Задана система N линейных алгебраических уравнений (СЛАУ) с неизвестными, коэффициентами при которых являются элементы матрицы , а свободными членами — числа

Первый индекс возле коэффициентов указывает в каком уравнении находится коэффициент, а второй — при котором из неизвестным он находится.

Если определитель матрицы не равен нулю

то система линейных алгебраических уравнений имеет единственное решение.

Решением системы линейных алгебраических уравнений называется такая упорядоченная совокупность чисел , которая при превращает каждое из уравнений системы в правильную равенство.

Если правые части всех уравнений системы равны нулю, то систему уравнений называют однородной. В случае, когда некоторые из них отличны от нуля – неоднородной

Если система линейных алгебраических уравнений имеет хоть одно решение, то она называется совместной, в противном случае — несовместимой.

Если решение системы единственное, то система линейных уравнений называется определенной. В случае, когда решение совместной системы не единственный, систему уравнений называют неопределенной.

Две системы линейных уравнений называются эквивалентными (или равносильными), если все решения одной системы является решениями второй, и наоборот. Эквивалентны (или равносильны) системы получаем с помощью эквивалентных преобразований.

Эквивалентные преобразования СЛАУ

1) перестановка местами уравнений;

2) умножение (или деление) уравнений на отличное от нуля число;

3) добавление к некоторого уравнения другого уравнения, умноженного на произвольное, отличное от нуля число.

Решение СЛАУ можно найти разными способами.

МЕТОД КРАМЕРА

ТЕОРЕМА КРАМЕРА. Если определитель системы линейных алгебраических уравнений с неизвестными отличен от нуля то эта система имеет единственное решение, которое находится по формулам Крамера:

— определители, образованные с заменой -го столбца, столбцом из свободных членов.

Если , а хотя бы один из отличен от нуля, то СЛАУ решений не имеет. Если же , то СЛАУ имеет множество решений. Рассмотрим примеры с применением метода Крамера.

—————————————————————

Дана система трех линейных уравнений с тремя неизвестными. Решить систему методом Крамера

Найдем определитель матрицы коэффициентов при неизвестных

Так как , то заданная система уравнений совместная и имеет единственное решение. Вычислим определители:

По формулам Крамера находим неизвестные

Итак единственное решение системы.

Дана система четырех линейных алгебраических уравнений. Решить систему методом Крамера.

Найдем определитель матрицы коэффициентов при неизвестных. Для этого разложим его по первой строке.

Найдем составляющие определителя:

Подставим найденные значения в определитель

Детерминант , следовательно система уравнений совместная и имеет единственное решение. Вычислим определители по формулам Крамера:

Разложим каждый из определителей по столбцу в котором есть больше нулей.

По формулам Крамера находим

Решение системы

Данный пример можно решить математическим калькулятором YukhymCALC . Фрагмент программы и результаты вычислений наведены ниже.


——————————

МЕТОД К Р А М Е Р А

|1,1,1,1|

D=|5,-3,2,-8|

|3,5,1,4|

|4,2,3,1|

D=1*(-3*1*1+2*4*2+(-8)*5*3-((-8)*1*2+2*5*1+(-3)*4*3))-1*(5*1*1+2*4*4+(-8)*3*3-((-8)*1*4+2*3*1+5*4*3))+1*(5*5*1+(-3)*4*4+(-8)*3*2-((-8)*5*4+(-3)*3*1+5*4*2))-1*(5*1*1+2*4*4+(-8)*3*3-((-8)*1*4+2*3*1+5*4*3))= 1*(-3+16-120+16-10+36)-1*(5+32-72+32-6-60)+1*(25-48-48+160+9-40)-1*(75-12+12-40+27-10)=1*(-65)-1*(-69)+1*58-1*52=-65+69+58-52=10

|0,1,1,1|

Dx1=|1,-3,2,-8|

|0,5,1,4|

|3,2,3,1|

Dx1=-1*(1*1*1+2*4*3+(-8)*0*3-((-8)*1*3+2*0*1+1*4*3))+1*(1*5*1+(-3)*4*3+(-8)*0*2-((-8)*5*3+(-3)*0*1+1*4*2))-1*(1*1*1+2*4*3+(-8)*0*3-((-8)*1*3+2*0*1+1*4*3))= -1*(1+24+0+24+0-12)+1*(5-36+0+120+0-8)-1*(15-9+0-30+0-2)= -1*(37)+1*81-1*(-26)=-37+81+26=70

|1,0,1,1|

Dx2=|5,1,2,-8|

|3,0,1,4|

|4,3,3,1|

Dx2=1*(1*1*1+2*4*3+(-8)*0*3-((-8)*1*3+2*0*1+1*4*3))+1*(5*0*1+1*4*4+(-8)*3*3-((-8)*0*4+1*3*1+5*4*3))-1*(5*1*1+2*4*4+(-8)*3*3-((-8)*1*4+2*3*1+5*4*3))= 1*(1+24+0+24+0-12)+1*(0+16-72+0-3-60)-1*(0+4+18+0-9-15)= 1*37+1*(-119)-1*(-2)=37-119+2=-80

|1,1,0,1|

Dx3=|5,-3,1,-8|

|3,5,0,4|

|4,2,3,1|

Dx3=1*(-3*0*1+1*4*2+(-8)*5*3-((-8)*0*2+1*5*1+(-3)*4*3))-1*(5*0*1+1*4*4+(-8)*3*3-((-8)*0*4+1*3*1+5*4*3))-1*(5*0*1+1*4*4+(-8)*3*3-((-8)*0*4+1*3*1+5*4*3))= 1*(0+8-120+0-5+36)-1*(0+16-72+0-3-60)-1*(75+0+6-20+27+0)= 1*(-81)-1*(-119)-1*88=-81+119-88=-50

|1,1,1,0|

Dx4=|5,-3,2,1|

|3,5,1,0|

|4,2,3,3|

Dx4=1*(-3*1*3+2*0*2+1*5*3-(1*1*2+2*5*3+(-3)*0*3))-1*(5*1*3+2*0*4+1*3*3-(1*1*4+2*3*3+5*0*3))+1*(5*5*3+(-3)*0*4+1*3*2-(1*5*4+(-3)*3*3+5*0*2))= 1*(-9+0+15-2-30+0)-1*(15+0+9-4-18+0)+1*(75+0+6-20+27+0)= 1*(-26)-1*(2)+1*88=-26-2+88=60

x1=Dx1/D=70,0000/10,0000=7,0000

x2=Dx2/D=-80,0000/10,0000=-8,0000

x3=Dx3/D=-50,0000/10,0000=-5,0000

x4=Dx4/D=60,0000/10,0000=6,0000

Посмотреть материалы:

