С древнейших времен люди искали способы записи и хранения различной информации. Сначала они рисовали на скалах и глине. Затем появился пергамент, а позже - бумага. В XX веке с появлением первых компьютеров хранить информацию стало легче, но эволюция носителей информации лишь ускорилась. Казалось бы, еще вчера мы записывали нужные нам файлы на дискеты. А сегодня мы уже пользуемся 256-гигабайтными флешками! В общем, развитие технологий хранения информации не стоит на месте. Поэтому в этот раз мы вспоминаем, с чего же началась история компьютерных носителей информации, и расскажем о том, каких результатов добилась индустрия к концу XX века.

В таком виде сохраняли информацию в былые времена

Станок Жаккара. Перфокарты

История носителей информации берет свое начало в начале XIX века. Причем в роли прародителя запоминающих устройств выступает - кто бы мог подумать! - ткацкий станок. Автором первого изобретения в области хранения данных стал французский изобретатель Жозеф Мари Жаккар. Долгое время он работал со станками в качестве подмастерья, ткача и наладчика, поэтому богатый опыт значительно помог ему в дальнейшей изобретательской деятельности. Итак, в чем же заключалась инновационная идея Жаккара? Несмотря на то, что производство ткани в то время являлось довольно сложным процессом, по своей сути оно представляло собой постоянное повторение одних и тех же действий. Жаккар пришел к выводу, что этот процесс можно автоматизировать.

Жозеф Мари Жаккар - создатель ткацкого станка, использующего перфокарты

Французский изобретатель придумал такую систему, которая использовала в своей работе специальные твердые пластины с отверстиями. Они и являлись первыми в мире перфокартами. Прежде подобные пластины использовались в станках Вокансона и Бушона, однако эти устройства были слишком дороги в производстве и по этой причине так и не прижились. В своей же разработке Жаккар учел все недостатки этих аппаратов. В пластинах было увеличено количество рядов отверстий, что обеспечило обработку большего числа нитей, а, следовательно, и повышение производительности станка. Кроме этого, был значительно упрощен процесс подачи пластин в считывающее устройство - набор щупов, связанных со стержнями нитей. При проходе пластины щупы проваливались в отверстия, поднимая вверх соответствующие нити и образуя основные перекрытия в ткани. Таким образом, определенная комбинация отверстий на пластине позволяла создать ткань с нужным узором.

Ткацкий станок Жаккара

Первый автоматизированный станок Жаккар создал в 1801 году и на протяжении еще нескольких лет дорабатывал его. За свои достижения изобретатель получил пенсию в 3000 франков и одобрение Наполеона. Однако ни сам Жаккар, ни французский император не имели ни малейшего понятия, насколько важным станет это изобретение в будущем.

В 30-х годах XIX века на разработанные Жаккаром перфокарты обратил внимание английский математик Чарльз Бэббидж. В то время ученый ум трудился над созданием аналитической машины и решил использовать в ее конструкции перфокарты. Для этого англичанин даже совершил путешествие во Францию с целью подробно изучить станки Жаккара. Увы, но из-за низкого уровня технологий и недостатка финансовых средств аналитическая машина Бэббиджа так и не увидела свет. Тем не менее, ее конструкция стала впоследствии прообразом современных компьютеров.

Табулятор Холлерита

Кроме этого, перфокарты использовались в табуляторе, разработанном в 1890 году Германом Холлеритом. Табулятор являлся механизмом для обработки статистических данных и использовался на благо Бюро переписи населения США. Кстати, созданная Холлеритом компания Tabulating Machine Company в конечном итоге была переименована в International Business Machines (IBM). На протяжении нескольких десятков лет IBM развивала и продвигала технологию перфокарт. В середине XX века они использовались повсеместно, получив особенно широкое распространение в компьютерной технике и различных станках. Закат эпохи перфокарт пришелся на 1980-е годы, когда на смену им пришли более совершенные магнитные носители информации. Интересно, что отдел исследования перфокарт компании IBM существовал вплоть до 2000-х годов. Например, в 2002 году в IBM изучали создание перфокарты размером с почтовую марку, которая могла бы содержать до 25 миллионов страниц информации.

Небольшие перфокарты

Магнитные диски

Несмотря на то, что перфокарты отличались простотой изготовления, они обладали и целым рядом довольно существенных недостатков. Во-первых, это небольшая емкость. Стандартная перфокарта вмещала в себе около 80 символов, что соответствовало 100 байтам информации. Это очень мало. Судите сами: для хранения одного мегабайта данных потребовалось бы свыше десяти тысяч таких перфокарт. Во-вторых, это низкая скорость чтения и записи. Даже самые совершенные считывающие устройства могли обрабатывать не более одной тысячи перфокарт в минуту. То есть за секунду они считывали лишь 1,6 Кбайт данных. Ну и в-третьих, это невысокая надежность и невозможность повторной записи. Конечно, понятие «надежность» не совсем корректно использовать по отношению к перфокартам. Однако, согласитесь, повредить изготовленную из тонкого картона пластину не составляет никакого труда. Вдобавок к этому делать отверстия в картах нужно было очень аккуратно и внимательно: одна лишняя «дырка» - и перфокарта приходила в негодность, а хранящаяся на ней информация безвозвратно пропадала.

К хранению данных требовался новый подход. И в середине XX века были созданы первые магнитные носители информации. Эпоху данного типа накопителей открыла магнитная пленка, разработанная немецким инженером Фрицем Пфлюмером. Патент на это устройство был выдан еще в 1928 году, но немецкие власти так долго «скрывали» технологию внутри страны, что за пределами державы о ней стало известно лишь после окончания Второй мировой войны. Магнитная пленка изготавливалась из тонкого слоя бумаги, на который напылялся порошок оксида железа. При записи информации пленка попадала под воздействие магнитного поля, и на поверхности ленты сохранялась определенная намагниченность. Это свойство затем и использовали считывающие устройства.

Магнитная лента использовалась в компьютере UNIVAC-I

Впервые магнитная лента была применена в коммерческом компьютере UNIVAC-I, выпущенном в 1951 году. Кстати, его первый экземпляр попал в то же самое Бюро переписи населения США. Магнитная пленка, используемая в UNIVAC-I, была намного более емкой, нежели перфокарты. Ее объем равнялся емкости десяти тысяч перфокарт, то есть он составлял примерно 1 Мбайт.

Развитие технологии магнитных лент продолжалось до 1980-х годов. В течение этого времени подобные накопители использовались в основном в мейнфреймах и мини-компьютерах. Ну а с 80-х годов магнитная лента использовалась лишь для резервного хранения данных. Этому способствовало то, что ленточные картриджи оставались надежным и очень дешевым носителем информации. Но даже несмотря на эти преимущества, к концу 2000-х годов специалисты предрекали конец эпохи магнитных лент - цены на жесткие диски продолжали падать. Вдобавок они предлагали высокую плотность записи. Начиная с 2008 года, рынок ленточных накопителей уменьшался примерно на 14% в год, и даже ярые сторонники технологии признавали, что у нее нет шансов на выживание. Однако ситуация резко изменилась в 2011 году. В Таиланде произошло наводнение, продолжавшееся, по официальным данным, 175 дней. В результате наводнения было затоплено несколько индустриальных зон, где были расположены заводы по производству жестких дисков таких компаний, как Seagate, Western Digital и Toshiba. Как итог, цены на продукцию возросли на 60%, а объемы производства упали. Так магнитная лента получила вторую жизнь.

