Зависимость одной случайной величины от значений, которые прини- мает другая случайная величина (физическая характеристика), в статистике принято называть регрессией. В случае если этой зависимости придан аналитический вид, то такую форму представления изображают уравнением регрессии.

Процедура поиска предполагаемой зависимости между различными числовыми совокупностями обычно включает следующие этапы:

установление значимости связи между ними;

возможность представления этой зависимости в форме математиче- ского выражения (уравнения регрессии).

Первый этап в указанном статистическом анализе касается выявления так называемой корреляции, или корреляционной зависимости. Корреляция рассматривается как признак, указывающий на взаимосвязь ряда числовых последовательностей. Иначе говоря, корреляция характеризует силу взаимосвязи в данных. В случае если это касается взаимосвязи двух числовых массивов xi и yi, то такую корреляцию называют парной.

При поиске корреляционной зависимости обычно выявляется вероятная связь одной измеренной величины x (для какого-то ограниченного диапазона ее изменения, к примеру от x1 до xn) с другой измеренной величиной y (также изменяющейся в каком-то интервале y1 … yn). В таком случае мы будем иметь дело с двумя числовыми последовательностями, между которыми и надлежит установить наличие статистической (корреляционной) связи. На этом этапе пока не ставится задача определить, является ли одна из этих случайных величин функцией, а другая – аргументом. Отыскание количественной зависимости между ними в форме конкретного аналитического выражения y = f(x) - это задача уже другого анализа, регрессионного.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, корреляционный анализ позволяет сделать вывод о силе взаимосвязи между парами данных х и у, а регрессионный анализ используется для прогнозирования одной переменной (у) на основании другой (х). Иными словами, в этом случае пытаются выявить причинно-следственную связь между анализируемыми совокупностями.

Строго говоря, принято различать два вида связи между числовыми совокупностями - ϶ᴛᴏ может быть функциональная зависимость или же статистическая (случайная). При наличии функциональной связи каждому значению воздействующего фактора (аргумента) соответствует строго определœенная величина другого показателя (функции), ᴛ.ᴇ. изменение результативного признака всœецело обусловлено действием факторного признака.

Аналитически функциональная зависимость представляется в следую-щем виде: y = f(x).

В случае статистической связи значению одного фактора соответствует какое-то приближенное значение исследуемого параметра, его точная величина является непредсказуемой, непрогнозируемой, в связи с этим получаемые показатели оказываются случайными величинами. Это значит, что изме-нение результативного признака у обусловлено влиянием факторного признака х лишь частично, т.к. возможно воздействие и иных факторов, вклад которых обозначен как є: y = ф(x) + є.

По своему характеру корреляционные связи - ϶ᴛᴏ соотносительные связи. Примером корреляционной связи показателœей коммерческой деятельности является, к примеру, зависимость сумм издержек обращения от объема товарооборота. В этой связи помимо факторного признака х (объема товарооборота) на результативный признак у (сумму издержек обращения) влияют и другие факторы, в том числе и неучтенные, порождающие вклад є.

Для количественной оценки существования связи между изучаемыми совокупностями случайных величин используется специальный статистический показатель – коэффициент корреляции r.

В случае если предполагается, что эту связь можно описать линœейным уравне- нием типа y=a+bx (где a и b - константы), то принято говорить о существовании линœейной корреляции.

Коэффициент r - это безразмерная величина, она может меняться от 0 до ±1. Чем ближе значение коэффициента к единице (неважно, с каким знаком), тем с большей уверенностью можно утверждать, что между двумя рассматриваемыми совокупностями переменных существует линœейная связь. Иными словами, значение какой-то одной из этих случайных величин (y) существенным образом зависит от того, какое значение принимает другая (x).

В случае если окажется, что r = 1 (или -1), то имеет место классический случай чисто функциональной зависимости (ᴛ.ᴇ. реализуется идеальная взаимосвязь).

При анализе двумерной диаграммы рассеяния можно обнаружить различные взаимосвязи. Простейшим вариантом является линœейная взаимосвязь, которая выражается в том, что точки размещаются случайным образом вдоль прямой линии. Диаграмма свидетельствует об отсутствии взаимосвязи, если точки расположены случайно, и при перемещении слева направо невозможно обнаружить какой-либо уклон (ни вверх, ни вниз).

