е свойство параллельных прямых, называемое транзитив ностью параллельности:

  • Если две прямые а и b параллельны третьей прямой с, то они параллель ны друг другу.

Но доказать это свойство в стереометрии сложнее. На плоскости непараллельные прямые обязаны пересекаться и потому не могут быть одновременно параллельны третьей (иначе нарушается аксиома параллельных). В про странстве существуют непараллельные и при том непересекающиеся прямые если они лежат в разных плоскостях. О таких прямых говорят, что они скрещиваются.

На рис. 4 изображён куб; прямые АВ и ВС пересекаются, АВ и CD параллельны, а АВ и В С скрещиваются. В дальнейшем мы часто будем прибегать к помощи куба, чтобы иллюс трировать понятия и факты стереометрии. Наш куб склеен из шести граней-квадратов. Исходя из этого, мы будем выводить и другие его свойства. Например, можно утверждать, что прямая АВ параллельна C D, потому что обе они параллельны общей стороне CD со держащих их квадратов.

В стереометрии отношение параллельности рассматривается и для плоскостей: две пло скости или прямая и плоскость параллельны, если они не имеют общих точек. Прямую и плоскость удобно считать параллельными и в том случае, когда лежит в плоскости. Для плоскостей и прямых справедливы теоремы о транзитивности:

  • Если две плоскости параллельны третьей плоскости, то они параллельны между собой.
  • Если прямая и плоскость параллельны некоторой прямой(или плоскости), то они параллельны друг другу.

Наиболее важный частный случай второй теоремы- признак параллельности прямой и плоскости:

  • Прямая параллельна плоскости, если она параллельна некоторой прямой в этой плоскости.

А вот признак параллельности плоскостей:

  • Если две пересекающиеся прямые в одной плоскости соответственно параллельны двум пересекающимся прямым в другой плоскости, то и плоскости параллельны.

Часто используется и такая простая теорема:

  • Прямые, по которым две параллельные плоскости пересекаются третьей, параллельны друг другу.

Посмотрим еще раз на куб (рис. 4). Из признака параллельности прямой и плоскости следует, например, что прямая А В параллельна плоскости АВСD (так как она параллельна прямой АВ в этой плоскости), а противоположные грани куба, в частности А В С D и ABCD, параллельны по признаку параллельности плоскостей: прямые A B и B С в одной грани соответственно параллельны прямым АВ и ВС в другой. И чуть менее простой пример. Плоскость, содержащая параллельные прямые AA и СС , пересекают параллельные плоскости АВСD и A B C D по прямым АС и А С , значит, эти прямые параллельны: аналогично, параллельные прямые В С и А D. Следовательно, параллельные плоскости АВ С и А DC, пересекающие куб по треугольникам.

III. Изображение пространственных фигур.

Есть такой афоризм Геометрия это искус ство правильно рассуждать на неправильном чертеже. Действительно, если вернуться к из ложенным выше рассуждениям, то окажется:

единственная польза, которую мы извлекли из сопровождавшего их рисунка куба, состоит в том, что он сэкономил нам место на объясне нии обозначений. С тем же успехом можно было изобразить его, как тело на рис. 4, я, хотя, очевидно, представленное на нём нечто не только не куб, но и не многогранник. И всё же в приведённом афоризме заключена лишь часть правды. Ведь прежде, чем рассуждать излагать готовое доказательство, надо его при думать. А для этого нужно ясно представлять себе заданную фигуру, соотношения между её элементами. Выработать такое представление помогает хороший чертёж. Более того, как мы увидим, в стереометрии удачный чертёж мо жет стать не просто иллюстрацией, а основой решения задачи.

Художник (вернее, художник-реалист) на рисует наш куб таким, каким мы его видим (рис. 5, б), т. е. в перспективе, или централь ной проекции. При центральной проекции из точки О (центр проекции) на плоскость а про извольная точка Х изображается точкой X, в которой а пересекается с прямой ОХ (рис. 6). Центральная проекция сохраняет прямоли нейное расположение точек, но, как правило, переводит параллельные прямые в пересека ющиеся, не говоря уже о том, что изменяет расстояния и углы. Изучение её свойств при вело к появлению важного раздела геометрии (см. статью Проективная геометрия).

