X-Com, Fallout, враг неизвестен… Горький запах пожарищ и треск счетчика Гейгера. Но куда бы я ни шел в выжженной пустыне, со мной всегда была она – винтовка Гаусса.

А вот это – уже не игра. Это реальная Гаусс-винтовка, которую выпускает российская компания Silent Flash . И это оружие, как и Гаусс-пистолет, можно заказать через Интернет.

Конечно, у них есть свои собственные имена — «Молния» и «Игла». Как можно заметить, их внешний вид почти копирует известную штурмовую винтовку F2000 из Бельгии и пистолет-пулемет mp7a1 от Heckler&Koch. А это значит что? Что с таким реквизитом вы будете первый гость на любой вечеринке!

Принцип Гаусс-винтовки основан на электромагнитном разгоне тел с магнитными свойствами. В данных моделях, «Молнии» и «Игле» используется необычный принцип – разгоняется не сама пуля, как в других современных образцах Гаусс-оружия, а якорь, который толкает пулю. За счет этого удалось не только улучшить боевые параметры (так как якорь изготавливается из специальных материалов), но и перейти на немагнитные пули. На обычную свинцовую дробь из охотничьих магазинов.

Боевая мощь «гауссовок» сознательно, по требованию органов ограничена 7 Джоулями (в страйкбольной модификации мощность будет снижена до 3 Джоулей), но как пишут сами разработчики, конструктивно этот предел можно обойти и нарастить мощность выстрела побольше.

Сейчас же параметры оружия таковы:
Калибр – свинцовая дробь 00 (4,5 мм, продается в любом охотничьем магазине);
Скорострельность – 1 выстрел в 5 секунд («Молния») или 7,5 («Игла»)
Начальная скорость пули – 170 м/с («Молния»), 165 м/с («Игла»)
Максимальная дальность стрельбы – 100 метров («Молния»), 80 метров («Игла»).

По легенде, начиналось все так. Три студента в 1991 году собрали первую модель электромагнитной пушки, но после двух лет испытаний забросили все, разочаровавшись результатами. В 2002 году, они случайно находят старую модель и решают продолжить эксперименты. В 2004 году собираются первые серийные образцы, а в 2005 начинается производство. Хотели продавать через оруженые магазины, но из-за трений с органами перешли исключительно на Интернет-торговлю.

«Молния» обойдется в 11 200 р. или 16 400 р. в премиум-варианте (отличается тем, что корпус изготовлен из анодированного алюминия, а не из ударопрочного пластика, как обычная. Это и выглядит круче, и на ощупь куда приятнее). «Игла» – 7300 или 9800 соответственно. В комплект поставки входит 500 пуль, плюс зарядные устройства от сети, от прикуривателя в автомобиле, документация и т.д.

Ну, я думаю, всем уже ясно, что будущее уже наступило? Остается ждать, когда в Интернет-магазинах появится RailGun, или, чем барон ада не шутит, BFG.

Фотографии «Молнии»


Вот что бывает с неосторожной банкой Кока-Колы, осмелившейся грубить нам в баре «У трех браминов!»

Каждому любителю научной фантастики хорошо знакомо электромагнитное оружие. Изображаются подобные технологии в виде сочетания механических, электронных и электрических составляющих. Но как выглядит такое оружие в реальной жизни, имеет ли оно хоть малейший шанс на существование?

Технологические особенности

Винтовка Гаусса интересна исследователям одновременно несколькими особенностями. Реализация данной технологии позволит избежать нагрева оружия. Следовательно, его скорострельные качества возрастут до ранее неизведанных пределов. Более того, воплощение технологических задумок в реальность заставит отказаться от гильз, что существенно упростит стрельбу.

По умолчанию стрелять винтовка Гаусса может тонкими узкими снарядами с высочайшей пробивной способностью. Ускорение патрона в данном случае абсолютно не зависит от диаметра.

Для функционирования оружия достаточно подзарядки электрическим током. Что касается известных схем, то в их структуре практически отсутствуют подвижные элементы.

