объема загруженного сырья;
  • в результате происходит выделение смеси газов, состоящей на 60 % из метана, на 35 % - из углекислого газа, на 5 % - из других газообразных веществ, среди которых есть и сероводород в небольшом количестве;
  • получаемый газ постоянно отводится из биореактора и после очистки отправляется на использование по назначению;
  • переработанные отходы, ставшие высококачественными удобрениями, периодически удаляются из биореактора и вывозятся на поля.

Наглядная схема процесса выработки биотоплива

Чтобы производство биогаза наладить в домашних условиях в непрерывном режиме, надо владеть или иметь доступ к сельскохозяйственным и животноводческим предприятиям. Экономически выгодно заниматься получением биогаза только в том случае, если есть источник бесплатной поставки навоза и иных органических отходов животноводства.

Отопление газом по прежнему остаётся самым надёжным способом обогрева. Подробнее узнать об автономной газификации можно в следующем материале:

Типы биореакторов

Установки для производства биогаза различаются по типу загрузки сырья, сбору полученного газа, размещению реактора относительно поверхности земли, материала изготовления. Бетон, кирпич и сталь являются наиболее подходящими материалами для строительства биореакторов.

По типу загрузки различают биоустановки, в которые загружается заданная порция сырья и проходит цикл переработки, а затем полностью выгружается. Выработка газа в этих установках нестабильна, зато в них можно загружать любые виды сырья. Как правило они имеют вертикальное расположение и занимают мало места.

В систему второго типа ежедневно подгружается порция органических отходов и выгружается равная ей по объему порция готовых ферментированных удобрений. В реакторе всегда остается рабочая смесь. Установка так называемой непрерывной загрузки стабильно вырабатывает больше биогаза и пользуется большой популярностью у фермеров. В основном эти реакторы расположены горизонтально и удобны при наличии свободного места на участке.

Выбранный тип сбора биогаза определяет конструктивные особенности реактора.

  • баллонные системы состоят из резинового или пластикового термостойкого баллона, в котором совмещены реактор и газгольдер. Преимущества этого вида реакторов – простота конструкции, загрузки и выгрузки сырья, легкость очистки и транспортировки, малая стоимость. К минусам можно отнести небольшой срок службы, 2-5 лет, возможность повреждения в результате внешних воздействий. К баллонным реакторам относятся и установки канального типа, которые широко используются в Европе для переработки жидких отходов и сточных вод. Такой резиновый верх эффективен при высокой температуре окружающей среды и отсутствии риска повреждений баллона. У конструкции с фиксированным куполом полностью закрытый реактор и компенсирующая емкость для выгрузки шлама. Газ скапливается в куполе, при загрузке очередной порции сырья переработанная масса выталкивается в компенсационную емкость.
  • Биосистемы с плавающим куполом состоят из монолитного биореактора, расположенного под землей и подвижного газгольдера, который плавает в специальном водяном кармане или прямо в сырье и поднимается под действием давления газа. Преимуществом плавающего купола является легкость эксплуатации и возможность определения давления газа по высоте поднятия купола. Это отличное решение для крупной фермы.
  • При выборе подземного или расположения установки над поверхностью, нужно учитывать уклон рельефа, что облегчает загрузку и выгрузку сырья, усиленную теплоизоляцию подземных конструкций, которая защищает биомассу от суточных колебаний температуры и делает процесс брожения более стабильным.

Конструкция может оснащаться дополнительными устройствами для подогрева и перемешивания сырья.

Рентабельно ли делать реактор и пользоваться биогазом

Строительство биогазовой установки преследует следующие цели:

  • производство дешевой энергии;
  • выработка легкоусваиваемых удобрений;
  • экономия на подключении к дорогостоящей канализации;
  • переработка отходов хозяйства;
  • возможная прибыль от продажи газа;
  • снижение интенсивности неприятного запаха и улучшение экологической обстановки на территории.

График рентабельности выработки и использования биогаза

Для оценки выгоды строительства биореактора рачительному хозяину следует учесть следующие аспекты:

  • затраты на биоустановку относятся к долгосрочным капиталовложениям;
  • самодельное биогазовое оборудование и установка реактора без привлечения сторонних специалистов обойдется гораздо дешевле, но и его эффективность ниже, чем у дорогого заводского;
  • для поддержания стабильного давления газа, у фермера должен быть доступ к отходам животноводческого производства в достаточном количестве и на длительный срок. В случае высоких цен на электроэнергию и природный газ или отсутствие возможности газификации, использование установки становится не только выгодным, но и необходимым;
  • для крупных хозяйств с собственной сырьевой базой, выгодным решением будет включение биореактора в систему теплиц и ферм КРС;
  • для небольших ферм повысить эффективность можно путем монтажа нескольких небольших реакторов и загружать сырье в разные промежутки времени. Это позволит избежать перебоев с газом при недостатке исходного сырья.

Как построить биореактор своими силами

Решение о строительстве принято, теперь нужно спроектировать установку и рассчитать необходимые материалы, инструменты и оборудование.

Важно! Стойкость к агрессивным кислым и щелочным средам – основное требование к материалу биореактора.

Если в наличии есть металлическая цистерна – ее можно использовать при условии защитного покрытия от коррозии. При выборе емкости из металла обратите внимание на наличие сварных швов и их прочность.

Прочный и удобный вариант – емкость из полимера. Этот материал не гниет и не ржавеет. Прекрасно выдержит нагрузку бочка с толстыми жесткими стенками или армированная.

Самый дешевый способ – выкладка емкости из кирпича или камня, бетонных блоков. Для увеличения прочности стены армируют и покрывают внутри и снаружи многослойным гидроизоляционным и газонепроницаемым покрытием. Штукатурка должна содержать присадки, обеспечивающие заданные свойства. Наилучшая форма, которая позволит выдержать все нагрузки давления – овальная или цилиндрическая.