Магнитная лента IBM

Стоит отметить, что ленточные накопители, как правило, используются в тех сферах, где необходимо хранить очень большое количество информации. Например, в каких-либо крупных исследованиях. Так, магнитную ленту используют для записи результатов исследований на Большом адронном коллайдере. О преимуществах технологии в свое время рассказывал Альберто Пейс (Alberto Pace) - глава подразделения обработки и хранения данных CERN. Он отметил, что магнитная лента имеет четыре основных преимущества над жесткими дисками. Прежде всего, это скорость. Несмотря на то, что специализированному роботу требуется до 40 секунд, чтобы выбрать нужную кассету и вставить ее в считыватель, чтение данных из ленты происходит в четыре раза быстрее, чем с жесткого диска. Еще одним преимуществом магнитной ленты, по словам Пейса, является ее надежность. Если она рвётся, то ее можно легко склеить. В этом случае теряется лишь несколько сотен мегабайт данных. Когда выходит из строя жесткий диск, теряются абсолютно все данные. Глава подразделения CERN привел некоторые статистические данные, касающиеся надежности устройств. Так, в среднем за год в CERN из 100 петабайт данных, хранящихся на магнитных лентах, теряется лишь несколько сотен мегабайт. На жестких дисках располагается около 50 петабайт информации, и каждый год организация теряет до нескольких сотен терабайт в результате неисправностей HDD. Третьим преимуществом магнитной ленты является ее энергоэффективность, а точнее, экономичность. Сами ленты хранятся в неактивном состоянии, следовательно, они не потребляют энергию. Наконец, четвертое - это безопасность. Если злоумышленники получат доступ к жестким дискам, то они смогут уничтожить всю информацию за считанные минуты. В случае с магнитными лентами на это может уйти не один год.

Хранилище магнитных лент в CERN

Еще на два преимущества ленточных накопителей указал Эвангелос Элефтеро - руководитель отдела технологий хранения данных исследовательской лаборатории IBM в Цюрихе. Он отметил, что магнитные ленты все еще дешевле, чем жесткие диски. 1 Гбайт HDD стоит примерно 10 центов, тогда как стоимость аналогичной емкости магнитной ленты оценивается в 4 цента. Также Элефтеро обратил внимание на долговечность лент. Такой накопитель будет служить верой и правдой даже через 30 лет, в то время как рабочий цикл жесткого диска составляет всего 5 лет.

Тем не менее, стоит понимать, что магнитные ленты уже никогда не будут использоваться как единственная система хранения данных. Они занимают важное место в иерархической структуре хранения информации, но не являются (и не будут) ее основным звеном.

Дискеты

Следующей ступенью развития магнитных носителей информации стала дискета, которая была представлена в 1971 году. Над созданием девайса трудилась компания IBM. В 1967 году у «голубого гиганта» появилась необходимость рассылать клиентам обновления софта, и команда инженеров под руководством Алана Шугарта предложила идею компактного и быстрого гибкого диска. Спустя несколько лет в стенах IBM была создана 8-дюймовая дискета объемом 80 Кбайт с возможностью одноразовой записи. Решение получилось не очень удачным, поскольку притягивало много пыли и было чересчур хрупким для карманного девайса. Поэтому разработчики решили упаковать гибкий диск в защитный пластиковый кожух с тканевой прокладкой.

По своей конструкции дискета представляла собой диск из полимерных материалов, на который наносилось магнитное покрытие. Пластиковый кожух имел несколько отверстий. Центральное предназначалось для шпинделя дисковода, малое отверстие являлось индексным, то есть позволяло определить начало сектора. Наконец, через прямоугольное отверстие с закругленными углами магнитные головки дисковода работали непосредственно с диском.

Эта огромная 8-дюймовая дискета вмещала всего 80 Кбайт информации

Для чтения дискет компьютеры начали оснащаться дисководами, однако стоимость таких девайсов была сопоставима со стоимостью всей системы. Поэтому многие продолжали использовать кассеты. Прошло немало времени, пока дискеты не вытеснили магнитные ленты.

После создания первой дискеты работа над этим стандартом продолжилась. В 1973 году емкость 8-дюймовой дискеты увеличилась до 256 Кбайт, а еще спустя два года ее объем составлял целых 1000 Кбайт. Главным недостатком дискеты тогда был ее размер. В диаметре диск достигал приличных 203 мм, и это без учета корпуса дискеты. Такой девайс в лучшем случае можно было уместить в рюкзак или средних размеров сумку. А ведь дискета задумывалась как карманное устройство! Поэтому в 1976 году Шугарт предложил новый формат - 5,25 дюймов.

Почему именно такой размер? Бытует мнение, что однажды Алан Шугарт сидел в баре вместе с Ан Вэнгом из Wang Laboratories. Инженеры обсуждали новый формат дискеты, и в ходе разговора возникла идея создать девайс размером с салфетку. Новые решения получили название mini-floppy.

5,25-дюймовые дискеты тоже имели внушительный размер

По своей конструкции 5,25-дюймовые дискеты лишь немного отличались от 8-дюймовых собратьев. Отчасти изменилось положение отверстий на дискете, а футляр стал прочнее. Края приводного отверстия были защищены пластиковым или металлическим кольцом. Изначально объем таких дискет составлял 110 Кбайт, однако к 1984 году он был увеличен до 1,2 Мбайт. Именно с 5,25-дюймовых решений началось повсеместное распространение дискет. Этому способствовала более низкая в сравнении с 8-дюймовыми девайсами цена.

В 1981 году дискета обрела привычный для нас формат - 3,5 дюйма. Такой дизайн предложила компания Sony. Изначально объем дискеты составлял 720 Кбайт, но спустя пару лет он был увеличен вдвое. Чуть позже появились и более вместительные решения емкостью 2,88 Мбайт. Многие крупные компании поддержали уменьшенный стандарт. Например, компания Apple уже в 1984 году устанавливала приводы для 3,5-дюймовых дискет на компьютеры Macintosh.

Три поколения дискет: 8’’, 5,25’’ и 3,5’’ (слева направо)

В начале 90-х годов емкость дискет удовлетворяла далеко не всех пользователей. Одновременно разрабатывался целый ряд различных стандартов, которые должны были прийти на смену 3,5-дюймовым дискетам. Наиболее популярным из них стал Iomega Zip. По своей конструкции такая дискета во многом повторяла существующие. Носитель Iomega Zip представлял собой полимерный диск, покрытый ферромагнитным слоем. Корпус дискеты изготавливался из пластика и имел защитную шторку. Объем таких решений составлял 100 или 250 Мбайт, а через некоторое время выпускались даже 750-мегабайтные девайсы! Кроме этого, Iomega Zip обеспечивали более высокую скорость записи и чтения. Тем не менее стандарт так и не смог потеснить 3,5-дюймовые дискеты с вершины. Виной всему - высокая цена устройств. Да и, скажем прямо, надежностью дискеты Zip вовсе не отличались.

Оптические накопители. CD

Параллельно с дискетами развивался и рынок оптических накопителей. Первой ласточкой в этой области стал девайс под названием Laserdisc (LD), разработанный в 1969 году компанией Philips. Носитель предназначался для домашнего просмотра кинофильмов. Он поддерживал аналоговую запись изображения и звука. Чуть позже звук стал цифровым. Laserdisc имел ряд преимуществ над кассетными стандартами VHS и Betamax, однако так и не смог заменить их. В основном формат был популярен в США и Японии. В Европе к нему отнеслись довольно прохладно. Кстати, первым фильмом, вышедшим на LD, стали «Челюсти». Это произошло в 1978 году в США. Последние фильмы на лазердисках были выпущены компанией Paramount в 2000 году. Несмотря на провал стандарта, используемые в нем технологии оказали влияние на развитие форматов следующего поколения.

Своими размерами Laserdisc напоминал виниловую пластинку

На смену Laserdisc пришел намного более успешный формат Compact Disc (CD). Стандарт CD разрабатывался совместными усилиями таких компаний, как Sony и Philips, и был выпущен в 1982 году. Изначально CD предполагалось использовать только для хранения аудиозаписей в цифровом виде, однако со временем на компакт-дисках начали хранить и распространять файлы любых типов. Этому способствовало и то, что, начиная с 1987 года, Microsoft и Apple начали использовать CD-приводы в своих персональных компьютерах.