Принцип стрельбы

В настоящее время оружие остается на стадии разработки. Согласно задумке, стрелять оно должно железными патронами. Однако, в отличие от огнестрельных аналогов, в движение снаряды приводятся не давлением пороховых газов, а воздействием магнитного поля.

На самом деле винтовка Гаусса работает согласно довольно примитивному принципу. Вдоль ствола располагается ряд электромагнитных катушек. Патроны заряжаются из магазина механическим способом. Одна из катушек подтягивает заряд. Как только патрон достигает средины ствола, активизируется следующая катушка, благодаря чему осуществляется его разгон.

Последовательное размещение вдоль ствола произвольного количества катушек теоретически позволяет моментально разогнать снаряд до немыслимых скоростей.

Преимущества и недостатки

Электромагнитная винтовка в теории обладает достоинствами, которые недостижимы для любого другого известного оружия:

  • возможность выбора скорости движения снаряда;
  • отсутствие гильз;
  • выполнение абсолютно бесшумных выстрелов;
  • незначительная отдача;
  • высокая надежность;
  • износостойкость;
  • функционирование в безвоздушном, в частности космическом пространстве.

Несмотря на достаточно простой принцип функционирования и несложную конструкцию, винтовка Гаусса обладает некоторыми недостатками, которые создают преграды для ее использования в качестве оружия.

Основная проблема заключается в низком КПД электромагнитных катушек. Специальные тесты показывают, что лишь порядка 7% заряда преобразуется в кинетическую энергию, чего недостаточно для приведения в движение патрона.

Второй трудностью является существенное потребление и длительное накопление энергии конденсаторами. Вместе с пушкой придется носить достаточно тяжелый и объемный источник питания.

Исходя из вышесказанного, можно сделать вывод, что в современных условиях практически не существует перспектив для реализации идеи в качестве стрелкового оружия. Положительный сдвиг в нужном направлении возможен лишь в случае разработки мощных, автономных и в то же время компактных источников электрического тока.

Прототипы

В настоящее время не существует ни одного удачного примера создания высокоэффективного электромагнитного оружия. Однако это не мешает разработке прототипов. Наиболее удачным примером выступает изобретение инженерного бюро Delta V Engineering.

Пятнадцатизарядное устройство разработчиков позволяет вести достаточно скорострельную стрельбу, выпуская по 7 патронов в секунду. К сожалению, пробивной способности винтовки хватает лишь для поражения стекла и жестяных банок. Электромагнитное оружие обладает весом порядка 4 кг и стреляет пулями калибра 6,5 мм.

На сегодняшний день разработчику пока не удалось достичь успехов на пути преодоления основного недостатка винтовки - крайне низкой стартовой скорости снарядов. Здесь данный показатель составляет всего лишь 43 м/сек. Если проводить параллели, то начальная скорость патрона, выпущенного из пневматической винтовки, почти в 20 раз выше.

Изобретение Гаусса в компьютерных играх

В научно-фантастических играх электромагнитная пушка выступает чуть ли не самым мощным, скорострельным и по-настоящему смертоносным оружием. Забавно, но основная масса спецэффектов является нехарактерной для данного изобретения.

Наиболее ярким примером выступают пистолет и ружье Гаусса, которые доступны персонажам культовой серии игр Fallout. Как и реальный прототип, виртуальное оружие функционирует на основе заряженных электромагнитных частиц.

В игре S.T.A.L.K.E.R. пушка Гаусса обладает низкой скорострельностью, что близко к качествам реально существующих прототипов. В то же время оружие отличается наивысшей мощностью. Согласно описанию, действует пушка на основе энергии аномальных явлений.

Игры серии Master of Orion также дают возможность игроку вооружать космические корабли пушками Гаусса. Здесь оружие выпускает электромагнитные снаряды, сила урона которых не зависит от расстояния до цели.