Но в геометри-ческих чертежах исполь-зуется другая проекция. Можно сказать, что она получается из централь-ной когда центр О уда-ляется в бесконечность и прямые ОХ становятся па раллельными.

Выберем плоскость а и пересекающую её прямую l. Проведём через точку Х прямую, па раллельную l. Точка X, в которой эта прямая встречается с а, и есть параллельная проекция Х на плоскость, а вдоль прямой l (рис. 7). Про екция фигуры состоит из проекций всех её точек. В геометрии под изображением фигуры понимают её параллельную проекцию.

В частности, изображение прямой линии это прямая линия или (в исключительном слу чае, когда прямая параллельна направлению проекции) точка. На изображении параллель

( I курс)

Преподаватель математики ПУ№3

Туаева З.С.

2015г.

Тема урока “Параллельность плоскостей”

Тип урока: урок усвоения нового материала.

Основная цель:

    Ввести понятие параллельных плоскостей.

    Доказать признак параллельности двух плоскостей.

    Рассмотреть свойства параллельных плоскостей.

Задачи:

Обучающие :

    Сформировать навык применения признака параллельности двух плоскостей и изученных свойств параллельных плоскостей при решении задач.

Развивающие :

    Развитие пространственного воображения обучающихся,

    Развитие мыслительной деятельности обучающихся.

    Развитие логичного, рационального, критичного, творческого мышления и познавательных способностей обучающихся.

Воспитательные :

    Воспитание аккуратности, графической грамотности.

Использование новых образовательных технологий: использование технологии проблемного обучения.

План урока

II . Изучение нового материала на интерактивной доске с моделью:

    Определение параллельных плоскостей.

    Признак параллельности двух плоскостей.

    Свойства параллельных плоскостей.

Беседа с учащимися по вопросам, при которой преподаватель, систематически создавая проблемные ситуации и организуя деятельность учащихся по решению учебных проблем, обеспечивает оптимальное сочетание их самостоятельной, поисковой деятельности с усвоением готовых выводов науки.

III . Формирование умений и навыков

Решение учащимися задач на применение признака параллельности двух плоскостей и свойств параллельных плоскостей . Самостоятельная работа для контроля усвоенного и проведения первичного закрепления материала

IV . Домашнее задание

Комментарии учителя по домашнему заданию

Ход урока:

1. Сообщение темы и цели урока. Сообщение плана урока.

2. Этап актуализации знаний.

Вопросы к учащимся:

1. Какие прямые в пространстве называются параллельными?

(Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не имеют общих точек)

2. Сформулируйте определение параллельности прямой и плоскости?

(Прямая и плоскость называются параллельными, если они не имеют общих точек)

3. Сформулируйте третью аксиому стереометрии?

(Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей)

4. Как могут располагаться две плоскости в пространстве?

(Две плоскости либо пересекаются по прямой (рис.1, а), либо не пересекаются (рис.1, б))

Рис.1, а Рис.1, б

3. Изучение нового материала.

1. Учебная проблема : дать определение параллельных плоскостей.

Учебная ситуация :

Вопросы к учащимся:

1. Сколько общих точек имеют две непересекающиеся плоскости?

(Ни одной общей точки)

2. Как называются плоскости, которые не имеют ни одной общей точки?

(Параллельные плоскости)

3. Сформулируйте определение параллельных плоскостей, учитывая количество их общих точек?

Две плоскости называются параллельными, если они не имеют общих точек.

4. Укажите модели параллельных плоскостей на предметах классной обстановки?

(Пол и потолок кабинета, две противоположные стены, поверхность стола и плоскость пола)

2. Учебная проблема : сформулировать и доказать признак параллельности двух плоскостей.

