(from Greek λόγος - “word”, “relation” and ἀριθμός - “number”) numbers b based on a(log α b) is called such a number c, And b= a c, that is, records log α b=c And b=ac are equivalent. The logarithm makes sense if a > 0, a ≠ 1, b > 0.

In other words logarithm numbers b based on A formulated as an exponent to which a number must be raised a to get the number b(logarithm exists only for positive numbers).

From this formulation it follows that the calculation x= log α b, is equivalent to solving the equation a x =b.

For example:

log 2 8 = 3 because 8 = 2 3 .

Let us emphasize that the indicated formulation of the logarithm makes it possible to immediately determine logarithm value, when the number under the logarithm sign acts as a certain power of the base. Indeed, the formulation of the logarithm makes it possible to justify that if b=a c, then the logarithm of the number b based on a equals With. It is also clear that the topic of logarithms is closely related to the topic powers of a number.

Calculating the logarithm is called logarithm. Logarithm is the mathematical operation of taking a logarithm. When taking logarithms, products of factors are transformed into sums of terms.

Potentiation is the inverse mathematical operation of logarithm. During potentiation, a given base is raised to the degree of expression over which potentiation is performed. In this case, the sums of terms are transformed into a product of factors.

Quite often, real logarithms are used with bases 2 (binary), Euler's number e ≈ 2.718 (natural logarithm) and 10 (decimal).

On at this stage it is advisable to consider logarithm samples log 7 2 , ln 5, lg0.0001.

And the entries lg(-3), log -3 3.2, log -1 -4.3 do not make sense, since in the first of them a negative number is placed under the logarithm sign, in the second - a negative number in the base, and in the third - both a negative number under the logarithm sign and a unit in the base.

Conditions for determining the logarithm.

It is worth considering separately the conditions a > 0, a ≠ 1, b > 0.under which we get definition of logarithm. Let's consider why these restrictions were taken. An equality of the form x = log α will help us with this b, called the basic logarithmic identity, which directly follows from the definition of logarithm given above.

Let's take the condition a≠1. Since one to any power is equal to one, then the equality x=log α b can only exist when b=1, but log 1 1 will be any real number. To eliminate this ambiguity, we take a≠1.

Let us prove the necessity of the condition a>0. At a=0 according to the formulation of the logarithm can exist only when b=0. And accordingly then log 0 0 can be any non-zero real number, since zero to any non-zero power is zero. This ambiguity can be eliminated by the condition a≠0. And when a<0 we would have to reject the analysis of rational and irrational values ​​of the logarithm, since a degree with a rational and irrational exponent is defined only for non-negative bases. It is for this reason that the condition is stipulated a>0.

And the last condition b>0 follows from inequality a>0, since x=log α b, and the value of the degree with a positive base a always positive.

Features of logarithms.

Logarithms characterized by distinctive features, which led to their widespread use to significantly facilitate painstaking calculations. When moving “into the world of logarithms,” multiplication is transformed into a much easier addition, division is transformed into subtraction, and exponentiation and root extraction are transformed, respectively, into multiplication and division by the exponent.

Formulation of logarithms and table of their values ​​(for trigonometric functions) was first published in 1614 by the Scottish mathematician John Napier. Logarithmic tables, enlarged and detailed by other scientists, were widely used in scientific and engineering calculations, and remained relevant until the use of electronic calculators and computers.

Logarithms, like any numbers, can be added, subtracted and transformed in every way. But since logarithms are not exactly regular numbers, there are rules here, which are called main properties.

You definitely need to know these rules - without them, not a single serious logarithmic problem can be solved. In addition, there are very few of them - you can learn everything in one day. So let's get started.

Adding and subtracting logarithms

Consider two logarithms with on the same grounds: log a x and log a y. Then they can be added and subtracted, and:

  1. log a x+ log a y=log a (x · y);
  2. log a x− log a y=log a (x : y).

So, the sum of logarithms is equal to the logarithm of the product, and the difference is equal to the logarithm of the quotient. Note: key moment Here - identical grounds. If the reasons are different, these rules do not work!