Обладать оружием, которое даже в компьютерных играх можно найти только в лаборатории сумасшедшего ученого или возле временного портала в будущее, — это круто. Наблюдать, как равнодушные к технике люди невольно фиксируют на устройстве взгляд, а заядлые геймеры спешно подбирают с пола челюсть, — ради этого стоит потратить денек на сборку пушки Гаусса.

Как водится, начать мы решили с простейшей конструкции — однокатушечной индукционной пушки. Эксперименты с многоступенчатым разгоном снаряда оставили опытным электронщикам, способным построить сложную систему коммутации на мощных тиристорах и точно настроить моменты последовательного включения катушек. Вместо этого мы сконцентрировались на возможности приготовления блюда из повсеместно доступных ингредиентов. Итак, чтобы построить пушку Гаусса, прежде всего придется пробежаться по магазинам. В радиомагазине нужно купить несколько конденсаторов с напряжением 350−400 В и общей емкостью 1000−2000 микрофарад, эмалированный медный провод диаметром 0,8 мм, батарейные отсеки для «Кроны» и двух 1,5-вольтовых батареек типа С, тумблер и кнопку. В фототоварах возьмем пять одноразовых фотоаппаратов Kodak, в автозапчастях — простейшее четырехконтактное реле от «Жигулей», в «продуктах» — пачку соломинок для коктейлей, а в «игрушках» — пластмассовый пистолет, автомат, дробовик, ружье или любую другую пушку, которую вы захотите превратить в оружие будущего.


Мотаем на ус

Главный силовой элемент нашей пушки — катушка индуктивности. С ее изготовления стоит начать сборку орудия. Возьмите отрезок соломинки длиной 30 мм и две большие шайбы (пластмассовые или картонные), соберите из них бобину с помощью винта и гайки. Начните наматывать на нее эмалированный провод аккуратно, виток к витку (при большом диаметре провода это довольно просто). Будьте внимательны, не допускайте резких перегибов провода, не повредите изоляцию. Закончив первый слой, залейте его суперклеем и начинайте наматывать следующий. Поступайте так с каждым слоем. Всего нужно намотать 12 слоев. Затем можно разобрать бобину, снять шайбы и надеть катушку на длинную соломинку, которая послужит стволом. Один конец соломинки следует заглушить. Готовую катушку легко проверить, подключив ее к 9-вольтовой батарейке: если она удержит на весу канцелярскую скрепку, значит, вы добились успеха. Можно вставить в катушку соломинку и испытать ее в роли соленоида: она должна активно втягивать в себя отрезок скрепки, а при импульсном подключении даже выбрасывать ее из ствола на 20−30 см.


Освоившись с простой однокатушечной схемой, можно испытать свои силы в постройке многоступенчатого орудия — ведь именно такой должна быть настоящая пушка Гаусса. В качестве коммутирующего элемента для низковольтных схем (сотни вольт) идеально подходят тиристоры (мощные управляемые диоды), для высоковольтных (тысячи вольт) — управляемые искровые разрядники. Сигнал на управляющие электроды тиристоров или разрядников будет посылать сам снаряд, пролетая мимо фотоэлементов, установленных в стволе между катушками. Момент выключения каждой катушки будет всецело зависеть от питающего ее конденсатора. Будьте внимательны: избыточное увеличение емкости конденсатора при заданном импедансе катушки может привести к увеличению длительности импульса. В свою очередь это может привести к тому, что после прохождения снарядом центра соленоида катушка останется включенной и замедлит движение снаряда. Детально отследить и оптимизировать моменты включения и выключения каждой катушки, а также измерить скорость движения снаряда поможет осциллограф.