Учебная ситуация :

Учащимся предоставляется модель параллелепипеда.


Вопросы к учащимся:

1. Какого взаимное расположение плоскостей и ?

(плоскости и параллельны)

2. Назовите любые две пересекающиеся прямые плоскости

(прямая АВ, прямая ВС)

3. Назовите прямые плоскости , параллельные прямым АВ и ВС ?

(


4. Какого взаимное расположение прямой АВ и плоскости ? Ответ обоснуйте.

(АВ║ по признаку параллельности прямой и плоскости: если прямая, не лежащая в данной плоскости (
), параллельна какой-нибудь прямой, лежащей в этой плоскости (

Если учащиеся затрудняются обосновать ответ, то обратить их внимание на признак параллельности прямой и плоскости.

5. Какого взаимное расположение прямой ВС и плоскости ? Ответ обоснуйте.

(ВС║ по признаку параллельности прямой и плоскости: если прямая, не лежащая в данной плоскости(
), параллельна какой-нибудь прямой, лежащей в этой плоскости(

), то она параллельна самой плоскости)

6. Предположите, что плоскости и не параллельны. Как тогда они будут располагаться?

(плоскости будут пересекаться по некоторой прямой с)

7. Как в этом случае будут располагаться прямые АВ и с ?

║АВ, согласно свойству
), параллельную другой плоскости (АВ║

║АВ))

8. Как в этом случае будут располагаться прямые ВС и с ?

║ВС, согласно свойству : если плоскость проходит через данную прямую (
), параллельную другой плоскости (ВС║
), и пересекает эту плоскость (
), то линия пресечения плоскостей параллельна данной прямой (с
║ВС))

9. Сколько прямых, параллельных прямой с , проходит через точку В ?

(Две прямые: прямая АВ, прямая ВС)

10. Возможно ли это?

(Это не возможно, так как по теореме о параллельных прямых: через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна)

11. Какой вывод можно сделать? Верно ли наше предположение?

(Наше предположение не верно, остается признать, что )

12. Сколько прямых необходимо в плоскости , чтобы плоскости и были параллельны?

(две прямые)

13. Какие между собой должны быть эти прямые?

(пересекающиеся)

14. Скольким прямым они должны быть параллельны из плоскости ?

(Двум)

15. Сформулируйте признак параллельности двух плоскостей, учитывая количество прямых одной плоскости, параллельных прямым другой плоскости?

Результат умозаключения обучающихся:

Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.


3. Учебная проблема : сформулировать и доказать свойства параллельных плоскостей.

Учебная ситуация :


Вопросы к учащимся:

и ?

(плоскости параллельны)

по отношению к плоскостям и ?

(плоскость пересекает плоскости и )

3. Что вы можете сказать про линии пересечения плоскостей?

(линии пересечения плоскостей параллельны между собой)

4. Ответ обоснуйте, используя определение параллельных прямых в пространстве.

(прямые а и в лежат в одной плоскости и не пересекаются, так как, если бы прямые пересекались, то плоскости и имели бы общую точку, что невозможно, так как эти плоскости параллельны)

5. Сформулируйте первое свойство параллельных плоскостей, учитывая взаимное расположение линий пересечений а и в ?

Результат умозаключения обучающихся:

Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.

Учебная ситуация :

Учащимся предоставляется модель параллельных плоскостей, пересеченных третьей плоскостью.


Вопросы к учащимся:

1. Какого взаимное расположение плоскостей и ?

(плоскости параллельны)

2. Как располагается плоскость по отношению к плоскостям и ?

(плоскость пересекает плоскости и )

3. Что вы можете сказать про отрезки АВ и С D ?

(отрезки АВ и С D параллельны между собой)

4. Что вы можете сказать про отрезки АС и В D ?

(отрезки АС и В D параллельны между собой по свойству 1)

5. Как называется четырехугольник, у которого противоположные стороны попарно параллельны?

(параллелограмм)

6. Какие свойства параллелограмма вы знаете?