Как же устроен компакт-диск? Он представляет собой поликарбонатную подложку, покрытую тонким слоем металла. Этот слой защищен лаком, на который, как правило, наносятся какие-либо картинки, логотипы и другие штуки. Информация на диск записывается в виде спиральной дорожки из углублений, или питов (от англ. pit - углубление), выдавленных в поликарбонатной основе. Как правило, размер пита в ширину составляет около 500 нм, в глубину - 100 нм, а его длина варьируется от 850 до 3500 нм. Расстояние между питами называется лендом. Ленд обычно равняется 1,6 мкм. Питы рассеивают или поглощают падающий на них свет, а подложка отражает его. Считывание информации с компакт-диска происходит с помощью лазерного луча, образующего световое пятно диаметром примерно 1,2 мкм. Если лазер попадает на ленд, то приемный фотодиод фиксирует максимальный сигнал. Это логическая единица. Если же свет попадает на пит, то фотодиод фиксирует свет меньшей интенсивности. И это уже будет логическим нулем.

Первые компакт-диски предназначались исключительно для чтения. В процессе производства на поликарбонатную подложку сразу наносились питы, а затем поверхность покрывали отражающим слоем и защитным лаком.

Оригинал взят у в Когда появились станки с числовым программным управлением?

Ещё в XVIII веке. Правда, станки были не металлорежущими, а ткацкими.

В течение долгих лет перфокарты служили основными носителями для хранения и обработки информации. Перфокарты - предки дискет, дисков, винчестеров, флеш-памяти. Но появились они вовсе не с изобретением первых компьютеров, а гораздо раньше, в самом начале XIX века…

12 апреля 1805 года император Наполеон Бонапарт с супругой посетили Лион. Крупнейший в стране центр ткачества в XVI–XVIII веках изрядно пострадал от Революции и пребывал в плачевном состоянии.

Большинство мануфактур разорились, производство стояло, а международный рынок все больше заполнял английский текстиль. Желая поддержать лионских мастеров, в 1804 году Наполеон разместил здесь крупный заказ на сукно, а годом позже прибыл в город лично.

В ходе визита император посетил мастерскую некоего Жозефа Жаккара, изобретателя, где императору продемонстрировали удивительную машину. Установленная поверх обыкновенного ткацкого станка громада позвякивала длинной лентой из дырчатых жестяных пластин, а из станка тянулось, накручиваясь на вал, шелковое полотно с изысканнейшим узором.

При этом никакого мастера не требовалось: машина работала сама по себе, а обслуживать ее, как объяснили императору, вполне мог даже подмастерье.

Наполеону машина понравилась. Несколькими днями позже он распорядился передать патент Жаккара на ткацкую машину в общественное пользование, самому же изобретателю положить ежегодную пенсию в 3000 франков и право получать небольшое, в 50 франков, отчисление с каждого станка во Франции, на котором стояла его машина.

Впрочем, в итоге это отчисление сложилось в весомую сумму – к 1812 году новым приспособлением было оборудовано 18000 ткацких станков, а к 1825-му – уже 30000.

1728 год - станок Фалькона

Жан-Батист Фалькон создал свою машину на основе первого подобного станка конструкции Базиля Бушона. Он первым придумал систему картонных перфокарт, связанных в цепь.

Изобретатель прожил остаток дней в достатке, умер он в 1834 году, а шесть лет спустя благодарные горожане Лиона поставили Жаккару памятник на том самом месте, где когда-то была его мастерская. Жаккарова (или, в старой транскрипции, «жаккардова») машина была важным кирпичиком в фундаменте промышленной революции, не менее важным, чем железная дорога или паровой котел.

Но не все в этой истории просто и безоблачно. Например, «благодарные» лионцы, впоследствии почтившие Жаккара памятником, сломали его первый незаконченный станок и несколько раз покушались на его жизнь. Да и машину, если говорить по правде, изобрел вовсе не он.

Как работала машина

Для понимания революционной новизны изобретения необходимо в общих чертах представлять принцип работы ткацкого станка. Если рассмотреть ткань, можно увидеть, что она состоит из плотно переплетенных продольных и поперечных нитей. В процессе изготовления продольные нити (основа) протягиваются вдоль станка; половина из них через одну крепятся к рамке-«ремизке», другая половина– к другой такой же рамке.

Эти две рамки перемещаются вверх-вниз друг относительно друг друга, разводя нити основы, и в образовавшийся зев туда-сюда снует челнок, тянущий поперечную нить (уток). В результате получается простейшее полотно с нитями, переплетенными через одну.

Рамок-ремизок может быть больше двух, и двигаться они могут в сложной последовательности, поднимая или опуская нити группами, отчего на поверхности ткани образуется узор. Но количество рамок все равно невелико, редко когда бывает больше 32, поэтому узор получается простым, регулярно повторяющимся.

На жаккардовом станке рамок нет вообще. Каждая нить может перемещаться отдельно от других с помощью цепляющего ее стержня с кольцом. Поэтому на полотне можно выткать узор любой степени сложности, даже картину.

Последовательность движения нитей задается с помощью длинной зацикленной ленты перфокарт, каждая карта соответствует одному проходу челнока. Карта прижимается к «считывающим» проволочным щупам, часть из них уходит в отверстия и остается неподвижной, остальные утапливаются картой вниз. Щупы связаны со стержнями, управляющими движением нитей.

1900 год - ткацкий цех

Этот снимок сделан более века назад в заводском цеху ткацкой фабрики города Дарвела (Восточный Эйршир, Шотландия). Многие ткацкие цеха выглядят так и по сей день - не потому что хозяева фабрик жалеют средства на модернизацию, а потому что жаккардовы станки тех лет по-прежнему остаются наиболее универсальными и удобными.

Сложноузорчатые холсты умели ткать и до Жаккара, но это было по силам только лучшим мастерам, и работа была адская. Внутрь станка забирался работник-дергальщик и по команде мастера вручную поднимал или опускал отдельные нити основы, количество которых иногда исчислялось сотнями.

Процесс был очень медленным, требовал постоянно сосредоточенного внимания, и неизбежно случались ошибки. Кроме того, переоснащение станка с одного сложноузорчатого холста на другую работу растягивалось иногда на многие дни.

Станок Жаккара делал работу быстро, без ошибок - и сам. Единственным трудным делом теперь было набивать перфокарты. На производство одного комплекта уходили недели, зато однажды изготовленные карты могли использоваться снова и снова.

Челночный станок

В начале XIX века основным видом автоматического ткацкого устройства был челночный станок. Конструкция его была довольно проста: вертикально натягивались нити основы, а пулеобразный челнок летал между ними туда и обратно, протаскивая через основу поперечную (уточную) нить.

Испокон веков челнок протаскивался руками, в XVIII веке этот процесс был автоматизирован; челнок «выстреливался» с одной стороны, принимался другой, разворачивался – и процесс повторялся. Зев (расстояние между нитями основы) для пролета челнока обеспечивался с помощью бердо – ткацкого гребня, который отделял одну часть нитей основы от другой и приподнимал ее.

Предшественники

Как уже говорилось, «умный станок» придумал не Жаккар - он лишь доработал изобретения своих предшественников. В 1725 году, за четверть века до рождения Жозефа Жаккара, первое подобное устройство создал лионский ткач Базиль Бушон. Станок Бушона управлялся перфорированной бумажной лентой, где каждому проходу челнока соответствовал один ряд отверстий. Однако отверстий было мало, поэтому устройство меняло положение лишь небольшого числа отдельных нитей.

Следующего изобретателя, пытавшегося усовершенствовать ткацкий станок, звали Жан-Батист Фалькон. Он заменил ленту небольшими листами картона, связанными за углы в цепь; на каждом листе отверстия располагались уже в несколько рядов и могли управлять большим числом нитей. Станок Фалькона оказался успешнее предыдущего, и хотя он не получил широкого распространения, в течение жизни мастер успел продать около 40 экземпляров.

Третьим, кто взялся доводить ткацкий станок до ума, был изобретатель Жак де Вокансон, который в 1741 году был назначен инспектором шелкоткацких мануфактур. Вокансон работал над своей машиной много лет, однако его изобретение не имело успеха: слишком сложное и дорогое в изготовлении устройство по-прежнему могло управлять относительно небольшим числом нитей, и ткань с незамысловатым узором не окупала стоимости оборудования.