{jcomments on}

В общем случае правило вычисления определителей-го порядка является довольно громоздким. Для определителей второго и третьего порядка существуют рациональные способы их вычислений.

Вычисления определителей второго порядка

Чтобы вычислить определитель матрицы второго порядка, надо от произведения элементов главной диагонали отнять произведение элементов побочной диагонали:

Пример

Задание. Вычислить определитель второго порядка

Решение.

Ответ.

Методы вычисления определителей третьего порядка

Для вычисления определителей третьего порядка существует такие правила.

Правило треугольника

Схематически это правило можно изобразить следующим образом:

Произведение элементов в первом определителе, которые соединены прямыми, берется со знаком «плюс»; аналогично, для второго определителя — соответствующие произведения берутся со знаком «минус», т.е.

Пример

Задание. Вычислить определитель методом треугольников.

Решение.

Ответ.

Правило Саррюса

Справа от определителя дописывают первых два столбца и произведения элементов на главной диагонали и на диагоналях, ей параллельных, берут со знаком «плюс»; а произведения элементов побочной диагонали и диагоналей, ей параллельных, со знаком «минус»:

Пример

Задание. Вычислить определитель с помощью правила Саррюса.

Решение.

Ответ.

Разложение определителя по строке или столбцу

Определитель равен сумме произведений элементов строки определителя на их алгебраические дополнения.

Обычно выбирают ту строку/столбец, в которой/ом есть нули. Строку или столбец, по которой/ому ведется разложение, будет обозначать стрелкой.

Пример

Задание. Разложив по первой строке, вычислить определитель

Решение.

Ответ.

Этот метод позволяет вычисление определителя свести к вычислению определителя более низкого порядка.

Пример

Задание. Вычислить определитель

Решение. Выполним следующие преобразования над строками определителя: из второй строки отнимем четыре первых, а из третьей первую строку, умноженную на семь, в результате, согласно свойствам определителя, получим определитель, равный данному.

Определитель равен нулю, так как вторая и третья строки являются пропорциональными.

Ответ.

Для вычисления определителей четвертого порядка и выше применяется либо разложение по строке/столбцу, либо приведение к треугольному виду, либо с помощью теоремы Лапласа.

Разложение определителя по элементам строки или столбца

Пример

Задание. Вычислить определитель , разложив его по элементам какой-то строки или какого-то столбца.

Решение. Предварительно выполним элементарные преобразования над строками определителя, сделав как можно больше нулей либо в строке, либо в столбце. Для этого вначале от первой строки отнимем девять третьих, от второй — пять третьих и от четвертой — три третьих строки, получаем:

Полученный определитель разложим по элементам первого столбца:

Полученный определитель третьего порядка также разложим по элементам строки и столбца, предварительно получив нули, например, в первом столбце.

Для этого от первой строки отнимаем две вторые строки, а от третьей — вторую:

Ответ.

Замечание

Последний и предпоследний определители можно было бы и не вычислять, а сразу сделать вывод о том, что они равны нулю, так как содержат пропорциональные строки.

Приведение определителя к треугольному виду

С помощью элементарных преобразований над строками или столбцами определитель приводится к треугольному виду и тогда его значение, согласно свойствам определителя, равно произведению элементов стоящих на главной диагонали.

Пример

Задание. Вычислить определитель приведением его к треугольному виду.

Решение. Сначала делаем нули в первом столбце под главной диагональю.

4.Свойства определителей. Определитель произведения матриц.

Все преобразования будет выполнять проще, если элемент будет равен 1. Для этого мы поменяем местами первый и второй столбцы определителя, что, согласно свойствам определителя, приведет к тому, что он сменит знак на противоположный:

Далее получаем нули во втором столбце на месте элементов, стоящих под главной диагональю. И снова, если диагональный элемент будет равен , то вычисления будут более простыми. Для этого меняем местами вторую и третью строки (и при этом меняется на противоположный знак определителя):

Ответ.

Теорема Лапласа

Пример

Задание. Используя теорему Лапласа, вычислить определитель

Решение. Выберем в данном определителе пятого порядка две строки — вторую и третью, тогда получаем (слагаемые, которые равны нулю, опускаем):

Ответ.

ЛИНЕЙНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА I

§ 31 Случай, когда главный определитель системы уравнений равен нулю, а хотя бы один из вспомогательных определителей отличен от нуля

Теорема. Если главный определитель системы уравнений

(1)

равен нулю, а хотя бы один из вспомогательных определителей отличен от нуля, то система несовместна.

Формально, доказательство этой теоремы нетрудно получить методом от противного. Предположим, что система уравнений (1) имеет решение (x 0 , y 0). Тогда как показано в предыдущем параграфе,

Δ x 0 = Δ x , Δ y 0 = Δ y (2)

Но по условию Δ = 0, а хотя бы один из определителей Δ x и Δ y отличен от нуля. Таким образом, равенства (2) одновременно выполняться не могут. Теорема доказана.

Однако представляется интересным более детально выяснить, почему система уравнений (1) в рассматриваемом случае несовместна.