These formulas will help you calculate logarithmic expression even when its individual parts are not counted (see lesson “What is a logarithm”). Take a look at the examples and see:

Log 6 4 + log 6 9.

Since logarithms have the same bases, we use the sum formula:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Task. Find the value of the expression: log 2 48 − log 2 3.

The bases are the same, we use the difference formula:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Task. Find the value of the expression: log 3 135 − log 3 5.

Again the bases are the same, so we have:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

As you can see, the original expressions are made up of “bad” logarithms, which are not calculated separately. But after the transformations, completely normal numbers are obtained. Many are built on this fact test papers. Yes, test-like expressions are offered in all seriousness (sometimes with virtually no changes) on the Unified State Examination.

Extracting the exponent from the logarithm

Now let's complicate the task a little. What if the base or argument of a logarithm is a power? Then the exponent of this degree can be taken out of the sign of the logarithm according to the following rules:

It is easy to see that the last rule follows the first two. But it’s better to remember it anyway - in some cases it will significantly reduce the amount of calculations.

Of course, all these rules make sense if the ODZ of the logarithm is observed: a > 0, a ≠ 1, x> 0. And one more thing: learn to apply all formulas not only from left to right, but also vice versa, i.e. You can enter the numbers before the logarithm sign into the logarithm itself. This is what is most often required.

Task. Find the value of the expression: log 7 49 6 .

Let's get rid of the degree in the argument using the first formula:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Task. Find the meaning of the expression:

[Caption for the picture]

Note that the denominator contains a logarithm, the base and argument of which are exact powers: 16 = 2 4 ; 49 = 7 2. We have:

[Caption for the picture]

I think the last example requires some clarification. Where have logarithms gone? Until the very last moment we work only with the denominator. We presented the base and argument of the logarithm standing there in the form of powers and took out the exponents - we got a “three-story” fraction.

Now let's look at the main fraction. The numerator and denominator contain the same number: log 2 7. Since log 2 7 ≠ 0, we can reduce the fraction - 2/4 will remain in the denominator. According to the rules of arithmetic, the four can be transferred to the numerator, which is what was done. The result was the answer: 2.

Transition to a new foundation

Speaking about the rules for adding and subtracting logarithms, I specifically emphasized that they only work with the same bases. What if the reasons are different? What if they are not exact powers of the same number?

Formulas for transition to a new foundation come to the rescue. Let us formulate them in the form of a theorem:

Let the logarithm log be given a x. Then for any number c such that c> 0 and c≠ 1, the equality is true:

[Caption for the picture]

In particular, if we put c = x, we get:

[Caption for the picture]

From the second formula it follows that the base and argument of the logarithm can be swapped, but in this case the entire expression is “turned over”, i.e. the logarithm appears in the denominator.

These formulas are rarely found in ordinary numerical expressions. It is possible to evaluate how convenient they are only when solving logarithmic equations and inequalities.

However, there are problems that cannot be solved at all except by moving to a new foundation. Let's look at a couple of these:

Task. Find the value of the expression: log 5 16 log 2 25.

Note that the arguments of both logarithms contain exact powers. Let's take out the indicators: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

Now let’s “reverse” the second logarithm:

[Caption for the picture]

Since the product does not change when rearranging factors, we calmly multiplied four and two, and then dealt with logarithms.

Task. Find the value of the expression: log 9 100 lg 3.

The base and argument of the first logarithm are exact powers. Let's write this down and get rid of the indicators:

[Caption for the picture]

Now let's get rid of the decimal logarithm by moving to a new base:

[Caption for the picture]

Basic logarithmic identity

Often in the solution process it is necessary to represent a number as a logarithm to a given base. In this case, the following formulas will help us:

In the first case, the number n becomes an indicator of the degree standing in the argument. Number n can be absolutely anything, because it’s just a logarithm value.

The second formula is actually a paraphrased definition. That’s what it’s called: the basic logarithmic identity.