Удачи и неудачи Жозефа Жаккара

Жозеф Мари Жаккар родился в 1752 году в предместье Лиона в семье потомственных канутов - ткачей, работавших с шелком. Он был обучен всем премудростям ремесла, помогал отцу в мастерской и после смерти родителя унаследовал дело, однако ткачеством занялся далеко не сразу.

Жозеф успел сменить множество профессий, был судим за долги, женился, а после осады Лиона ушел солдатом с революционной армией, взяв с собой шестнадцатилетнего сына. И лишь после того как сын погиб в одном из сражений, Жаккар решил вернуться к фамильному делу.

Он возвратился в Лион и открыл ткацкую мастерскую. Однако бизнес был не слишком успешен, и Жаккар увлекся изобретательством. Он решил сделать машину, которая превзошла бы творения Бушона и Фалькона, была бы достаточно простой и дешевой и при этом могла делать шелковое полотно, не уступающее по качеству сотканному вручную. Поначалу конструкции, выходившие из-под его рук, были не слишком удачными.

Первая машина Жаккара, которая заработала как надо, делала не шелк, а... рыбацкие сети. В газете он прочел, что английское Королевское общество поддержки искусств объявило конкурс на изготовление такого приспособления. Награду от британцев он так и не получил, однако его детищем заинтересовались во Франции и даже пригласили на промышленную выставку в Париж. Это была знаковая поездка.

Во-первых, на Жаккара обратили внимание, он обзавелся нужными связями и даже раздобыл денег на дальнейшие изыскания, а во-вторых, он посетил Музей искусств и ремесел, где стоял ткацкий станок Жака де Вокансона. Жаккар увидел его, и недостающие детали встали на свои места в его воображении: он понял, как должна работать его машина.

1841 год - ткацкая мастерская Каркилля

Тканый рисунок (сделан в 1844 году) изображает сцену, произошедшую 24 августа 1841 года. Месье Каркилля, владелец мастерской, дарит герцогу д"Омалю полотно с портретом Жозефа Мари Жаккара, вытканное таким же образом в 1839 году. Тонкость работы невероятна: детали мельче, чем на гравюрах.

Невероятная точность станка Жаккара

Известная картина «Визит герцога д"Омаля в ткацкую мастерскую господина Каркилля»– это не гравюра, как может показаться, - рисунок полностью выткан на станке, оборудованном жаккардовой машиной. Размер холста - 109×87 см, работу выполнил собственноручно мастер Мишель-Мари Каркилля для фирмы «Дидье, Пти и Си».

Процесс mis en carte , или программирования, изображения на перфокартах, длился много месяцев, причем занимались этим несколько человек, а само изготовление полотна заняло восемь часов. Лента из 2400 (более тысячи двоичных ячеек на каждой) перфокарт была длиной в милю.

Картину воспроизводили только по специальным заказам, известно о нескольких полотнах подобного типа, хранящихся в разных музеях мира.

А один вытканный таким образом портрет Жаккара заказал себе декан кафедры математики Кембриджского университета Чарльз Бэббидж. К слову, герцог д"Омаль, изображенный на полотне, - не кто иной как младший сын последнего короля Франции Луи-Филиппа I.

Своими разработками Жаккар привлек к себе внимание не только парижских академиков. Лионские ткачи быстро смекнули, какую угрозу таит в себе новое изобретение. В Лионе, население которого к началу XIX века едва ли насчитывало 100,000, в ткацкой промышленности работало более 30,000 человек - то есть каждый третий житель города был если не мастером, то работником или подмастерьем при ткацкой мастерской. Попытка упростить процесс изготовления тканей лишила бы многих работы.

В итоге одним прекрасным утром в мастерскую Жаккара пришла толпа и сломала все то, что он строил. Самому изобретателю строго наказали оставить недоброе и заняться ремеслом, по примеру покойного отца. Вопреки увещеваниям братьев по цеху Жаккар не бросил своих изысканий, однако теперь ему приходилось работать скрытно, и следующую машину он закончил только к 1804 году.

Жаккар получил патент и даже медаль, однако самостоятельно торговать «умными» станками остерегся и по совету негоцианта Габриэля Детилле нижайше просил императора передать изобретение в общественную собственность города Лиона. Император удовлетворил просьбу, а изобретателя наградил. Окончание истории вам известно.

Эпоха перфокарт

Сам принцип жаккардовой машины - возможность менять последовательность работы станка, загружая в него новые карты - был революционным. Сейчас мы называем это словом «программирование». Очередность действий для жаккардовой машины задавалась двоичной последовательностью: есть отверстие – нет отверстия.

скоре после того как жаккардова машина получила широкое распространение, перфорированные карты (а также перфорированные ленты и диски) стали применять в разнообразных устройствах.

Но, пожалуй, самое известное из таких изобретений - и самое знаковое на пути от ткацкого станка к компьютеру - это «аналитическая машина» Чарльза Бэббиджа. В 1834 году Бэббидж, математик, вдохновленный опытом Жаккара с перфокартами, начал работу над автоматическим устройством для выполнения широкого спектра математических задач.

До этого он имел неудачный опыт постройки «разностной машины», громоздкого 14-тонного чудовища, заполненного шестеренками; принцип обработки цифровых данных с помощью шестеренок использовался со времен Паскаля, и вот теперь на смену им должны были прийти перфокарты.

1824 год - разностная машина Бэббиджа

Первый опыт постройки Чарльзом Бэббиджем аналитической машины был неудачным. Громоздкое механическое устройство, представляющее собой совокупность валов и шестерней, вычисляло довольно точно, но требовало слишком сложного обслуживания и высокой квалификации оператора.

В аналитической машине присутствовало все, что есть в современном компьютере: процессор для выполнения математических операций («мельница»), память («склад»), где хранились значения переменных и промежуточные результаты операций, было центральное управляющее устройство, которое также выполняло функции ввода-вывода.

В аналитической машине должны были использоваться перфокарты двух типов: большого формата, для хранения чисел, и поменьше - программные. Бэббидж работал над своим изобретением 17 лет, но так и не смог его закончить - не хватило денег. Действующую модель «аналитической машины» Бэббиджа построили только в 1906 году, поэтому непосредственным предшественником компьютеров стала не она, а устройства, называемые табуляторами.

Табулятор - это машина для обработки больших объемов статистической информации, текстовой и цифровой; информация вводилась в табулятор при помощи огромного количества перфокарт. Первые табуляторы были разработаны и созданы для нужд американского офиса переписи населения, но вскоре их использовали уже для решения самых разных задач.

С самого начала одним из лидеров в этой сфере стала компания Германа Холлерита, человека, который изобрел и изготовил в 1890 году первую электронную табулирующую машину. В 1924 году компания Холлерита была переименована в IBM.

1890 год - табулятор Холлерита

Табулирующая машина Германа Холлерита была построена для обработки результатов всеамериканской переписи населения 1890 года. Но оказалось, что возможности машины выходят далеко за рамки поставленной задачи.

Когда на смену табуляторам пришли первые ЭВМ, принцип управления с помощью перфокарт сохранился и здесь. Куда удобнее было загружать в машину данные и программы с помощью карточек, нежели переключая многочисленные тумблеры.

Кое-где перфокарты используются и по сей день. Таким образом, почти 200 лет главным языком, на котором человек общался с «умными» машинами, оставался язык перфокарт.

Логотип IBM

Ровно 33 года назад, 12 августа 1981 года, на свет появился первый массовый персональный компьютер IBM PC, который со временем стали называть просто PC (ПК). То, что для нас уже давно стало привычным делом, в то время было настоящей революцией. сайт выделило основные этапы развития электронно-вычислительных машин.

Электронные вычислительные машины того времени представляли из себя массивные конструкции весом в несколько тонн. Каждый новый этап развития ЭВМ был связан не только с техническим прогрессом, но и с программным. Взять хотя бы Windows, который пришел на смену "бездушному" DOS.

Именно IBM, годом основания которой считается 1889 год, внесла огромный вклад в развитие компьютерной техники. Ее прародительница, корпорация CTR (Computing Tabulating Recording) включала в себя сразу три компании и выпускала самое различное электрическое оборудование: весы, сырорезки, приборы учета времени. После смены директора в 1914 году компания начала специализироваться на создании табуляционных машин (для обработки информации). Спустя 10 лет CTR поменяло свое название на International Business Machines или IBM.