    в параллелограмме противоположные стороны и углы равны

    Диагонали параллелограмма точкой пресечения делятся пополам

7. Что вы можете сказать про отрезки АВ и С D , используя первое свойство параллелограмма?

(отрезки АВ и С D равны между собой)

8. Сформулируйте второе свойство параллельных плоскостей, используя равенство отрезков АВ и С D ?

Результат умозаключения обучающихся:

Отрезки параллельных прямых, заключенных между параллельными плоскостями равны.

4. Формирование умений и навыков.

Решение задач

Задача № 1. (№ 54) (На отработку признака параллельности двух плоскостей)

Дано :

Доказать :


Найти :

Доказательство:

1.
- средняя линия
MN AC .

2. NP – средняя линия
NP CD .


MN AC
(
MNP )║( ADC ) по признаку параллельности 2 пл.

NP CD

4.
подобен
по третьему признаку подобия треугольников (если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны)
(так как отношение площадей двух подобных треугольников равно квадрату коэффициента подобия)

Ответ :
.

Задача № 2. (№ 63(а)) (На отработку 1 свойства параллельных плоскостей)

Дано:

Найти:

Решение:

1. Докажем, что

.

Так как

(по условию)




.(по 1 свойству параллельных плоскостей)

2. Докажем, что
подобен
.

, как соответственные при

.и секущей

, как соответственные при

.и секущей

Значит,
подобен
по 2 углам.

3. Найдем
.

По условию

4. Найдем
.

Составим пропорцию :

Ответ :

Задача № 3. (№ 65) (На отработку 2 свойства параллельных плоскостей)

Дано :



Определить :

вид четырехугольников

Доказать:

Решение:

1. Рассмотрим четырехугольник
.


(по условию)

=

четырехугольник

2. Рассмотрим четырехугольник
.


(по условию)

=
(как отрезки параллельных прямых, заключенных между параллельными плоскостями, свойство 2)
четырехугольник
является параллелограммом (по 1 признаку параллелограмма: если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник – параллелограмм)

3. Рассмотрим четырехугольник
.


(по условию)

=
(как отрезки параллельных прямых, заключенных между параллельными плоскостями, свойство 2)
четырехугольник
отсекает от треугольника треугольник, подобный данному. : ║ Домашнее задание.

§ 10 (п. 10-11) стр. (20-21)

№ 53, № 63(б).

Учебник: Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев, Л. С. Киселева, Э. Г. Позняк. Геометрия 10, 11. Москва Просвещение , 2002.

6. Итог урока.

Сегодня на уроке мы ввели понятие параллельных плоскостей, самостоятельно доказали признак параллельности двух плоскостей, рассмотрели свойства параллельных плоскостей. Научились решать задачи на доказательство с применением признака параллельности двух плоскостей, применять изученные свойства параллельных плоскостей при решении задач.

В данной статье будут изучены вопросы параллельности плоскостей. Дадим определение плоскостям, которые параллельны между собой; обозначим признаки и достаточные условия параллельности; рассмотрим теорию на иллюстрациях и практических примерах.

Yandex.RTB R-A-339285-1 Определение 1

Параллельные плоскости – плоскости, не имеющие общих точек.

Чтобы обозначить параллельность применяют такой символ: ∥ . Если заданы две плоскости: α и β , являющиеся параллельными, краткая запись об этом будет выглядеть так: α ‖ β .

На чертеже, как правило, плоскости, параллельные друг другу, отображаются как два равных параллелограмма, имеющих смещение относительно друг друга.

В речи параллельность можно обозначить так: плоскости α и β параллельны, а также – плоскость α параллельна плоскости β или плоскость β параллельна плоскости α .

Параллельность плоскостей: признак и условия параллельности

В процессе решения геометрических задач зачастую возникает вопрос: а параллельны ли заданные плоскости между собой? Для получения ответа на этот вопрос используют признак параллельности, который также является достаточным условием параллельности плоскостей. Запишем его как теорему.