Препарируем ценности

Для формирования мощного электрического импульса как нельзя лучше подходит батарея конденсаторов (в этом мнении мы солидарны с создателями самых мощных лабораторных рельсотронов). Конденсаторы хороши не только большой энергоемкостью, но и способностью отдать всю энергию в течение очень короткого времени, до того как снаряд достигнет центра катушки. Однако конденсаторы необходимо как-то заряжать. К счастью, нужное нам зарядное устройство есть в любом фотоаппарате: конденсатор используется там для формирования высоковольтного импульса для поджигающего электрода вспышки. Лучше всего нам подходят одноразовые фотоаппараты, потому что конденсатор и «зарядка» — это единственные электрические компоненты, которые в них есть, а значит, достать зарядный контур из них проще простого.


Знаменитый рэйлган из игр серии Quake с большим отрывом занимает первое место в нашем рейтинге. В течение многих лет виртуозное владение «рельсой» отличало продвинутых игроков: оружие требует филигранной точности стрельбы, однако в случае попадания скоростной снаряд буквально разрывает противника на куски.

Разборка одноразового фотоаппарата — это этап, на котором стоит начать проявлять осторожность. Вскрывая корпус, старайтесь не касаться элементов электрической цепи: конденсатор может сохранять заряд в течение долгого времени. Получив доступ к конденсатору, первым делом замкните его выводы отверткой с ручкой из диэлектрика. Только после этого можно касаться платы, не опасаясь получить удар током. Удалите с зарядного контура скобы для батарейки, отпаяйте конденсатор, припаяйте перемычку к контактам кнопки зарядки — она нам больше не понадобится. Подготовьте таким образом минимум пять зарядных плат. Обратите внимание на расположение проводящих дорожек на плате: к одним и тем же элементам схемы можно подключиться в разных местах.


Снайперское орудие из зоны отчуждения получает второй приз за реализм: сделанный на основе винтовки LR-300 электромагнитный ускоритель сверкает многочисленными катушками, характерно гудит при зарядке конденсаторов и насмерть поражает противника на колоссальных расстояниях. Источником питания служит артефакт «Вспышка».

Расставляем приоритеты

Подбор емкости конденсаторов — это вопрос компромисса между энергией выстрела и временем зарядки орудия. Мы остановились на четырех конденсаторах по 470 микрофарад (400 В), соединенных параллельно. Перед каждым выстрелом мы в течение примерно минуты ждем сигнала светодиодов на зарядных контурах, сообщающих, что напряжение в конденсаторах достигло положенных 330 В. Ускорить процесс заряда можно, подключая к зарядным контурам по несколько 3-вольтовых батарейных отсеков параллельно. Однако стоит иметь в виду, что мощные батареи типа «С» обладают избыточной силой тока для слабеньких фотоаппаратных схем. Чтобы транзисторы на платах не сгорели, на каждую 3-вольтовую сборку должно приходиться 3−5 зарядных контуров, подключенных параллельно. На нашем орудии к «зарядкам» подключен только один батарейный отсек. Все остальные служат в качестве запасных магазинов.


Расположение контактов на зарядном контуре одноразового фотоаппарата Kodak. Обратите внимание на расположение проводящих дорожек: каждый провод схемы можно припаять к плате в нескольких удобных местах.

Определяем зоны безопасности

Мы никому не посоветуем держать под пальцем кнопку, разряжающую батарею 400-вольтовых конденсаторов. Для управления спуском лучше установить реле. Его управляющий контур подключается к 9-вольтовой батарейке через кнопку спуска, а управляемый включается в цепь между катушкой и конденсаторами. Правильно собрать пушку поможет принципиальная схема. При сборке высоковольтного контура пользуйтесь проводом сечением не менее миллиметра, для зарядного и управляющего контуров подойдут любые тонкие провода. Проводя эксперименты со схемой, помните: конденсаторы могут иметь остаточный заряд. Прежде чем прикасаться к ним, разряжайте их коротким замыканием.


В одной из самых популярных стратегических игр пехотинцы Глобального Совета Безопасности (GDI) оснащаются мощнейшими противотанковыми рельсотронами. Кроме того, рэйлганы устанавливаются и на танки GDI в качестве апгрейда. По степени опасности такой танк — это примерно то же самое, что Звездный разрушитель в Star Wars.