сайт выделило основные этапы развития ЭВМ и их основных представителей, давших толчок к развитию современных компьютеров.

Электромеханические машины

Еще в 1888 году инженер Герман Холлерит, основатель IBM, создал первую электромеханическую счетную машину - табулятор, который мог считывать и сортировать данные, закодированные на перфокартах (бумажных карточках с отверстиями). Его даже использовали при переписи населения в 1890 году в США.

При этом история компьютеров IBM началась спустя более полувека, в 1941 году, когда был разработан и создан первый программируемый компьютер "Марк 1" весом порядка 4,5 тонн, 17 метров в длину, 2,5 метра – в высоту. Президент IBM вложил в него 500 тысяч долларов. Впервые "Марк 1" был запущен в Гарвардском университете в 1944 году. Чтобы понять, насколько сложна была конструкция машины, достаточно сказать, что общая длина проводов составила 800 км. При этом компьютер осуществлял три операции сложения и вычитания в секунду.

Первое поколение ЭВМ

Первая ЭВМ, основанная на ламповых усилителях, под названием "Эниак" была создана в США в 1946 году. По размерам она была больше, чем "Марк 1": 26 метров в длину, 6 метров в высоту, а ее вес составлял около 30 тонн. При этом по производительности "Эниак" в 1000 раз превышала "МАРК-1", а на ее создание ушло почти 500 тысяч долларов. Но у нее были существенные недостатки: очень мало памяти для хранения данных и долгое время перепрограммирования – от нескольких часов и до нескольких дней.

Кстати, среди создателей "Эниак" был ученый Джон фон Нейман, предложивший архитектуру ЭВМ, заложенную в компьютерах с конца 1940-х до середины 1950-х годов. Именно он осуществил переход к двоичной системе счисления и хранению полученной информации.

В 1951 году появился первый коммерческий компьютер UNIVAC, и уже в 1952 году вышел "IBM 701". Это был первый крупный ламповый научный коммерческий компьютер, причем создали его достаточно быстро – в течение двух лет. Его процессор работал значительно быстрее, чем у UNIVAC - 2200 операций в секунду против 455. В одну секунду процессор "IBM 701" мог выполнять почти 17 тысяч операций сложения и вычитания.

Второе поколение ЭВМ

Второе поколение ЭВМ использовало в своей основе транзисторы, созданные в 1947 году. Это была очередная революция, в результате которой существенно уменьшились размеры и энергопотребление компьютеров, так как сами биполярные транзисторы в разы меньше вакуумных ламп.

В 1959 году появились первые компьютеры IBM на транзисторах. Они были надежны, и ВВС США стали использовать их в системе раннего оповещения ПВО. А в 1960 году IBM разработала мощную систему Stretch или "IBM-7030". Она была и вправду сильна – создатели добились 100-кратного увеличения быстродействия. В течение трех лет он был самым быстрым компьютером в мире. Однако со временем IBM уменьшила его стоимость, а вскоре и вовсе сняла с производства.

Третье поколение ЭВМ

Третье поколение компьютеров связано с использованием интегральных схем (в которых используется от десятков до сотен миллионов транзисторов), впервые изготовленных в 1960 году американцем Робертом Нойсом.

В 1964 году IBM объявила о начале работы над целой линейкой IBM System/360.

System/360 хорошо продавалась даже спустя шесть лет после анонса системы. За 6 лет IBM выпустила более 30 тысяч машин. Однако затраты на разработку System/360 были очень велики - около пяти миллиардов долларов. Таким образом, System/360 заложила фундамент для следующих поколений, первым из которых был System/370.

Четвертое поколение ЭВМ

Четвертое поколение связано с использованием микропроцессоров. Первый такой микропроцессор под названием "Intel-4004" был создан в 1971 году компанией Intel, до сих пор остающейся в лидерах. Спустя 10 лет IBM выпустила первый персональный компьютер, который так и назывался IBM PC. Самая дорогая конфигурация стоила 3000 долларов и предназначалась для бизнеса, а конфигурация за 1500 долларов – для дома.

Процессор Intel 8088 работал на частоте 4,77 МГц (сейчас этот показатель в тысячи раз больше), а объем ОЗУ - 64 кбайта (сейчас – в миллионы раз больше). Для хранения информации использовались 5,25-дюймовые флоппи-дисководы. Жесткий диск нельзя было установить из-за недостаточной мощности блока питания.

Интересно, что разработкой компьютера занимались всего четыре человека. Причем IBM не запатентовала ни операционную систему DOS, ни BIOS, что породило огромное количество клонов. Уже в 1996 году IBM уступило первое место по продажам ПК на ею же основанном рынке.

Несмотря на то, что современные гаджеты сильно отличаются по характеристикам от своего предшественника, все они относятся к тому же поколению ЭВМ.

Будущее

Основные толчки для развития компьютеров дала наука (появление ламп, а затем транзисторов). В настоящее время распространяется ввод информации с голоса, общения с машиной на человеческом языке (приложение Siri в iPhone) и активная работа над роботами. Основное мнение, что будущее – за квантовыми компьютерами, которые будут использовать в своей основе молекулы и нейрокомпьютерами, использующими центральную нервную систему человека и непосредственно его мозг. Однако для того, чтобы эти технологии появились, необходимо досконально изучить эти системы.

Дмитрий Кокоулин

charta - лист из папируса; бумага ) - носитель информации , предназначенный для использования в системах автоматической обработки данных. Сделанная из тонкого картона , перфокарта представляет информацию наличием или отсутствием отверстий в определённых позициях карты.

Энциклопедичный YouTube

    1 / 2

    ✪ Иридодиагностика. Глаз -перфокарта организма.

    ✪ Хронологічний тренажер. Перфокарта.

Субтитры

История

Перфокарты впервые начали применяться в ткацких станках Жаккарда (1808) для управления узорами на тканях. В информатике перфокарты впервые были применены в «интеллектуальных машинах» коллежского советника С. Н. Корсакова (1832), механических устройствах для информационного поиска и классификации записей . Перфокарты также планировалось использовать в «аналитической машине» Бэббиджа . В конце XIX в. началось использование перфокарт для обработки результатов переписей населения в США (см. табулятор Холлерита).

Существовало много разных форматов перфокарт; наиболее распространённым был «формат IBM», введённый в 1928 г. - 12 строк и 80 колонок, размер карты 7⅜ × 3¾ дюйма (187,325 × 82,55 мм), толщина карты 0,007 дюйма (0,178 мм). Первоначально углы были острые, а с 1964 г. - скруглённые (впрочем, в СССР и позже использовали карты с нескруглёнными углами). Примечательно, что по приблизительным подсчетам, гигабайт информации, представленной в виде перфокарт, весил бы примерно 22 тонны (не считая веса, потерянного в результате перфорации отверстий).

Поддержка использования данного носителя информации вызвала появление индустрии по производству широкого класса специализированного оборудования - раскладочно-подборочных , расшифровочных и других машин.

Применение в компьютерной технике

В 2011 году в США всё еще существовала компания Cardamation, поставлявшая перфокарты и устройства для работы с перфокартами . Об использовании перфокарт в современных организациях сообщалось в 1999 и 2012 годах .

Двоичный и текстовый режим

При работе с перфокартами в двоичном режиме перфокарта рассматривается как двумерный битовый массив; допустимы любые комбинации пробивок. Например, в системах IBM 701 машинное слово состояло из 36 бит; при записи данных на перфокарты в одной строке пробивок записывалось 2 машинных слова (последние 8 колонок не использовались), всего на одну перфокарту можно было записать 24 машинных слова.