Теорема 1

Плоскости являются параллельными, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости.

Доказательство этой теоремы приводится в программе геометрии за 10 - 11 класс.

В практике для доказательства параллельности, в том числе, применяют две следующие теоремы.

Теорема 2

Если одна из параллельных плоскостей параллельна третьей плоскости, то другая плоскость или также параллельна этой плоскости, или совпадает с ней.

Теорема 3

Если две несовпадающие плоскости перпендикулярны некоторой прямой, то они параллельны.

На основе этих теорем и самого признака параллельности доказывается факт параллельности любых двух плоскостей.

Рассмотрим подробнее необходимое и достаточное условие параллельности плоскостей α и β , заданных в прямоугольной системе координат трехмерного пространства.

Допустим, что в некоторой прямоугольной системе координат задана плоскость α, которой соответствует общее уравнение A 1 x + B 1 y + C 1 z + D 1 = 0 , а также задана плоскость β , которую определяет общее уравнение вида A 2 x + B 2 y + C 2 z + D 2 = 0 .

Теорема 4

Для параллельности заданных плоскостей α и β необходимо и достаточно, чтобы система линейных уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 не имела решения (являлась несовместной).

Доказательство

Предположим, что заданные плоскости, определяемые уравнениями A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 являются параллельными, а значит не имеют общих точек. Таким образом, не существует ни одной точки в прямоугольной системе координат трехмерного пространства, координаты которой отвечали бы условиям одновременно обоих уравнений плоскостей, т.е. система A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 не имеет решения. Если указанная система не имеет решений, тогда не существует ни одной точки в прямоугольной системе координат трехмерного пространства, чьи координаты одновременно отвечали бы условиям обоих уравнений системы. Следовательно, плоскости, заданные уравнениями A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 не имеют ни одной общей точки, т.е. они параллельны.

Разберем использование необходимого и достаточного условия параллельности плоскостей.

Пример 1

Заданы две плоскости: 2 x + 3 y + z - 1 = 0 и 2 3 x + y + 1 3 z + 4 = 0 . Необходимо определить, являются ли они параллельными.

Решение

Запишем систему уравнений из заданных условий:

2 x + 3 y + z - 1 = 0 2 3 x + y + 1 3 z + 4 = 0

Проверим, возможно ли решить полученную систему линейных уравнений.

Ранг матрицы 2 3 1 2 3 1 1 3 равен одному, поскольку миноры второго порядка равны нулю. Ранг матрицы 2 3 1 1 2 3 1 1 3 - 4 равен двум, поскольку минор 2 1 2 3 - 4 отличен от нуля. Таким образом, ранг основной матрицы системы уравнений меньше, чем ранг расширенной матрицы системы.

Совместно с этим, из теоремы Кронекера-Капелли следует: система уравнений 2 x + 3 y + z - 1 = 0 2 3 x + y + 1 3 z + 4 = 0 не имеет решений. Этим фактом доказывается, что плоскости 2 x + 3 y + z - 1 = 0 и 2 3 x + y + 1 3 z + 4 = 0 являются параллельными.

Отметим, что, если бы мы применили для решения системы линейных уравнений метод Гаусса, это дало бы тот же результат.

Ответ: заданные плоскости параллельны.

Необходимое и достаточное условие параллельности плоскостей возможно описать по-другому.

Теорема 5

Чтобы две несовпадающие плоскости α и β были параллельны друг другу необходимо и достаточно, чтобы нормальные векторы плоскостей α и β являлись коллинеарными.

Доказательство сформулированного условия базируется на определении нормального вектора плоскости.

Допустим, что n 1 → = (A 1 , B 1 , C 1) и n 2 → = (A 2 , B 2 , C 2) являются нормальными векторами плоскостей α и β соответственно. Запишем условие коллинеарности данных векторов:

n 1 → = t · n 2 ⇀ ⇔ A 1 = t · A 2 B 1 = t · B 2 C 1 = t · C 2 , где t – некое действительное число.