означает, что коэффициенты при неизвестных в системе уравнений (1) пропорциональны. Пусть, например,

a 1 = ka 2 , b 1 = kb 2 .

означает, что коэффициенты при у и свободные члены уравнений системы (1) не пропорциональны. Поскольку b 1 = kb 2 , то c 1 =/= kc 2 .

Следовательно, система уравнений (1) может быть записана в следующем виде:

В этой системе коэффициенты при неизвестных соответственно пропорциональны, но коэффициенты при у (или при х ) и свободные члены не пропорциональны. Такая система, конечно, несовместна. Действительно, если бы она имела решение (x 0 , y 0), то выполнялись бы числовые равенства

k (a 2 x 0 + b 2 y 0) = c 1

a 2 x 0 + b 2 y 0 = c 2 .

Но одно из этих равенств противоречит другому: ведь c 1 =/= kc 2 .

Мы рассмотрели лишь случай, когда Δ x =/= 0. Аналогично может быть рассмотрен случай, когда Δ y =/= 0."

Доказанную теорему можно сформулировать и таким образом.

Если коэффициенты при неизвестных х и у в системе уравнений (1) пропорциональны, а коэффициенты при какой-нибудь из этих неизвестных и свободные члены не пропорциональны, то эта система уравнений несовместна.

Легко, например, убедиться в том, что каждая из данных систем будет несовместной:

Метод Крамера решения систем линейных уравнений

Формулы Крамера

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных.

Метод Крамера. Применение для систем линейных уравнений

Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение . Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Определители

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Пример 1. Решить систему линейных уравнений:

Согласно теореме Крамера имеем:

Итак, решение системы (2):

Три случая при решении систем линейных уравнений

Как явствует из теоремы Крамера , при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

*

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

**
,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

(система несовместна)

Итак, система m линейных уравнений с n переменными называется несовместной , если у неё нет ни одного решения, и совместной , если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой , а более одного – неопределённой .

Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

.

На основании теоремы Крамера

………….
,

где

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

Пример 2.

.

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:

Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3. Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы — (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

К началу страницы

Пройти тест по теме Системы линейных уравнений

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 4. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных — буквы. За примерами далеко ходить не надо.

Следующий пример — на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

Пример 6. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Находим определители при неизвестных

По формулам Крамера находим:

,

,

.

И, наконец, система четырёх уравнений с четырьмя неизвестными.

Пример 7. Решить систему линейных уравнений методом Крамера:

.

Внимание! Методы вычисления определителей четвёртого порядка здесь объясняться не будут. За этим — на соответствующий раздел сайта. Но небольшие комментарии будут. Решение. Находим определитель системы:

Небольшой комментарий. В первоначальном определителе из элементов второй строки были вычтены элементы четвёртой строки, из элементов третьей строки — элементы четвёртой строки, умноженной на 2, из элементов четвёртой строки — элементы первой строки, умноженной на 2. Преобразования первоначальных определителей при трёх первых неизвестных произведены по такой же схеме. Находим определители при неизвестных

Для преобразований определителя при четвёртом неизвестном из элементов первой строки были вычтены элементы четвёртой строки.

По формулам Крамера находим:

Итак, решение системы — (1; 1; -1; -1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Самые внимательные, наверное, заметили, что в статье не было примеров решения неопределённых систем линейных уравнений. А всё потому, что методом Крамера решить такие системы невозможно, можно лишь констатировать, что система неопределённа. Решения таких систем даёт метод Гаусса.

Нет времени вникать в решение? Можно заказать работу!

К началу страницы

Пройти тест по теме Системы линейных уравнений

Другое по теме «Системы уравнений и неравенств»

Калькулятор — решение систем уравнений онлайн

Программная реализация метода Крамера на C++

Решение систем линейных уравнений методом подстановки и методом сложения

Решение систем линейных уравнений методом Гаусса

Условие совместности системы линейных уравнений.

Теорема Кронекера-Капелли

Решение систем линейных уравнений матричным методом (обратной матрицы)

Системы линейных неравенств и выпуклые множества точек

Начало темы «Линейная алгебра»

Определители

В этой статье мы познакомимся с очень важным понятием из раздела линейной алгебры, которое называется определитель.

Сразу хотелось бы отметить важный момент: понятие определитель действительно только для квадратных матриц (число строк = числу столбцов), у других матриц его нет.

Определитель квадратной матрицы (детерминант) — численная характеристика матрицы.

Обозначение определителей: |A|, det A, A.

Определителем «n» порядка называют алгебраическую сумму всех возможных произведений его элементов, удовлетворяющих следующим требованиям:

1) Каждое такое произведение содержит ровно «n» элементов (т.е. определитель 2 порядка — 2 элемента).

2) В каждом произведении присутствует в качестве сомножителя представитель каждой строки и каждого столбца.

3) Любые два сомножителя в каждом произведении не могут принадлежать одной строке или столбцу.

Знак произведения определяется порядком чередования номеров столбцов, если в произведении элементы расставлены в порядке возрастания номеров строк.

Рассмотрим несколько примеров нахождения детерминанта матрицы:

У матрицы первого порядка (т.е.

Линейные уравнения. Решение систем линейных уравнений. Метод Крамера.

имеется всего 1 элемент), детерминант равен этому элементу:

2. Рассмотрим квадратную матрицу второго порядка:

3. Рассмотрим квадратную матрицу третьего порядка (3×3):

4. А теперь рассмотрим примеры с действительными числами:

Правило треугольника.

Правило треугольника — это способ вычисления определителя матрицы, который предполагает его нахождение по следующей схеме:

Как вы уже поняли, метод был назван правилом треугольника в следствии того, что перемножаемые элементы матрицы образуют своеобразные треугольники.

Для того, чтобы понять это лучше, разберём такой пример:

А теперь рассмотрим вычисление определителя матрицы с действительными числами правилом треугольника:

Для закрепления пройденного материала, решим ещё один практический пример:

Свойства определителей:

1. Если элементы строки или столбца равны нулю, то и определитель равен нулю.