При работе с перфокартами в текстовом режиме каждая колонка обозначает один символ; таким образом, одна перфокарта представляет строку из 80 символов. Допускаются лишь некоторые комбинации пробивок. Наиболее просто кодируются цифры - одной пробивкой в позиции, обозначенной данной цифрой. Буквы и другие символы кодируются несколькими пробивками в одной колонке. Отсутствие пробивок в колонке означает пробел (в отличие от перфоленты , где отсутствие пробивок означает пустой символ, NUL). В системе IBM/360 были определены комбинации пробивок для всех 256 значений байта (например, пустой символ NUL обозначался комбинацией 12-0-1-8-9), так что фактически в текстовом режиме можно было записывать и любые двоичные данные.

Для удобства работы с текстовыми данными вдоль верхнего края перфокарты часто печатались те же символы в обычном человекочитаемом виде.

Пример кода

________________________________________________________________ /&-0123456789ABCDEFGHIJKLMNOPQR/STUVWXYZ:#@"="[.<(+|]$*);^\,%_>? 12 / X XXXXXXXXX XXXXXX 11| X XXXXXXXXX XXXXXX 0| X XXXXXXXXX XXXXXX 1| X X X 2| X X X X X X X X 3| X X X X X X X X 4| X X X X X X X X 5| X X X X X X X X 6| X X X X X X X X 7| X X X X X X X X 8| X X X X XXXXXXXXXXXXXXXXXXXXXXXX 9| X X X X |__________________________________________________________________

Следует заметить, что везде одинаково кодировались только цифры и латинские буквы; в кодировании остальных символов существовали большие различия.

Проблемы при регистрации на сайте? НАЖМИТЕ СЮДА ! Не проходите мимо весьма интересного раздела нашего сайта - проекты посетителей . Там вы всегда найдете свежие новости, анекдоты, прогноз погоды (в ADSL-газете), телепрограмму эфирных и ADSL-TV каналов , самые свежие и интересные новости из мира высоких технологий , самые оригинальные и удивительные картинки из интернета , большой архив журналов за последние годы, аппетитные рецепты в картинках , информативные . Раздел обновляется ежедневно. Всегда свежие версии самых лучших бесплатных программ для повседневного использования в разделе Необходимые программы . Там практически все, что требуется для повседневной работы. Начните постепенно отказываться от пиратских версий в пользу более удобных и функциональных бесплатных аналогов. Если Вы все еще не пользуетесь нашим чатом , весьма советуем с ним познакомиться. Там Вы найдете много новых друзей. Кроме того, это наиболее быстрый и действенный способ связаться с администраторами проекта. Продолжает работать раздел Обновления антивирусов - всегда актуальные бесплатные обновления для Dr Web и NOD. Не успели что-то прочитать? Полное содержание бегущей строки можно найти по этой ссылке .

Эволюция носителей информации. Часть 1: от перфокарт до DVD

Технологии хранения данных активно совершенствуются со времен появления первых компьютеров. Еще вчера мы пользовались 1,44-мегабайтными дискетами, а сегодня в продаже можно найти 256-гигабатные флеш-накопители. А ведь это далеко не предел. Пока инженеры трудятся над созданием новых, более прогрессивных носителей информации, мы вспоминаем, как повлияли на компьютерную индустрию перфокарты, магнитные ленты и форматы CD и DVD.

С древнейших времен люди искали способы записи и хранения различной информации. Сначала они рисовали на скалах и глине. Затем появился пергамент, а позже — бумага. В XX веке с появлением первых компьютеров хранить информацию стало легче, но эволюция носителей информации лишь ускорилась. Казалось бы, еще вчера мы записывали нужные нам файлы на дискеты. А сегодня мы уже пользуемся 256-гигабайтными флешками! В общем, развитие технологий хранения информации не стоит на месте. Поэтому в этот раз мы вспоминаем, с чего же началась история компьютерных носителей информации, и расскажем о том, каких результатов добилась индустрия к концу XX века.

Станок Жаккара. Перфокарты

История носителей информации берет свое начало в начале XIX века. Причем в роли прародителя запоминающих устройств выступает — кто бы мог подумать! — ткацкий станок. Автором первого изобретения в области хранения данных стал французский изобретатель Жозеф Мари Жаккар. Долгое время он работал со станками в качестве подмастерья, ткача и наладчика, поэтому богатый опыт значительно помог ему в дальнейшей изобретательской деятельности. Итак, в чем же заключалась инновационная идея Жаккара? Несмотря на то, что производство ткани в то время являлось довольно сложным процессом, по своей сути оно представляло собой постоянное повторение одних и тех же действий. Жаккар пришел к выводу, что этот процесс можно автоматизировать.

Французский изобретатель придумал такую систему, которая использовала в своей работе специальные твердые пластины с отверстиями. Они и являлись первыми в мире перфокартами. Прежде подобные пластины использовались в станках Вокансона и Бушона, однако эти устройства были слишком дороги в производстве и по этой причине так и не прижились. В своей же разработке Жаккар учел все недостатки этих аппаратов. В пластинах было увеличено количество рядов отверстий, что обеспечило обработку большего числа нитей, а, следовательно, и повышение производительности станка. Кроме этого, был значительно упрощен процесс подачи пластин в считывающее устройство — набор щупов, связанных со стержнями нитей. При проходе пластины щупы проваливались в отверстия, поднимая вверх соответствующие нити и образуя основные перекрытия в ткани. Таким образом, определенная комбинация отверстий на пластине позволяла создать ткань с нужным узором.

Первый автоматизированный станок Жаккар создал в 1801 году и на протяжении еще нескольких лет дорабатывал его. За свои достижения изобретатель получил пенсию в 3000 франков и одобрение Наполеона. Однако ни сам Жаккар, ни французский император не имели ни малейшего понятия, насколько важным станет это изобретение в будущем.

В 30-х годах XIX века на разработанные Жаккаром перфокарты обратил внимание английский математик Чарльз Бэббидж. В то время ученый ум трудился над созданием аналитической машины и решил использовать в ее конструкции перфокарты. Для этого англичанин даже совершил путешествие во Францию с целью подробно изучить станки Жаккара. Увы, но из-за низкого уровня технологий и недостатка финансовых средств аналитическая машина Бэббиджа так и не увидела свет. Тем не менее, ее конструкция стала впоследствии прообразом современных компьютеров.

Кроме этого, перфокарты использовались в табуляторе, разработанном в 1890 году Германом Холлеритом. Табулятор являлся механизмом для обработки статистических данных и использовался на благо Бюро переписи населения США. Кстати, созданная Холлеритом компания Tabulating Machine Company в конечном итоге была переименована в International Business Machines (IBM). На протяжении нескольких десятков лет IBM развивала и продвигала технологию перфокарт. В середине XX века они использовались повсеместно, получив особенно широкое распространение в компьютерной технике и различных станках. Закат эпохи перфокарт пришелся на 1980-е годы, когда на смену им пришли более совершенные магнитные носители информации. Интересно, что отдел исследования перфокарт компании IBM существовал вплоть до 2000-х годов. Например, в 2002 году в IBM изучали создание перфокарты размером с почтовую марку, которая могла бы содержать до 25 миллионов страниц информации.

Магнитные диски

Несмотря на то, что перфокарты отличались простотой изготовления, они обладали и целым рядом довольно существенных недостатков. Во-первых, это небольшая емкость. Стандартная перфокарта вмещала в себе около 80 символов, что соответствовало 100 байтам информации. Это очень мало. Судите сами: для хранения одного мегабайта данных потребовалось бы свыше десяти тысяч таких перфокарт. Во-вторых, это низкая скорость чтения и записи. Даже самые совершенные считывающие устройства могли обрабатывать не более одной тысячи перфокарт в минуту. То есть за секунду они считывали лишь 1,6 Кбайт данных. Ну и в-третьих, это невысокая надежность и невозможность повторной записи. Конечно, понятие «надежность» не совсем корректно использовать по отношению к перфокартам. Однако, согласитесь, повредить изготовленную из тонкого картона пластину не составляет никакого труда. Вдобавок к этому делать отверстия в картах нужно было очень аккуратно и внимательно: одна лишняя «дырка» — и перфокарта приходила в негодность, а хранящаяся на ней информация безвозвратно пропадала.