Подводим итог

Процесс стрельбы выглядит так: включаем тумблер питания; дожидаемся яркого свечения светодиодов; опускаем в ствол снаряд так, чтобы он оказался слегка позади катушки; выключаем питание, чтобы при выстреле батарейки не отбирали энергию на себя; прицеливаемся и нажимаем на кнопку спуска. Результат во многом зависит от массы снаряда. Нам с помощью короткого гвоздя с откусанной шляпкой удалось прострелить банку с энергетическим напитком, которая взорвалась и залила фонтаном полредакции. Затем очищенная от липкой газировки пушка запустила гвоздь в стену с расстояния в полсотни метров. А сердца поклонников фантастики и компьютерных игр наше орудие поражает без всяких снарядов.


Ogame — это многопользовательская космическая стратегия, в которой игроку предстоит почувствовать себя императором планетных систем и вести межгалактические войны с такими же живыми противниками. Ogame переведена на 16 языков, в том числе русский. Пушка Гаусса — одно из самых мощных оборонительных орудий в игре.

Энциклопедичный YouTube

    1 / 2

    ✪ Тайна структуры мира сулит создание источника энергии небывалой мощи

    ✪ Олег Соколов о Египетском походе: Битва при Абукире, Каир и поход Дезэ

Субтитры

Принцип действия

Параметры ускоряющих катушек, снаряда и конденсаторов должны быть согласованы таким образом, чтобы при выстреле к моменту подлета снаряда к соленоиду индукция магнитного поля в соленоиде была максимальна, но при дальнейшем приближении снаряда резко падала. Стоит заметить, что возможны разные алгоритмы работы ускоряющих катушек.

Кинетическая энергия снаряда E = m v 2 2 {\displaystyle E={mv^{2} \over 2}} m {\displaystyle m} - масса снаряда v {\displaystyle v} - его скорость Энергия, запасаемая в конденсаторе E = C U 2 2 {\displaystyle E={CU^{2} \over 2}} U {\displaystyle U} - напряжение конденсатора C {\displaystyle C} - ёмкость конденсатора Время разряда конденсаторов

Это время за которое конденсатор полностью разряжается:

T = π L C 2 {\displaystyle T={\pi {\sqrt {LC}} \over 2}} L {\displaystyle L} - индуктивность C {\displaystyle C} - ёмкость Время работы катушки индуктивности

Это время за которое ЭДС катушки индуктивности возрастает до максимального значения (полный разряд конденсатора) и полностью падает до 0. Оно равно верхнему полупериоду синусоиды.

T = 2 π L C {\displaystyle T=2\pi {\sqrt {LC}}} L {\displaystyle L} - индуктивность C {\displaystyle C} - ёмкость

Стоит заметить, что в представленном виде две последние формулы не могут применяться для расчетов пушки Гаусса, хотя бы по той причине, что по мере движения снаряда внутри катушки, её индуктивность все время изменяется.

Применение

Теоретически возможно применение пушек Гаусса для запуска лёгких спутников на орбиту. Основное применение - любительские установки, демонстрация свойств ферромагнетиков . Также достаточно активно используется в качестве детской игрушки или развивающей техническое творчество самодельной установки (простота и относительная безопасность)

Создание

Простейшие конструкции могут быть собраны из подручных материалов даже при школьных знаниях физики

Существует множество сайтов, в которых подробно описано, как собрать пушку Гаусса. Но стоит помнить, что создание оружия в некоторых странах может преследоваться по закону. Поэтому, перед тем, как создавать пушку Гаусса, стоит задуматься, как вы будете применять её.

Преимущества и недостатки

Пушка Гаусса в качестве оружия обладает преимуществами, которыми не обладают другие виды стрелкового оружия . Это отсутствие гильз и неограниченность в выборе начальной скорости и энергии боеприпаса , возможность бесшумного выстрела (если скорость достаточно обтекаемого снаряда не превышает скорости звука) в том числе без смены ствола и боеприпаса, относительно малая отдача (равная импульсу вылетевшего снаряда, нет дополнительного импульса от пороховых газов или движущихся частей), теоретически, больша́я надёжность и, в теории, износостойкость , а также возможность работы в любых условиях, в том числе в космическом пространстве .