В основании этой емкости предусматривают наличие отверстия, через которое будет удаляться отработанное сырье. Данное отверстие должно плотно закрываться, ведь система эффективно работает лишь в герметичных условиях.

Расчёт необходимых инструментов и материалов

Для выкладки кирпичной емкости и устройства всей системы понадобятся следующие инструменты и материалы:

  • ёмкость для замешивания цементного раствора или бетономешалка;
  • дрель с насадкой миксер;
  • щебень и песок для устройства дренажной подушки;
  • лопата, рулетка, мастерок, шпатель;
  • кирпич, цемент, вода, мелкофракционный песок, арматура, пластификатор и другие необходимые присадки;
  • сварочный аппарат и крепеж для монтажа металлических труб и комплектующих;
  • водяной фильтр и ёмкость с металлической стружкой для очистки газа;
  • баллоны от шин или стандартные пропановые баллоны для хранения газа.

Размер бетонного резервуара определяется из количества органических отходов, появляющихся ежесуточно в частном подворье или фермерском хозяйстве. Полноценная работа биореактора возможно в случае его заполнения на две трети от имеющегося объема.

Определим объем реактора для небольшого частного хозяйства: если в наличии есть 5 коров, 10 свиней и 40 кур, то за сутки их жизнедеятельности образуется помета 5 х 55 кг + 10 х 4,5 кг + 40 х 0,17 кг = 275 кг + 45 кг + 6,8 кг = 326,8 кг. Чтобы довести куриный помет до необходимой влажности 85% необходимо долить 5 литров воды. Общая масса = 331,8 кг. Для переработки за 20 дней необходимо: 331,8 кг х 20 = 6636 кг - около 7 кубов только под субстрат. Это две трети нужного объема. Чтобы получить результат, нужно 7х1,5= 10,5 куб. Полученная величина и есть необходимый объём биореактора.

Помните, что добыть большое количество биогаза в маленьких емкостях не получится. Выход напрямую зависит от массы перерабатываемых в реакторе органических отходов. Так, чтобы получить 100 кубических метров биогаза, надо переработать тонну органических отходов.

Подготовка места для устройства биореактора

Органическая смесь, загружаемая в реактор не должна содержать антисептиков, моющих средств, химических веществ, вредных для жизнедеятельности бактерий и замедляющих выработку биогаза.

Важно! Биогаз является воспламеняющимся и взрывоопасным.

Для правильной работы биореактора необходимо соблюдать те же правила, что и для любых газовых установок. Если оборудование герметично, биогаз своевременно отводится в газгольдер, то проблем не возникнет.

Если же давление газа превысит норму или будет травить при нарушении герметичности, возникает риск взрыва, поэтому рекомендуется установить датчики температуры и давления в реакторе. Вдыхание биогаза также опасно для здоровья человека.

Как обеспечить активность биомассы

Ускорить процесс брожения биомассы можно с помощью ее подогрева. Как правило, в южных регионах такой проблемы не возникает. Температуры окружающего воздуха хватает для естественной активации процессов брожения. В регионах с суровыми климатическими условиями в зимнее время без подогрева вообще невозможна эксплуатация установки по производству биогаза. Ведь процесс брожения запускается при температуре, превышающей отметку в 38 градусов по Цельсию.

Организовать подогрев резервуара с биомассой можно несколькими способами:

  • подключить к системе отопления змеевик, расположенный под реактором;
  • установить в основании емкости электрические нагревательные элементы;
  • обеспечить прямой нагрев резервуара путем использования электрических отопительных приборов.

Бактерии, влияющие на выработку метана, находятся в спящем состоянии в самом сырье. Их активность повышается при определенном уровне температуры. Обеспечить нормальное течение процесса позволит установка автоматизированной системы подогрева. Автоматика включит обогревательное оборудование при поступлении в биореактор очередной холодной партии, а затем выключит, когда биомасса прогреется до заданного уровня температуры.

Подобные системы контроля температуры устанавливаются в водогрейных котлах, поэтому их можно приобрести в магазинах, специализирующихся на продаже газового оборудования.

На схеме показан весь цикл, начиная от загрузки твердого и жидкого сырья, и заканчивая отводом биогаза к потребителям

Важно заметить, что активизировать выработку биогаза в домашних условиях можно с помощью перемешивания биомассы в реакторе. Для этого изготавливают устройство, конструктивно похожее на бытовой миксер. Привести устройство в движение может вал, который выводят через отверстие, расположенное в крышке или стенках резервуара.

Какие специальные разрешения требуются на установку и использование биогаза

Чтобы построить и эксплуатировать биореактор, а также использовать полученный газ, нужно еще на стадии проектирования озаботиться получением необходимых разрешений. Согласование нужно пройти с газовой службой, пожарниками и Ростехнадзором. В целом правила установки и эксплуатации аналогичны правилам пользования обычным газовым оборудованием. Строительство должно производиться строго по СНИПам, все трубопроводы должны быть желтого цвета и иметь соответствующую маркировку. Готовые системы, изготовленные на заводе, стоят в разы дороже, но имеют все сопроводительные документы, соответствуют всем техническим требованиям. Производители дают на оборудование гарантию и производят обслуживание и ремонт своей продукции.

Самодельная установка для получения биогаза может позволить экономить на оплате энергоносителей, занимающих большую долю в определении себестоимости сельскохозяйственной продукции. Снижение расходов на выпуск продукции скажется на увеличении рентабельности фермерского хозяйства или частного подворья. Теперь, когда вы знаете, как получить из имеющихся отходов биогаз, остается лишь реализовать идею на практике. Многие фермеры уже давно научились из навоза делать деньги.