К хранению данных требовался новый подход. И в середине XX века были созданы первые магнитные носители информации. Эпоху данного типа накопителей открыла магнитная пленка, разработанная немецким инженером Фрицем Пфлюмером. Патент на это устройство был выдан еще в 1928 году, но немецкие власти так долго «скрывали» технологию внутри страны, что за пределами державы о ней стало известно лишь после окончания Второй мировой войны. Магнитная пленка изготавливалась из тонкого слоя бумаги, на который напылялся порошок оксида железа. При записи информации пленка попадала под воздействие магнитного поля, и на поверхности ленты сохранялась определенная намагниченность. Это свойство затем и использовали считывающие устройства.

Впервые магнитная лента была применена в коммерческом компьютере UNIVAC-I, выпущенном в 1951 году. Кстати, его первый экземпляр попал в то же самое Бюро переписи населения США. Магнитная пленка, используемая в UNIVAC-I, была намного более емкой, нежели перфокарты. Ее объем равнялся емкости десяти тысяч перфокарт, то есть он составлял примерно 1 Мбайт.

Развитие технологии магнитных лент продолжалось до 1980-х годов. В течение этого времени подобные накопители использовались в основном в мейнфреймах и мини-компьютерах. Ну а с 80-х годов магнитная лента использовалась лишь для резервного хранения данных. Этому способствовало то, что ленточные картриджи оставались надежным и очень дешевым носителем информации. Но даже несмотря на эти преимущества, к концу 2000-х годов специалисты предрекали конец эпохи магнитных лент — цены на жесткие диски продолжали падать. Вдобавок они предлагали высокую плотность записи. Начиная с 2008 года, рынок ленточных накопителей уменьшался примерно на 14% в год, и даже ярые сторонники технологии признавали, что у нее нет шансов на выживание. Однако ситуация резко изменилась в 2011 году. В Таиланде произошло наводнение, продолжавшееся, по официальным данным, 175 дней. В результате наводнения было затоплено несколько индустриальных зон, где были расположены заводы по производству жестких дисков таких компаний, как Seagate, Western Digital и Toshiba. Как итог, цены на продукцию возросли на 60%, а объемы производства упали. Так магнитная лента получила вторую жизнь.

Стоит отметить, что ленточные накопители, как правило, используются в тех сферах, где необходимо хранить очень большое количество информации. Например, в каких-либо крупных исследованиях. Так, магнитную ленту используют для записи результатов исследований на Большом адронном коллайдере. О преимуществах технологии в свое время рассказывал Альберто Пейс (Alberto Pace) — глава подразделения обработки и хранения данных CERN. Он отметил, что магнитная лента имеет четыре основных преимущества над жесткими дисками. Прежде всего, это скорость. Несмотря на то, что специализированному роботу требуется до 40 секунд, чтобы выбрать нужную кассету и вставить ее в считыватель, чтение данных из ленты происходит в четыре раза быстрее, чем с жесткого диска. Еще одним преимуществом магнитной ленты, по словам Пейса, является ее надежность. Если она рвётся, то ее можно легко склеить. В этом случае теряется лишь несколько сотен мегабайт данных. Когда выходит из строя жесткий диск, теряются абсолютно все данные. Глава подразделения CERN привел некоторые статистические данные, касающиеся надежности устройств. Так, в среднем за год в CERN из 100 петабайт данных, хранящихся на магнитных лентах, теряется лишь несколько сотен мегабайт. На жестких дисках располагается около 50 петабайт информации, и каждый год организация теряет до нескольких сотен терабайт в результате неисправностей HDD. Третьим преимуществом магнитной ленты является ее энергоэффективность, а точнее, экономичность. Сами ленты хранятся в неактивном состоянии, следовательно, они не потребляют энергию. Наконец, четвертое — это безопасность. Если злоумышленники получат доступ к жестким дискам, то они смогут уничтожить всю информацию за считанные минуты. В случае с магнитными лентами на это может уйти не один год.

Еще на два преимущества ленточных накопителей указал Эвангелос Элефтеро — руководитель отдела технологий хранения данных исследовательской лаборатории IBM в Цюрихе. Он отметил, что магнитные ленты все еще дешевле, чем жесткие диски. 1 Гбайт HDD стоит примерно 10 центов, тогда как стоимость аналогичной емкости магнитной ленты оценивается в 4 цента. Также Элефтеро обратил внимание на долговечность лент. Такой накопитель будет служить верой и правдой даже через 30 лет, в то время как рабочий цикл жесткого диска составляет всего 5 лет.

Тем не менее, стоит понимать, что магнитные ленты уже никогда не будут использоваться как единственная система хранения данных. Они занимают важное место в иерархической структуре хранения информации, но не являются (и не будут) ее основным звеном.

Дискеты

Следующей ступенью развития магнитных носителей информации стала дискета, которая была представлена в 1971 году. Над созданием девайса трудилась компания IBM. В 1967 году у «голубого гиганта» появилась необходимость рассылать клиентам обновления софта, и команда инженеров под руководством Алана Шугарта предложила идею компактного и быстрого гибкого диска. Спустя несколько лет в стенах IBM была создана 8-дюймовая дискета объемом 80 Кбайт с возможностью одноразовой записи. Решение получилось не очень удачным, поскольку притягивало много пыли и было чересчур хрупким для карманного девайса. Поэтому разработчики решили упаковать гибкий диск в защитный пластиковый кожух с тканевой прокладкой.

По своей конструкции дискета представляла собой диск из полимерных материалов, на который наносилось магнитное покрытие. Пластиковый кожух имел несколько отверстий. Центральное предназначалось для шпинделя дисковода, малое отверстие являлось индексным, то есть позволяло определить начало сектора. Наконец, через прямоугольное отверстие с закругленными углами магнитные головки дисковода работали непосредственно с диском.

Для чтения дискет компьютеры начали оснащаться дисководами, однако стоимость таких девайсов была сопоставима со стоимостью всей системы. Поэтому многие продолжали использовать кассеты. Прошло немало времени, пока дискеты не вытеснили магнитные ленты.

После создания первой дискеты работа над этим стандартом продолжилась. В 1973 году емкость 8-дюймовой дискеты увеличилась до 256 Кбайт, а еще спустя два года ее объем составлял целых 1000 Кбайт. Главным недостатком дискеты тогда был ее размер. В диаметре диск достигал приличных 203 мм, и это без учета корпуса дискеты. Такой девайс в лучшем случае можно было уместить в рюкзак или средних размеров сумку. А ведь дискета задумывалась как карманное устройство! Поэтому в 1976 году Шугарт предложил новый формат — 5,25 дюймов.

Почему именно такой размер? Бытует мнение, что однажды Алан Шугарт сидел в баре вместе с Ан Вэнгом из Wang Laboratories. Инженеры обсуждали новый формат дискеты, и в ходе разговора возникла идея создать девайс размером с салфетку. Новые решения получили название mini-floppy.

По своей конструкции 5,25-дюймовые дискеты лишь немного отличались от 8-дюймовых собратьев. Отчасти изменилось положение отверстий на дискете, а футляр стал прочнее. Края приводного отверстия были защищены пластиковым или металлическим кольцом. Изначально объем таких дискет составлял 110 Кбайт, однако к 1984 году он был увеличен до 1,2 Мбайт. Именно с 5,25-дюймовых решений началось повсеместное распространение дискет. Этому способствовала более низкая в сравнении с 8-дюймовыми девайсами цена.

В 1981 году дискета обрела привычный для нас формат — 3,5 дюйма. Такой дизайн предложила компания Sony. Изначально объем дискеты составлял 720 Кбайт, но спустя пару лет он был увеличен вдвое. Чуть позже появились и более вместительные решения емкостью 2,88 Мбайт. Многие крупные компании поддержали уменьшенный стандарт. Например, компания Apple уже в 1984 году устанавливала приводы для 3,5-дюймовых дискет на компьютеры Macintosh.