Однако, несмотря на кажущуюся простоту пушки Гаусса, использование её в качестве оружия сопряжено с серьёзными трудностями, главное из которых: большие затраты энергии.

Первая и основная трудность - низкий КПД установки. Лишь 1-7 % заряда конденсаторов переходят в кинетическую энергию снаряда. Отчасти этот недостаток можно компенсировать использованием многоступенчатой системы разгона снаряда, но в любом случае КПД редко достигает 27 %. В основном в любительских установках энергия, запасённая в виде магнитного поля, никак не используется, а является причиной использования мощных ключей (часто применяют IGBT модули) для размыкания катушки (правило Ленца).

Вторая трудность - большой расход энергии (из-за низкого КПД).

Третья трудность (следует из первых двух) - большой вес и габариты установки при её низкой эффективности.

Четвёртая трудность - достаточно длительное время накопительной перезарядки конденсаторов , что заставляет вместе с пушкой Гаусса носить и (как правило, мощную аккумуляторную батарею), а также высокая их стоимость. Можно, теоретически, увеличить эффективность, если использовать сверхпроводящие соленоиды, однако это потребует мощной системы охлаждения , что приносит дополнительные проблемы, и серьёзно влияет на область применения установки. Или же использовать заменяемые батареи конденсаторы.

Пятая трудность - с увеличением скорости снаряда время действия магнитного поля, за время пролёта снарядом соленоида, существенно сокращается, что приводит к необходимости не только заблаговременно включать каждую следующую катушку многоступенчатой системы, но и увеличивать мощность её поля пропорционально сокращению этого времени. Обычно этот недостаток сразу обходится вниманием, так как большинство самодельных систем имеет или малое число катушек, или недостаточную скорость пули.

В условиях водной среды применение пушки без защитного кожуха также серьёзно ограничено - дистанционной индукции тока достаточно, чтобы раствор солей диссоциировал на кожухе с образованием агрессивных (растворяющих) сред, что требует дополнительного магнитного экранирования.

Таким образом, на сегодняшний день у пушки Гаусса нет перспектив в качестве оружия, так как она значительно уступает другим видам стрелкового оружия, работающего на других принципах. Теоретически, перспективы, конечно, возможны, если будут созданы компактные и мощные источники электрического тока и

Пушка Гаусса - одна из разновидностей электромагнитного ускорителя масс. Названа по имени немецкого учёного Карла Гаусса, заложившего основы математической теории электромагнетизма. Следует иметь в виду, что этот метод ускорения масс используется в основном в любительских установках, так как не является достаточно эффективным для практической реализации. По своему принципу работы (создание бегущего магнитного поля) сходна с устройством, известным как линейный двигатель.

Пушка Гаусса состоит из соленоида, внутри которого находится ствол (как правило, из диэлектрика). В один из концов ствола вставляется снаряд (сделанный из ферромагнетика). При протекании электрического тока в соленоиде возникает магнитное поле, которое разгоняет снаряд, «втягивая» его внутрь соленоида. На концах снаряда при этом образуются полюса, ориентированные согласно полюсам катушки, из-за чего после прохода центра соленоида снаряд притягивается в обратном направлении, то есть тормозится. В любительских схемах иногда в качестве снаряда используют постоянный магнит так как с возникающей при этом ЭДС индукции легче бороться. Такой же эффект возникает при использовании ферромагнетиков, но выражен он не так ярко благодаря тому что снаряд легко перемагничивается (коэрцитивная сила).

Для наибольшего эффекта импульс тока в соленоиде должен быть кратковременным и мощным. Как правило, для получения такого импульса используются электролитические конденсаторы с высоким рабочим напряжением.