2. Определитель изменит знак, если поменять местами какие-либо 2 строки или столбца. Рассмотрим это на небольшом примере:

3. Определитель транспонированной матрицы равен определителю исходной матрицы.

4. Определитель равен нулю, если элементы одной строки равны соответствующим элементам другой строки (для столбцов также). Самый простой пример этого свойства определителей:

5. Определитель равен нулю, если его 2 строки пропорциональны (также и для столбцов). Пример (1 и 2 строка пропорциональны):

6. Общий сомножитель строки (столбца) может быть вынесен за знак определителя.

7) Определитель не изменится, если к элементам какой-либо строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на одну и ту же величину. Рассмотрим это на примере:

  • Минор и алгебраическое дополнение
  • Сложение и вычитание матриц на примерах
  • Действия с матрицами
  • Понятие «матрицы»
  • Просмотры: 57258

    Определитель(он же determinant(детерминант)) находится только у квадратных матриц. Определитель есть ничто иное, как значение сочетающее в себе все элементы матрицы, сохранающееся при транспонировании строк или столбцов. Обозначаться он может как det(A), |А|, Δ(A), Δ, где А может быть как матрицей, так и буквой обозначающей ее. Найти его можно разными методами:

    Все выше предложенные методы будут разобраны на матрицах размера от трех и выше. Определитель двумерной матрицы находится с помощью трех элементарных математических операций, поэтому ни в один из методов нахождение определителя двумерной матрицы не попадет. Ну кроме как дополнение, но об этом потом.

    Найдем определитель матрицы размером 2х2:

    Для того, чтобы найти определитель нашей матрицы, требуется вычесть произведение чисел одной диагонали из другой, а именно , то есть

    Примеры нахождения определителя матриц второго порядка

    Разложение по строке/столбцу

    Выбирается любая строка или столбец в матрице. Каждое число в выбранной линии умножается на (-1) i+j где(i,j — номер строки,столбца того числа) и перемножается с определителем второго порядка, составленного из оставшихся элементов после вычеркивания i — строки и j — столбца. Разберем на матрице

      1. Выберем строку/столбец

    Например возьмем вторую строку.

    Примечание: Если явно не указано, с помощью какой линии найти определитель, выбирайте ту линию у которой есть ноль. Меньше будет вычислений.

      1. Составим выражение

    Не трудно определить, что знак у числа меняется через раз. Поэтому вместо единиц можно руководствоваться такой таблицей:

      1. Поменяем знак у наших чисел
      1. Найдем определители у наших матриц
      1. Считаем все это

    Решение можно написать так:

    Примеры нахождения определителя разложением по строке/столбцу:

    Метод приведения к треугольному виду(с помощью элементарных преобразований)

    Определитель находится с помощью приведения матрицы к треугольному(ступенчатому) виду и перемножению элементов на главной диагонали

    Треугольной матрицей называется матрица, элементы которой по одну сторону диагонали равны нулю.

    При построении матрицы следует помнить три простых правила:

    1. Каждый раз при перестановке строк между собой определитель меняет знак на противоположный.
    2. При умножении/делении одной строки на не нулевое число, её следует разделить(если умножали)/умножить(если разделяли) на него же или же произвести это действие с полученным определителем.
    3. При прибавлении одной строки умноженной на число к другой строке, определитель не изменяется(умножаемая строка принимает своё исходное значение).

    Попытаемся получить нули в первом столбце, потом во втором.

    Взглянем на нашу матрицу:

    Та-а-ак. Чтобы вычисления были поприятнее, хотелось бы иметь самое близкое число сверху. Можно и оставить, но не надо. Окей, у нас во второй строке двойка, а на первой четыре.

    Поменяем же эти две строки местами.

    Поменяли строки местами, теперь мы должны либо поменять у одной строки знак, либо в конце поменять знак у определителя.

    Определители. Вычисление определителей (стр. 2)

    Сделаем это потом.

    Теперь, чтобы получить ноль в первой строке — умножим первую строку на 2.

    Отнимем 1-ю строку из второй.

    Согласно нашему 3-му правилу возващаем исходную строку в начальное положение.

    Теперь сделаем ноль в 3-ей строке. Можем домножить 1-ую строку на 1.5 и отнять от третьей, но работа с дробями приносит мало удовольствия. Поэтому найдем число, к которому можно привести обе строки — это 6.

    Умножим 3-ю строку на 2.

    Теперь умножим 1-ю строку на 3 и отнимем из 3-ей.

    Возвратим нашу 1-ю строку.

    Не забываем, что умножали 3-ю строку на 2, так что потом разделим определитель на 2.

    Один столбец есть. Теперь для того чтобы получить нули во втором — забудем про 1-ю строку — работаем со 2-й строкой. Домножим вторую строку на -3и прибавим к третьей.

    Не забываем вернуть вторую строку.

    Вот мы и построили треугольнаую матрицу. Что нам осталось? А осталось перемножить числа на главной диагонали, чем и займемся.

    Ну и осталось вспомнить, что мы должны разделить наш определитель на 2 и поменять знак.

    Правило Саррюса(Правило треугольников)

    Правило Саррюса применимо только к квадратным матрицам третьего порядка.

    Определитель вычисляется путем добавления первых двух столбцов справа от матрицы, перемножением элементов диагоналей матрицы и их сложением, и вычитанием суммы противоположных диагоналей. Из оранжевых диагоналей вычитаем фиолетовые.

    У правила треугольников то же, только картинка другая.

    Теорема Лапласа см. Разложение по строке/столбцу

    Определителем второго порядка

    и вычисляется по правилу

    Числа называютсяэлементами определителя (первый индекс указывает номер строки, а второй
    номер столбца, на пересечении которых стоит этот элемент); диагональ, образованная элементами
    ,
    , называетсяглавной , элементами
    ,

    побочной .