В начале 90-х годов емкость дискет удовлетворяла далеко не всех пользователей. Одновременно разрабатывался целый ряд различных стандартов, которые должны были прийти на смену 3,5-дюймовым дискетам. Наиболее популярным из них стал Iomega Zip. По своей конструкции такая дискета во многом повторяла существующие. Носитель Iomega Zip представлял собой полимерный диск, покрытый ферромагнитным слоем. Корпус дискеты изготавливался из пластика и имел защитную шторку. Объем таких решений составлял 100 или 250 Мбайт, а через некоторое время выпускались даже 750-мегабайтные девайсы! Кроме этого, Iomega Zip обеспечивали более высокую скорость записи и чтения. Тем не менее стандарт так и не смог потеснить 3,5-дюймовые дискеты с вершины. Виной всему — высокая цена устройств. Да и, скажем прямо, надежностью дискеты Zip вовсе не отличались.

Оптические накопители. CD

Параллельно с дискетами развивался и рынок оптических накопителей. Первой ласточкой в этой области стал девайс под названием Laserdisc (LD), разработанный в 1969 году компанией Philips. Носитель предназначался для домашнего просмотра кинофильмов. Он поддерживал аналоговую запись изображения и звука. Чуть позже звук стал цифровым. Laserdisc имел ряд преимуществ над кассетными стандартами VHS и Betamax, однако так и не смог заменить их. В основном формат был популярен в США и Японии. В Европе к нему отнеслись довольно прохладно. Кстати, первым фильмом, вышедшим на LD, стали «Челюсти». Это произошло в 1978 году в США. Последние фильмы на лазердисках были выпущены компанией Paramount в 2000 году. Несмотря на провал стандарта, используемые в нем технологии оказали влияние на развитие форматов следующего поколения.

На смену Laserdisc пришел намного более успешный формат Compact Disc (CD). Стандарт CD разрабатывался совместными усилиями таких компаний, как Sony и Philips, и был выпущен в 1982 году. Изначально CD предполагалось использовать только для хранения аудиозаписей в цифровом виде, однако со временем на компакт-дисках начали хранить и распространять файлы любых типов. Этому способствовало и то, что, начиная с 1987 года, Microsoft и Apple начали использовать CD-приводы в своих персональных компьютерах.

Как же устроен компакт-диск? Он представляет собой поликарбонатную подложку, покрытую тонким слоем металла. Этот слой защищен лаком, на который, как правило, наносятся какие-либо картинки, логотипы и другие штуки. Информация на диск записывается в виде спиральной дорожки из углублений, или питов (от англ. pit — углубление), выдавленных в поликарбонатной основе. Как правило, размер пита в ширину составляет около 500 нм, в глубину — 100 нм, а его длина варьируется от 850 до 3500 нм. Расстояние между питами называется лендом. Ленд обычно равняется 1,6 мкм. Питы рассеивают или поглощают падающий на них свет, а подложка отражает его. Считывание информации с компакт-диска происходит с помощью лазерного луча, образующего световое пятно диаметром примерно 1,2 мкм. Если лазер попадает на ленд, то приемный фотодиод фиксирует максимальный сигнал. Это логическая единица. Если же свет попадает на пит, то фотодиод фиксирует свет меньшей интенсивности. И это уже будет логическим нулем.

Первые компакт-диски предназначались исключительно для чтения. В процессе производства на поликарбонатную подложку сразу наносились питы, а затем поверхность покрывали отражающим слоем и защитным лаком.

На протяжении долгого времени максимальный объем компакт-диска составлял 650 Мбайт. Это было эквивалентно 74 минутам качественного аудиоконтента. В 80-е года такой объем казался для пользователей неиссякаемым. Лишь начиная с 2000 года получили распространение 700-мегабайтные диски. Также встречались девайсы емкостью 800 Мбайт.

Но вернемся в 80-е годы. Вскоре после выхода первых CD пользователи ясно дали понять, что они хотят записывать на диски нужную им информацию в домашних условиях. Так появилась технология CD-R (Compact Disc-Recordable). «Болванки» CD-R можно было использовать для однократной записи. Для этого требовался специальный пишущий CD-привод.

Конструктивно диски формата CD-R отличались от CD лишь наличием еще одного слоя между поликарбонатом и отражателем. Этот слой был выполнен из органического прозрачного красителя. Краситель имел интересное свойство — при нагревании он разрушался и темнел. Во время записи информации на диск лазер, меняя свою мощность, наносил на поверхность диска темные точки - то есть попросту выжигал нужные зоны слоя-красителя. При считывании эти темные точки воспринимались как питы. Технология CD-R увидела свет в 1988 году.

Последней вехой в развитии CD стал выпуск стандарта CD-RW (Compact Disc-Rewritable). В отличие от CD-R, записывать такой диск можно было многократно. Конструкция CD-RW была аналогична CD-R, за исключением слоя между поликарбонатом и отражателем. Если в CD-R использовался органический краситель, то в CD-RW его сменил специальный неорганический активный материал. Под воздействием мощного лазерного луча этот материал также темнел и имитировал питы. Затемнение происходило в результате перехода материала из агрегатного состояния в кристаллическое.

Пик популярности CD пришелся на 90-е и 2000-е годы. И даже при этом говорить об этом стандарте в прошедшем времени как-то неправильно, ведь компакт-диски используются и по сей день.

Стандарт DVD

Стандарт DVD (Digital Versatile Disc) был представлен публике в 1996 году. Разработка формата началась примерно за 5 лет до анонса. Точнее, изначально предполагалось создание двух независимых стандартов. Компании Philips и Sony трудились над технологией MMCD (Multimedia Compact Disc), а альянс из 8 компаний, в число которых входили Toshiba и Time Warner, разрабатывали Super Disc. Стараниями компании IBM усилия всех разработчиков удалось объединить — американской компании уж очень не хотелось повторения истории с конкуренцией между кассетными стандартами VHS и Betamax 70-х годов. Так и появился стандарт DVD.

Интересно, что изначально технология разрабатывалась с прицелом на видеоконтент. Ожидалось, что DVD придет на смену устаревающим видеокассетам. Именно поэтому первое время аббревиатура расшифровывалась как Digital Video Disc. К счастью, диск идеально подошел для хранения данных любых форматов, и расшифровку быстро сменили на Digital Versatile Disc.

Если вы думаете, что между DVD и CD очень большая разница, то вы ошибаетесь. Конструктивно DVD во многом повторяет своего предшественника. Главным отличием является то, что для считывания DVD использует красный лазер с длиной волны 650 нм, что на 130 нм меньше, чем у CD. Это позволило уменьшить размер светового пятна, а значит, и минимальный размер ячейки информации. Другими словами, увеличилась плотность записи. В итоге DVD мог вместить в 6,5 раз больше информации, чем CD.

В 1997 году появился стандарт DVD-R(W). Для его создания применялась та же технология, что использовалась и в CD-R. Несмотря на это, прошло еще немало времени, прежде чем DVD-R(W) стал массовым. Главным препятствием на пути распространения стандарта стала стоимость дисковода и самих «болванок»: первый DVD-R(W) привод стоил 17 тысяч долларов США, а каждый диск — 50 долларов.

Нужно отметить, что существует еще и формат DVD+R(W), представленный в 2002 году. Он был разработан альянсом компаний, в число которых входили Sony и Philips. Дело в том, что при создании DVD-R(W) не были учтены все пожелания и разработки компаний этого альянса. Так появился DVD+R(W). Этот формат отличался от «минусового» тем, что имел специальную разметку, упрощающую позиционирование головки, и иной материал отражающего слоя.

Что касается емкости DVD, то обычно она составляет 4,7 Гбайт. Кроме этого, существуют еще и двухслойные DVD. В таких девайсах информация записывается в два разных слоя — в обычный нижний и полупрозрачный верхний. Для считывания информации с разных уровней лазер должен менять фокусировку. Двухслойные диски могут вместить до 8,5 Гбайт данных. После двухслойных появились двухсторонние диски. У таких дисков обе стороны рабочие. Каждая сторона является двухслойной. Объем такого диска составляет 17 Гбайт.

Вместо заключения

На этом развитие стандарта DVD прекратилось — разработчики реализовали весь его потенциал. На смену DVD пришли форматы HD-DVD и Blu-ray. Но о них, а также о flash-памяти, жестких дисках и многих других технологиях мы поговорим в следующий раз.