Таким образом, чтобы несовпадающие плоскости α и β с заданными выше нормальными векторами были параллельны, необходимо и достаточно, чтобы имело место действительное число t , для которого верно равенство:

n 1 → = t · n 2 ⇀ ⇔ A 1 = t · A 2 B 1 = t · B 2 C 1 = t · C 2

Пример 2

В прямоугольной системе координат трехмерного пространства заданы плоскости α и β . Плоскость α проходит через точки: A (0 , 1 , 0) , B (- 3 , 1 , 1) , C (- 2 , 2 , - 2) . Плоскость β описывается уравнением x 12 + y 3 2 + z 4 = 1 Необходимо доказать параллельность заданных плоскостей.

Решение

Удостоверимся, что заданные плоскости не совпадают. Действительно, так и есть, поскольку координаты точки A не соответствуют уравнению плоскости β .

Следующим шагом определим координаты нормальных векторов n 1 → и n 2 → , соответствующие плоскостям α и β . Также проверим условие коллинеарности этих векторов.

Вектор n 1 → можно задать, взяв векторное произведение векторов A B → и A C → . Их координаты соответственно: (- 3 , 0 , 1) и (- 2 , 2 , - 2) . Тогда:

n 1 → = A B → × A C → = i → j → k → - 3 0 1 - 2 1 - 2 = - i → - 8 j → - 3 k → ⇔ n 1 → = (- 1 , - 8 , - 3)

Для получения координат нормального вектора плоскости x 12 + y 3 2 + z 4 = 1 приведем это уравнение к общему уравнению плоскости:

x 12 + y 3 2 + z 4 = 1 ⇔ 1 12 x + 2 3 y + 1 4 z - 1 = 0

Таким образом: n 2 → = 1 12 , 2 3 , 1 4 .

Осуществим проверку, выполняется ли условие коллинеарности векторов n 1 → = (- 1 , - 8 , - 3) и n 2 → = 1 12 , 2 3 , 1 4

Так как - 1 = t · 1 12 - 8 = t · 2 3 - 3 = t · 1 4 ⇔ t = - 12 , то векторы n 1 → и n 2 → связаны равенством n 1 → = - 12 · n 2 → , т.е. являются коллинеарными.

Ответ : плоскости α и β не совпадают; их нормальные векторы коллинеарные. Таким образом, плоскости α и β параллельны.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Цели урока:

  • Ввести понятие параллельных плоскостей.
  • Рассмотреть и доказать теоремы, выражающие признак параллельности плоскостей и свойства параллельных плоскостей.
  • Проследить применение этих теорем при решении задач.

План урока (записать на доске):

I. Подготовительная устная работа.

II. Изучение нового материала:

1. Взаимное расположение двух плоскостей в пространстве.
2. Определение параллельных плоскостей.
3. Признак параллельности плоскостей.
4. Свойство параллельных плоскостей.

III. Итог урока.

IV. Домашнее задание.

ХОД УРОКА

I. Устная работа

Начать урок хочется с цитаты из философского письма Чаадаева:

“Откуда это чудодейственная мощь анализа в математике? Дело в том, что ум здесь действует в полном подчинении данному правилу”.

Это подчинение правилу мы рассмотрим на следующем задании. Для усвоения нового материала необходимо повторить некоторые вопросы. Для этого надо установить утверждение, которое следует из данных утверждений и обосновать свой ответ:

II. Изучение нового материала

1. Как могут располагаться две плоскости в пространстве? Что представляет собой множество точек, принадлежащих обеим плоскостям?

Ответ:

а) совпадать (тогда дело будем иметь с одной плоскостью, не устраивает);
б) пересекаться, ;
в) не пересекаться (общих точек вообще нет).

2. Определение: Если две плоскости не пересекаются, то они называются параллельными

3. Обозначение:

4. Приведите примеры параллельных плоскостей из окружающей обстановки

5. Как выяснить параллельны ли какие-либо две плоскости в пространстве?