    Аналогично вводится понятие определителя третьего порядка.

    Определителем третьего порядка называется число, которое обозначается символом

    и вычисляется по правилу

    Диагональ, образованная элементами
    ,
    ,
    , называетсяглавной , элементами
    ,
    ,

    побочной .

    Чтобы запомнить какие произведения в правой части равенства (1) берутся со знаком «
    », а какие со знаком «
    », полезно использовать следующее «правило треугольников»:

    Можно ввести понятие определителя 4-го, 5-го и т. д. порядков.

    Минором
    некоторого элемента определителя называется определитель, образованный из данного вычёркиванием строки и столбца, на пересечении которых находится этот элемент.

    Алгебраическим дополнением некоторого элемента определителя называется минор этого элемента, умноженный на
    , где
    номер строки,
    номер столбца, на пересечении которых находится этот элемент:

    .

    Свойства определителей.

      Величина определителя не изменится, если его строки поменять местами со столбцами.

    Рассмотренная операция называется транспонированием. Свойство 1

    устанавливает равноправность строк и столбцов определителя.


    Задача 1. Вычислить определители:

    1) 2)3)4).

    Задача 2. Вычислить определители, разложив их по элементам первого столбца:

    1)
    2)

    Задача 3. Найти из уравнений:

    1)
    2)

    1.2. Решение систем линейных уравнений с помощью определителей. Формулы Крамера

    I) Система двух линейных неоднородных уравнений с двумя неизвестными

    Обозначим

    основной определитель системы;

    ,
    вспомогательные определители.

    а) Если определитель системы

    ,
    . (1)

    б) Если определитель системы
    , то возможны случаи:

    1)
    (уравнения пропорциональны), тогда система содержит только одно уравнение, например,
    и имеет бесконечно много решений (неопределённая система). Для её решения необходимо выразить одну переменную через другую, значение которой выбирается произвольно;

    2) если хотя бы один из определителей
    отличен от нуля, то система не имеет решений (несовместная система).

    II) Система двух линейных однородных уравнений с тремя переменными

    (2)

    Линейное уравнение называется однородным , если свободный член этого уравнения равен нулю.

    а) Если
    , то система (2) сводится к одному уравнению (например, первому), из которого одно неизвестное выражается через два других, значения которых выбираются произвольно.

    б) Если условие
    не выполнено, то для решения системы (2) перенесем одну переменную вправо и решим систему двух линейных неоднородных уравнений с использованием формул Крамера (1).

    III) Система трёх линейных неоднородных уравнений с тремя неизвестными:

    Составим и вычислим основной определитель и вспомогательные определители,.

    а) Если
    , то система имеет единственное решение, которое находится по формулам Крамера:

    ,
    ,
    (3)

    б) Если
    , то возможны случаи:

    1)
    , тогда система будет иметь бесконечно много решений, она будет сводиться либо к системе состоящей из одного, либо из двух уравнений (одну неизвестную перенесём направо и решим систему двух уравнений с двумя неизвестными);

    2) хотя бы один из определителей
    отличен от нуля, система не имеет решения.

    IV) Система трёх линейных однородных уравнений с тремя неизвестными:

    Эта система всегда совместна, так как имеет нулевое решение.

    а) Если определитель системы
    , то она имеет единственное нулевое решение.

    б) Если же
    , то система сводится либо к двум уравнениям (третье является их следствием), либо к одному уравнению (остальные два являются его следствием) и имеет бесконечно много решений (см. п.II).

    Задача 4. Решить систему уравнений

    Решение. Вычислим определитель системы

    Так как
    , то система имеет единственное решение. Воспользуемся формулами Крамера (3). Для этого вычислим вспомогательные определители:

    ,
    ,

    ,
    ,

    Задача 5. Решить систему уравнений

    Решение. Вычислим определитель системы:

    Следовательно, система однородных уравнений имеет бесконечно много решение, отличных от нулевого. Решаем систему первых двух уравнений (третье уравнение является их следствием):

    Перенесём переменную в правую часть равенства:

    Отсюда по формулам (1) получаем


    ,
    .

    Задачи для самостоятельного решения

    Задача 6. Решить с помощью определителей системы уравнений:

    1)

    2)

    3)

    4)

    5)

    6)

    7)

    8)

    9)

    10)

    11)

    12)

    Системы линейных уравнений

    Система уравнений следующего вида:

    где а ij , b i – числовые коэффициенты, x i – переменные, называется системой линейных уравнений.

    Решить систему линейных уравнений – значит указать все решения системы, то есть такие наборы значений переменных, которые обращают уравнения системы в тождества.

    Система линейных уравнений называется:

      совместной, если она имеет хотя бы одно решение;

      несовместной, если она не имеет решений;

      определенной, если она имеет единственное решение;

      однородной, если все b i = 0;

      неоднородной, если все b i ≠ 0.

    Правило Крамера

    (Габриель Крамер (1704-1752) швейцарский математик)

    Данный метод применим только в случае систем линейных уравнений, где число переменных совпадает с числом уравнений. Кроме того, необходимо ввести ограничения на коэффициенты системы. Необходимо, чтобы все уравнения были линейно независимы, т.е. ни одно уравнение не являлось бы линейной комбинацией остальных.

    Для этого необходимо, чтобы определитель матрицы системы не равнялся 0.

     = det A  0;

    Теорема. (Правило Крамера):

    Система из n уравнений с n неизвестными

    В случае, если определитель матрицы системы не равен нулю, то система имеет единственное решение и это решение находится по формулам:

    х i = ;

    где - главный определитель , составленный из числовых коэффициентов при неизвестных, а  i – вспомогательный определитель , получаемый из главного заменой i -го столбца столбцом свободных членов b i .

     i =

    Пример. Решить систему, используя правило Крамера.