Параметры ускоряющих катушек, снаряда и конденсаторов должны быть согласованы таким образом, чтобы при выстреле к моменту подлета снаряда к соленоиду индукция магнитного поля в соленоиде была максимальна, но при дальнейшем приближении снаряда резко падала. Стоит заметить что возможны разные алгоритмы работы ускоряющих катушек.

Применение

Теоретически возможно применение пушек Гаусса для запуска лёгких спутников на орбиту. Основное применение - любительские установки, демонстрация свойств ферромагнетиков. Также достаточно активно используется в качестве детской игрушки или развивающей техническое творчество самодельной установки (простота и относительная безопасность)

Пушка Гаусса в качестве оружия обладает преимуществами, которыми не обладают другие виды стрелкового оружия. Это отсутствие гильз и неограниченность в выборе начальной скорости и энергии боеприпаса, возможность бесшумного выстрела (если скорость достаточно обтекаемого снаряда не превышает скорости звука) в том числе без смены ствола и боеприпаса, относительно малая отдача (равная импульсу вылетевшего снаряда, нет дополнительного импульса от пороховых газов или движущихся частей), теоретически, большамя надежность и теоретически износостойкость, а также возможность работы в любых условиях, в том числе в космическом пространстве.

Однако, несмотря на кажущуюся простоту пушки Гаусса, использование её в качестве оружия сопряжено с серьёзными трудностями, главное из которых: большие затраты энергии.

Первая и основная трудность - низкий КПД установки. Лишь 1-7% заряда конденсаторов переходят в кинетическую энергию снаряда. Отчасти этот недостаток можно компенсировать использованием многоступенчатой системы разгона снаряда, но в любом случае КПД редко достигает 27%. В основном в любительских установках энергия, запасенная в виде магнитного поля, никак не используется, а является причиной использования мощных ключей (часто применяют IGBT модули) для размыкания катушки (правило Ленца).

Вторая трудность - большой расход энергии (из-за низкого КПД).

Третья трудность (следует из первых двух) - большой вес и габариты установки при её низкой эффективности.

Четвёртая трудность - достаточно длительное время накопительной перезарядки конденсаторов, что заставляет вместе с пушкой Гаусса носить и источник питания (как правило, мощную аккумуляторную батарею), а также высокая их стоимость. Можно, теоретически, увеличить эффективность, если использовать сверхпроводящие соленоиды, однако это потребует мощной системы охлаждения, что приносит дополнительные проблемы, и серьёзно влияет на область применения установки. Или же использовать заменяемые батареи конденсаторы.

Пятая трудность - с увеличением скорости снаряда время действия магнитного поля, за время пролёта снарядом соленоида, существенно сокращается, что приводит к необходимости не только заблаговременно включать каждую следующую катушку многоступенчатой системы, но и увеличивать мощность её поля пропорционально сокращению этого времени. Обычно этот недостаток сразу обходится вниманием, так как большинство самодельных систем имеет или малое число катушек, или недостаточную скорость пули.

В условиях водной среды применение пушки без защитного кожуха также серьёзно ограничено - дистанционной индукции тока достаточно, чтобы раствор солей диссоциировал на кожухе с образованием агрессивных (растворяющих) сред, что требует дополнительного магнитного экранирования.

Таким образом, на сегодняшний день у пушки Гаусса нет перспектив в качестве оружия, так как она значительно уступает другим видам стрелкового оружия, работающего на других принципах. Теоретически, перспективы, конечно, возможны, если будут созданы компактные и мощные источники электрического тока и высокотемпературные сверхпроводники (200-300К). Однако, установка, подобная пушке Гаусса, может использоваться в космическом пространстве, так как в условиях вакуума и невесомости многие недостатки подобных установок нивелируются. В частности, в военных программах СССР и США рассматривалась возможность использования установок, подобных пушке Гаусса, на орбитальных спутниках для поражения других космических аппаратов (снарядами с большим количеством мелких поражающих деталей), или объектов на земной поверхности.