In fact, what will happen if the number b raise to such a power that the number b to this power gives the number a? That's right: you get this same number a. Read this paragraph carefully again - many people get stuck on it.

Like formulas for moving to a new base, the basic logarithmic identity is sometimes the only possible solution.

Task. Find the meaning of the expression:

[Caption for the picture]

Note that log 25 64 = log 5 8 - simply took the square from the base and argument of the logarithm. Taking into account the rules for multiplying powers with the same base, we get:

[Caption for the picture]

If anyone doesn't know, this was a real task from the Unified State Exam :)

Logarithmic unit and logarithmic zero

In conclusion, I will give two identities that can hardly be called properties - rather, they are consequences of the definition of the logarithm. They constantly appear in problems and, surprisingly, create problems even for “advanced” students.

  1. log a a= 1 is a logarithmic unit. Remember once and for all: logarithm to any base a from this very base is equal to one.
  2. log a 1 = 0 is logarithmic zero. Base a can be anything, but if the argument contains one, the logarithm is equal to zero! Because a 0 = 1 is direct consequence from the definition.

That's all the properties. Be sure to practice putting them into practice! Download the cheat sheet at the beginning of the lesson, print it out, and solve the problems.

Today we will talk about logarithmic formulas and we will give indicative solution examples.

They themselves imply solution patterns according to the basic properties of logarithms. Before applying logarithmic formulas to solve, let us remind you of all the properties:

Now, based on these formulas (properties), we will show examples of solving logarithms.

Examples of solving logarithms based on formulas.

Logarithm a positive number b to base a (denoted by log a b) is an exponent to which a must be raised to get b, with b > 0, a > 0, and 1.

According to the definition, log a b = x, which is equivalent to a x = b, therefore log a a x = x.

Logarithms, examples:

log 2 8 = 3, because 2 3 = 8

log 7 49 = 2, because 7 2 = 49

log 5 1/5 = -1, because 5 -1 = 1/5

Decimal logarithm- this is an ordinary logarithm, the base of which is 10. It is denoted as lg.

log 10 100 = 2, because 10 2 = 100

Natural logarithm- also an ordinary logarithm, a logarithm, but with the base e (e = 2.71828... - an irrational number). Denoted as ln.

It is advisable to memorize the formulas or properties of logarithms, because we will need them later when solving logarithms, logarithmic equations and inequalities. Let's work through each formula again with examples.

  • Basic logarithmic identity
    a log a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Logarithm of the product equal to the sum logarithms
    log a (bc) = log a b + log a c

    log 3 8.1 + log 3 10 = log 3 (8.1*10) = log 3 81 = 4

  • Logarithm of the quotient equal to the difference logarithms
    log a (b/c) = log a b - log a c

    9 log 5 50 /9 log 5 2 = 9 log 5 50- log 5 2 = 9 log 5 25 = 9 2 = 81

  • Properties of the power of a logarithmic number and the base of the logarithm

    Exponent of the logarithmic number log a b m = mlog a b

    Exponent of the base of the logarithm log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    if m = n, we get log a n b n = log a b

    log 4 9 = log 2 2 3 2 = log 2 3

  • Transition to a new foundation
    log a b = log c b/log c a,

    if c = b, we get log b b = 1

    then log a b = 1/log b a

    log 0.8 3*log 3 1.25 = log 0.8 3*log 0.8 1.25/log 0.8 3 = log 0.8 1.25 = log 4/5 5/4 = -1

As you can see, the formulas for logarithms are not as complicated as they seem. Now, having looked at examples of solving logarithms, we can move on to logarithmic equations. We will look at examples of solving logarithmic equations in more detail in the article: "". Do not miss!

If you still have questions about the solution, write them in the comments to the article.

Note: we decided to get a different class of education and study abroad as an option.

One of the elements of primitive level algebra is the logarithm. The name comes from Greek language from the word “number” or “power” and means the degree to which the number in the base must be raised to find the final number.