    ;

     1 =
    ;  2 =
    ;  3 =
    ;

    x 1 = ; x 2 = ; x 3 = ;

    Пример. Найти решение системы уравнений:

     =
    = 5(4 – 9) + (2 – 12) – (3 – 8) = -25 – 10 + 5 = -30;

     1 =
    = (28 – 48) – (42 – 32) = -20 – 10 = -30.

     2 =
    = 5(28 – 48) – (16 – 56) = -100 + 40 = -60.

     3 =
    = 5(32 – 42) + (16 – 56) = -50 – 40 = -90.

    Если система однородна, т.е. b i = 0, то при 0 система имеет единственное нулевое решение x 1 = x 2 = … = x n = 0.

    Матричный метод

    Матричный метод применим к решению систем уравнений, где число уравнений равно числу неизвестных.

    Этот метод удобен для решения систем невысокого порядка. Он основан на применении свойств умножения матриц.

    Пусть дана система уравнений:

    Введем обозначения:

    A =
    - матрица коэффициентов системы;

    B = матрица – столбец свободных членов;

    X = - матрица – столбец неизвестных.

    Систему уравнений можно записать в матричной форме:

    Сделаем следующее преобразование: A -1 AX = A -1 B,

    т.к. А -1 А = Е, то ЕХ = А -1 В, получим

    Х = А -1 В - решение матричного уравнения

    Пример. Решить систему матричным методом

    Решение.Обозначим:

    ,
    ,
    .

    Получаем матричное уравнение
    .

    Его решение
    , т.е.

    (Нахождение обратной матрицы было рассмотрено ранее).

    Метод Гаусса

    (Карл Фридрих Гаусс (1777-1855) немецкий математик)

    В отличие от матричного метода и метода Крамера, метод Гаусса может быть применен к системам линейных уравнений с произвольным числом уравнений и неизвестных. Суть метода заключается в последовательном исключении неизвестных.

    Рассмотрим систему линейных уравнений:

    Определение: Матрица, составленная из коэффициентов при неизвестных системы, называется матрицей системы.

    Определение: Матрица называется расширенной матрицей системы, если к матрице А присоединить столбец свободных членов системы.

    Расширенная матрица – это закодированная запись системы. Строки матрицы соответствуют уравнениям системы. Умножение уравнения на число и сложение этого произведения с другим уравнением эквивалентно умножению строки матрицы на это число и почленному сложению произведения с другой строкой матрицы. Таким образом, работу с уравнениями можно заменить работой со строками матрицы.

    Определение: Матрицу А называют ступенчатой, если:

    А) любая ее строка имеет хотя бы один отличный от нуля элемент,

    Б) первый отличный от нуля элемент каждой ее строки, начиная со второй, расположен правее неравного нулю элемента предыдущей строки.

    Метод Гаусса является эффективным методом решения и исследования систем линейных уравнений. Он состоит в том, что данная система линейных уравнений преобразуется в равносильную ей систему ступенчатого вида, которая легко решается и исследуется. Применение метода Гаусса не зависит ни от числа уравнений, ни от числа неизвестных в системе.

    Разберем идею метода Гаусса на конкретных примерах.

    Пример. Решить систему линейных уравнений методом Гаусса.

    Составим расширенную матрицу системы и с помощью элементарных преобразований приведем к виду:

    , откуда получаем: x 3 = 2; x 2 = 5; x 1 = 1.

    Пример. Решить систему методом Гаусса.

    Составим расширенную матрицу системы.

    Таким образом, исходная система может быть представлена в виде:

  • Курсовой проект пояснительная записка

    Курсовой проект

    И третий столбец матрицы, находим вспомогательные определители : Находим коэффициенты полинома: Таким образом... произведение: Найдем произведение: Найдем главный определитель : Находим вспомогательные определители и, подставляя матрицу поочередно в...

  • Методические рекомендации по выполнению внеурочной самостоятельной работы студента Дисциплина «Математика» для специальности

    Методические рекомендации

    Пример: вычислить определитель второго порядка 1) 2) 2. Вычислить определитель третьего порядка Определителем третьего порядка называется... из коэффициентов при неизвестных Составим вспомогательные определители системы следующим образом: … Тогда...

  • Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по лингвистическим специальностям Москва «Высшая школа» 2002

    Учебник

    Восполнителями, вспомогательные глаголы, аспектные и фазисные глаголы, наречия-интенсификаторы, указательные определители ; гетерогенными... путем сочетания «вещественного» слова с «вспомогательно -грамматическим» словом. Соответственно этому и...

  • В ходе решения задач по высшей математике очень часто возникает необходимость вычислить определитель матрицы . Определитель матрицы фигурирует в линейной алгебре, аналитической геометрии, математическом анализе и других разделах высшей математики. Таким образом, без навыка решения определителей просто не обойтись. Также для самопроверки Вы можете бесплатно скачать калькулятор определителей , он сам по себе не научит решать определители, но очень удобен, поскольку всегда выгодно заранее знать правильный ответ!

    Я не буду давать строгое математическое определение определителя, и, вообще, буду стараться минимизировать математическую терминологию, большинству читателей легче от этого не станет. Задача данной статьи – научить Вас решать определители второго, третьего и четвертого порядка. Весь материал изложен в простой и доступной форме, и даже полный (пустой) чайник в высшей математике после внимательного изучения материала сможет правильно решать определители.

    На практике чаще всего можно встретить определитель второго порядка, например: , и определитель третьего порядка, например: .

    Определитель четвертого порядка тоже не антиквариат, и к нему мы подойдём в конце урока.

    Надеюсь, всем понятно следующее: Числа внутри определителя живут сами по себе, и ни о каком вычитании речи не идет! Менять местами числа нельзя!

    (Как частность, можно осуществлять парные перестановки строк или столбцов определителя со сменой его знака, но часто в этом нет никакой необходимости – см. следующий урок Свойства определителя и понижение его порядка)

    Таким образом, если дан какой-либо определитель, то ничего внутри него не трогаем!