Ответ:

Можно воспользоваться определением, но это нецелесообразно, т.к. установить пересечение плоскостей не всегда возможно. Поэтому необходимо рассмотреть условие достаточное для того, чтобы утверждать о параллельности плоскостей.

6. Рассмотрим ситуации:

б) если ?

в) если ?

Почему в а) и б) ответ: "не всегда", а в в) "да"? (Пересекающиеся прямые определяют плоскость единственным образом, значит определены однозначно!)

Ситуация 3 и есть признак параллельности двух плоскостей.

7. Теорема: Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.

Дано:

Доказать:

Доказательство:

(Обозначения на чертеж наносят учащиеся).

1. Отметим: . Аналогично:
2. Пусть: .
3. Имеем: Аналогично:
4. Получим: через М проходит противоречие с аксиомой планиметрии.
5. Итак: неверно, значит , ч. и т. д.

8. Решить № 51 (Обозначения на чертеж наносят учащиеся).

Дано:

Доказать:

Доказательство:

1 способ

1. Построим

2 способ

Ввести через через .

9. Рассмотрим два свойства параллельных плоскостей:

Теорема: Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.

(Достраивают и наносят обозначение на чертеж сами учащиеся).

Дано:

На этом уроке мы рассмотрим три свойства параллельных плоскостей: о пересечении двух параллельных плоскостей третьей плоскостью; о параллельных отрезках, заключенных между параллельными плоскостями; и о рассечении сторон угла параллельными плоскостями. Далее решим несколько задач с использованием этих свойств.

Тема: Параллельность прямых и плоскостей

Урок: Свойства параллельных плоскостей

Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.

Доказательство

Пусть даны параллельные плоскости и и плоскость , которая пересекает плоскости и по прямым а и b соответственно (Рис. 1.).

Прямые а и b лежат в одной плоскости, а именно в плоскости γ. Докажем, что прямые а и b не пересекаются.

Если бы прямые а и b пересекались, то есть имели бы общую точку, то эта общая точка принадлежала бы двум плоскостям и , и , что невозможно, так как они параллельны по условию.

Итак, прямые а и b параллельны, что и требовалось доказать.

Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны.

Доказательство

Пусть даны параллельные плоскости и и параллельные прямые АВ и С D , которые пересекают эти плоскости (Рис. 2.). Докажем, что отрезки АВ и С D равны.

Две параллельные прямые АВ и С D образуют единственную плоскость γ, γ = АВ D С . Плоскость γ пересекает параллельные плоскости и по параллельным прямым (по первому свойству). Значит, прямые АС и В D параллельны.

Прямые АВ и С D также параллельны (по условию). Значит, четырехугольник АВ D С - параллелограмм, так как его противоположные стороны попарно параллельны.

Из свойств параллелограмма следует, что отрезки АВ и С D равны, что и требовалось доказать.

Параллельные плоскости рассекают стороны угла на пропорциональные части.

Доказательство

Пусть нам даны параллельные плоскости и, которые рассекают стороны угла А (Рис. 3.). Нужно доказать, что .

Параллельные плоскости и рассечены плоскостью угла А . Назовем линию пересечения плоскости угла А и плоскости - ВС, а линию пересечения плоскости угла А и плоскости - В 1 С 1 . По первому свойству, линии пересечения ВС и В 1 С 1 параллельны.

Значит, треугольники АВС и АВ 1 С 1 подобны. Получаем:

3. Математический сайт Цегельного Виталия Станиславовича ()

4. Фестиваль педагогических идей "Открытый урок" ()

1. Точка О - общая середина каждого из отрезков АА 1 , ВВ 1 , СС 1 , которые не лежат в одной плоскости. Докажите, что плоскости АВС и А 1 В 1 С 1 параллельны.

2. Докажите, что через две скрещивающиеся прямые можно провести параллельные плоскости.

3. Докажите, что прямая, пересекающая одну из двух параллельных плоскостей, пересекает и вторую.

4. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил.

Задания 6, 8, 9 стр. 29