Types of logarithms

  • log a b – logarithm of the number b to base a (a > 0, a ≠ 1, b > 0);
  • log b – decimal logarithm (logarithm to base 10, a = 10);
  • ln b – natural logarithm (logarithm to base e, a = e).

How to solve logarithms?

The logarithm of b to base a is an exponent that requires b to be raised to base a. The result obtained is pronounced like this: “logarithm of b to base a.” Solution logarithmic problems is that you need to determine a given degree by numbers based on the specified numbers. There are some basic rules to determine or solve the logarithm, as well as convert the notation itself. Using them, logarithmic equations are solved, derivatives are found, integrals are solved, and many other operations are carried out. Basically, the solution to the logarithm itself is its simplified notation. Below are the basic formulas and properties:

For any a ; a > 0; a ≠ 1 and for any x ; y > 0.

  • a log a b = b – basic logarithmic identity
  • log a 1 = 0
  • loga a = 1
  • log a (x y) = log a x + log a y
  • log a x/ y = log a x – log a y
  • log a 1/x = -log a x
  • log a x p = p log a x
  • log a k x = 1/k log a x , for k ≠ 0
  • log a x = log a c x c
  • log a x = log b x/ log b a – formula for moving to a new base
  • log a x = 1/log x a


How to solve logarithms - step-by-step instructions for solving

  • First, write down the required equation.

Please note: if the base logarithm is 10, then the entry is shortened, resulting in a decimal logarithm. If it's worth natural number e, then we write it down, reducing it to the natural logarithm. This means that the result of all logarithms is the power to which the base number is raised to obtain the number b.


Directly, the solution lies in calculating this degree. Before solving an expression with a logarithm, it must be simplified according to the rule, that is, using formulas. You can find the main identities by going back a little in the article.

Adding and subtracting logarithms with two different numbers, but with the same bases, replace with one logarithm with the product or division of the numbers b and c, respectively. In this case, you can apply the formula for moving to another base (see above).

If you use expressions to simplify a logarithm, there are some limitations to consider. And that is: the base of the logarithm a is only positive number, but not equal to one. The number b, like a, must be greater than zero.

There are cases where, by simplifying an expression, you will not be able to calculate the logarithm in numerical form. It happens that such an expression does not make sense, because many powers are irrational numbers. Under this condition, leave the power of the number as a logarithm.



Maintaining your privacy is important to us. For this reason, we have developed a Privacy Policy that describes how we use and store your information. Please review our privacy practices and let us know if you have any questions.

Collection and use of personal information

Personal information refers to data that can be used to identify certain person or connection with him.

You may be asked to provide your personal information any time you contact us.

Below are some examples of the types of personal information we may collect and how we may use such information.

What personal information do we collect:

  • When you submit an application on the site, we may collect various information, including your name, telephone number, address Email etc.

How we use your personal information:

  • The personal information we collect allows us to contact you and inform you about unique offers, promotions and other events and upcoming events.
  • From time to time, we may use your personal information to send important notices and communications.
  • We may also use personal information for internal purposes such as auditing, data analysis and various studies in order to improve the services we provide and provide you with recommendations regarding our services.
  • If you participate in a prize draw, contest or similar promotion, we may use the information you provide to administer such programs.

Disclosure of information to third parties

We do not disclose the information received from you to third parties.

Exceptions:

  • If necessary - in accordance with the law, judicial procedure, legal proceedings, and/or based on public requests or requests from government agencies on the territory of the Russian Federation - disclose your personal information. We may also disclose information about you if we determine that such disclosure is necessary or appropriate for security, law enforcement, or other public importance purposes.
  • In the event of a reorganization, merger, or sale, we may transfer the personal information we collect to the applicable successor third party.

Protection of personal information

We take precautions - including administrative, technical and physical - to protect your personal information from loss, theft, and misuse, as well as unauthorized access, disclosure, alteration and destruction.

Respecting your privacy at the company level

To ensure that your personal information is secure, we communicate privacy and security standards to our employees and strictly enforce privacy practices.