    Обозначения : Если дана матрица , то ее определитель обозначают . Также очень часто определитель обозначают латинской буквой или греческой .

    1) Что значит решить (найти, раскрыть) определитель? Вычислить определитель – это значит НАЙТИ ЧИСЛО. Знаки вопроса в вышерассмотренных примерах – это совершенно обыкновенные числа.

    2) Теперь осталось разобраться в том, КАК найти это число? Для этого нужно применить определенные правила, формулы и алгоритмы, о чём сейчас и пойдет речь.

    Начнем с определителя «два» на «два» :

    ЭТО НУЖНО ЗАПОМНИТЬ, по крайне мере на время изучения высшей математики в ВУЗе.

    Сразу рассмотрим пример:

    Готово. Самое главное, НЕ ЗАПУТАТЬСЯ В ЗНАКАХ.

    Определитель матрицы «три на три» можно раскрыть 8 способами, 2 из них простые и 6 - нормальные.

    Начнем с двух простых способов

    Аналогично определителю «два на два», определитель «три на три» можно раскрыть с помощью формулы:

    Формула длинная и допустить ошибку по невнимательности проще простого. Как избежать досадных промахов? Для этого придуман второй способ вычисления определителя, который фактически совпадает с первым. Называется он способом Саррюса или способом «параллельных полосок».
    Суть состоит в том, что справа от определителя приписывают первый и второй столбец и аккуратно карандашом проводят линии:


    Множители, находящиеся на «красных» диагоналях входят в формулу со знаком «плюс».
    Множители, находящиеся на «синих» диагоналях входят в формулу со знаком минус:

    Пример:

    Сравните два решения. Нетрудно заметить, что это ОДНО И ТО ЖЕ, просто во втором случае немного переставлены множители формулы, и, самое главное, вероятность допустить ошибку значительно меньше.

    Теперь рассмотрим шесть нормальных способов для вычисления определителя

    Почему нормальных? Потому что в подавляющем большинстве случаев определители требуется раскрывать именно так.

    Как Вы заметили, у определителя «три на три» три столбца и три строки.
    Решить определитель можно, раскрыв его по любой строке или по любому столбцу .
    Таким образом, получается 6 способов, при этом во всех случаях используется однотипный алгоритм.

    Определитель матрицы равен сумме произведений элементов строки (столбца) на соответствующие алгебраические дополнения. Страшно? Все намного проще, будем использовать ненаучный, но понятный подход, доступный даже для человека, далекого от математики.

    В следующем примере будем раскрывать определитель по первой строке .
    Для этого нам понадобится матрица знаков: . Легко заметить, что знаки расположены в шахматном порядке.

    Внимание! Матрица знаков – это мое собственное изобретение. Данное понятие не научное, его не нужно использовать в чистовом оформлении заданий, оно лишь помогает Вам понять алгоритм вычисления определителя.

    Сначала я приведу полное решение. Снова берем наш подопытный определитель и проводим вычисления:

    И главный вопрос: КАК из определителя «три на три» получить вот это вот:
    ?

    Итак, определитель «три на три» сводится к решению трёх маленьких определителей, или как их еще называют, МИНОРОВ . Термин рекомендую запомнить, тем более, он запоминающийся: минор – маленький.

    Коль скоро выбран способ разложения определителя по первой строке , очевидно, что всё вращается вокруг неё:

    Элементы обычно рассматривают слева направо (или сверху вниз, если был бы выбран столбец)

    Поехали, сначала разбираемся с первым элементом строки, то есть с единицей:

    1) Из матрицы знаков выписываем соответствующий знак:

    2) Затем записываем сам элемент:

    3) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит первый элемент:

    Оставшиеся четыре числа и образуют определитель «два на два», который называется МИНОРОМ данного элемента (единицы).

    Переходим ко второму элементу строки.

    4) Из матрицы знаков выписываем соответствующий знак:

    5) Затем записываем второй элемент:

    6) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит второй элемент:

    Ну и третий элемент первой строки. Никакой оригинальности:

    7) Из матрицы знаков выписываем соответствующий знак:

    8) Записываем третий элемент:

    9) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит третий элемент:

    Оставшиеся четыре числа записываем в маленький определитель.

    Остальные действия не представляют трудностей, поскольку определители «два на два» мы считать уже умеем. НЕ ПУТАЕМСЯ В ЗНАКАХ!

    Аналогично определитель можно разложить по любой строке или по любому столбцу. Естественно, во всех шести случаях ответ получается одинаковым.

    Определитель «четыре на четыре» можно вычислить, используя этот же алгоритм.
    При этом матрица знаков у нас увеличится:

    В следующем примере я раскрыл определитель по четвертому столбцу :

    А как это получилось, попробуйте разобраться самостоятельно. Дополнительная информация будет позже. Если кто захочет прорешать определитель до конца, правильный ответ: 18. Для тренировки лучше раскрыть определитель по какому-нибудь другому столбцу или другой строке.

    Потренироваться, раскрыть, провести расчёты – это очень хорошо и полезно. Но сколько времени вы потратите на большой определитель? Нельзя ли как-нибудь быстрее и надёжнее? Предлагаю ознакомиться с эффективными методами вычисления определителей на втором уроке – Свойства определителя. Понижение порядка определителя .

    БУДЬТЕ ВНИМАТЕЛЬНЫ!

    1.1. Системы двух линейных уравнений и определители второго порядка

    Рассмотрим систему двух линейных уравнений с двумя неизвестными:

    Коэффициенты при неизвестных и имеют два индекса: первый указывает номер уравнения, второй – номер переменной.


    Правило Крамера: Решение системы находят путем деления вспомогательных определителей на главный определитель системы

    ,

    Замечание 1. Использование правила Крамера возможно, если определитель системы не равен нулю.

    Замечание 2. Формулы Крамера обобщаются и на системы большего порядка.

    Пример 1. Решить систему:
    .

    Решение.

    ;
    ;

    ;

    Проверка:

    Вывод: Система решена верно:
    .

    1.2. Системы трех линейных уравнений и определители третьего порядка

    Рассмотрим систему трех линейных уравнений с тремя неизвестными:

    Определитель, составленный из коэффициентов при неизвестных, называется определителем системы или главным определителем:

    .

    Если
    то система имеет единственное решение, которое определяется по формулам Крамера:

    где определители
    – называются вспомогательными и получаются из определителя путем замены его первого, второго или третьего столбца столбцом свободных членов системы.

    Пример 2. Решить систему
    .

    Сформируем главный и вспомогательные определители:

    Осталось рассмотреть правила вычисления определителей третьего порядка. Их три: правило дописывания столбцов, правило Саррюса, правило разложения.

    а) Правило дописывания первых двух столбцов к основному определителю:

    Вычисление проводятся следующим образом: со своим знаком идут произведения элементов главной диагонали и по параллелям к ней, с обратным знаком берут произведения элементов побочной диагонали и по параллелям к ней.

    б) Правило Саррюса:

    Со своим знаком берут произведения элементов главной диагонали и по параллелям к ней, причем недостающий третий элемент берут из противоположного угла. С обратным знаком берут произведения элементов побочной диагонали и по параллелям к ней, третий элемент берут из противоположного угла.

    в) Правило разложения по элементам строки или столбца:

    Если
    , тогда .

    Алгебраическое дополнение – это определитель более низкого порядка, получаемый путем вычеркивания соответствующей строки и столбца и учитывающий знак
    , где– номер строки,– номер столбца.

    Например,

    ,
    ,
    и т.д.

    Вычислим по этому правилу вспомогательные определители и , раскрывая их по элементам первой строки.

    Вычислив все определители, по правилу Крамера найдем переменные:

    Проверка:

    Вывод: система решена верно: .

        Основные свойства определителей

    Необходимо помнить, что определитель – это число , найденное по некоторым правилам. Его вычисление может быть упрощено, если пользоваться основными свойствами, справедливыми для определителей любого порядка.

    Свойство 1. Значение определителя не изменится от замены всех его строк соответствующими по номеру столбцами и наоборот.

    Операция замены строк столбцами называется транспонированием. Из этого свойства вытекает, что всякое утверждение, справедливое для строк определителя, будет справедливым и для его столбцов.

    Свойство 2. Если в определителе поменять местами две строки (столбца), то знак определителя поменяется на противоположный.

    Свойство 3. Если все элементы какой-нибудь строки определителя равны 0, то определитель равен 0.

    Свойство 4. Если элементы строки определителя умножить (разделить) на какое-нибудь число , то и значение определителя увеличится (уменьшится) в раз.

    Если элементы какой-нибудь строки, имеют общий множитель, то его можно вынести за знак определителя.

    Свойство 5. Если определитель имеет две одинаковые или пропорциональные строки, то такой определитель равен 0.

    Свойство 6. Если элементы какой-нибудь строки определителя представляют собой сумму двух слагаемых, то определитель равен сумме двух определителей.

    Свойство 7. Значение определителя не изменится, если к элементам какой-нибудь строки добавить элементы другой строки, умноженной на одно и то же число.

    В этом определителе вначале ко второй строке прибавили третью, умноженную на 2, затем из третьего столбца вычли второй, после чего вторую строку прибавили к первой и третьей, в результате получили много нулей и упростили подсчет.

    Элементарными преобразованиями определителя называются упрощения его благодаря использованию указанных свойств.

    Пример 1. Вычислить определитель

    Непосредственный подсчет по одному из рассмотренных выше правил приводит к громоздким вычислениям. Поэтому целесообразно воспользоваться свойствами:

    а) из І строки вычтем вторую, умноженную на 2;

    б) из ІІ строки вычтем третью, умноженную на 3.

    В результате получаем:

    Разложим этот определитель по элементам первого столбца, содержащего лишь один ненулевой элемент.

    .

        Системы и определители высших порядков

    Систему линейных уравнений с неизвестными можно записать в таком виде:

    Для этого случая также можно составить главный и вспомогательные определители, а неизвестные определять по правилу Крамера. Проблема состоит в том, что определители более высокого порядка могут быть вычислены только путем понижения порядка и сведения их к определителям третьего порядка. Это может быть осуществлено способом прямого разложения по элементам строк или столбцов, а также с помощью предварительных элементарных преобразований и дальнейшего разложения.

    Пример 4. Вычислить определитель четвертого порядка

    Решение найдем двумя способами:

    а) путем прямого разложения по элементам первой строки:

    б) путем предварительных преобразований и дальнейшего разложения

    а) из І строки вычтем ІІІ

    б) ІІ строку прибавим к ІV

    Пример 5. Вычислить определитель пятого порядка, получая нули в третьей строке с помощью четвертого столбца

    из первой строки вычтем вторую, из третьей вычтем вторую, из четвертой вычтем вторую, умноженную на 2.

    из второго столбца вычтем третий:

    из второй строки вычтем третью:

    Пример 6. Решить систему:

    Решение. Составим определитель системы и, применив свойства определителей, вычислим его:

    (из первой строки вычтем третью, а затем в полученном определителе третьего порядка из третьего столбца вычитаем первый, умноженный на 2). Определитель
    , следовательно, формулы Крамера применимы.

    Вычислим остальные определители:


    Четвертый столбец умножили на 2 и вычли из остальных


    Четвертый столбец вычли из первого, а затем, умножив на 2, вычли из второго и третьего столбцов.


    .

    Здесь выполнили те же преобразования, что и для
    .


    .

    При нахождении первый столбец умножили на 2 и вычли из остальных.

    По правилу Крамера имеем:

    После подстановки в уравнения найденных значений убеждаемся в правильности решения системы.

    2. МАТРИЦЫ и ИХ ИСПОЛЬЗОВАНИЕ

    В РЕШЕНИИ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