В случае если точки на ней группируются вдоль кривой линии, то диаграмма рассеяния характеризуется нелинœейной взаимосвязью. Такие ситуации вполне возможны

Предмет: математика
Класс: 4
Тема урока: Зависимости между скоростью, длиной пройденного пути и временем
движения.
Цель: выявить и обосновать зависимости между величинами: скорость, время,
расстояние;
Задачи: способствовать развитию нестандартного мышления, умение делать выводы,
рассуждать; содействовать воспитанию познавательной активности.
Оборудование: индивидуальные карточки разных цветов, критерии оценивания,
карточка для рефлексии, круги двух цветов.
Ход урока.
1. Орг.момент.
Карточка двух цветов: желтая и синяя. Показать с помощью карточки свое настроение
в начале и конце урока.
Заполнение карточки на начало урока (Приложение 1.)
№ Утверждение
Конец урока
Начало урока
Да
Нет
Не знаю Да
Нет Не
знаю
1. Я знаю все формулы
задач на движение
2. Я понимаю решение
задач на движение
3. Я могу сам решать эти
задачи
4. Я умею составлять
схемы к задачам на
движение
5. Я знаю, какие ошибки
допускаю в решении
задач на движение
2. Повторение.
­ Как найти скорость? Время? Расстояние?
­ Назовите единицы измерения величины скорости, расстояние, время.
3. Сообщение темы урока.
­ Чему будем учиться на уроке?
4. Работа в группе.
­ Соединить объекты движения (Приложение 2)
Пешеход 70км/ч
Лыжник 5км/ч

Автомобиль 10км/ч
Реактивный самолет 12км/ч
Поезд 50км/ч
Улитка 900км/ч
Лошадь 90 км\ч
Проверка работ.
5. Математическая головоломка(самостоятельная работа)
­ Во сколько скорость велосипедиста меньше скорости поезда?
­ На сколько км скорость лыжника больше скорости пешехода?
­ Во сколько раз скорость автомобиля меньше скорости реактивного самолета?
­ Найди общую скорость самого скоростного движущегося средства и самого
медленного.
­ Найди общую скорость поезда велосипедиста и лыжника.
6. Самопроверка работ по критериям.
7. Физминутка.
Красный цвет квадрата­ стоим
Зеленый – идем
Желтый – хлопаем 1 раз в ладоши
8. Работа в группе. (Карточка желтого цвета) (метод Джегсо)
Задача.
Две бабы­яги поспорили, что быстроходнее ступа или помело? Одну и ту же
дистанцию в 228км баба­яга в ступе пролетела за 4ч, а баба­яга на помеле за 3ч. Что
больше, скорость ступы или помела?
9. Работа в паре «Эксперимент».
Придумать задачу на движение, используя величины: 18км/ч, 4ч, 24 км, 3ч.
Проверка работ.
10. Тест.
1.Записать формулу нахождения скорости.
2. Записать формулу нахождения времени.
3. Как найти расстояние? Запиши формулу.
4. Запиши 8 км/мин в км/ч
5. Найди время, за которое пройдет пешеход 42 км, двигаясь со скоростью 5км/ч.
6. Какое расстояние пройдет пешеход, двигаясь со скоростью 5км/ч в течение 6 часов?
11. Итог урока.
Заполнить таблицу, с какими результатами мы пришли к концу урока.
Показать карточку, которая соответствует вашему настроению.

Начало урока
Да
Нет
Приложение 1.
Конец урока
Не знаю Да
№ Утверждение
1. Я знаю все формулы
задач на движение
2. Я понимаю решение
задач на движение
3. Я могу сам решать эти
задачи
4. Я умею составлять
схемы к задачам на
движение
5. Я знаю, какие ошибки
допускаю в решении
задач на движение
Соединить объекты движения.
Пешеход 70км/ч
Лыжник 5км/ч
Автомобиль 10км/ч
Реактивный самолет 12км/ч
Поезд 50км/ч
Улитка 900км/ч
Лошадь 90 км\ч
Нет Не
знаю
Приложение 2.

Тема: «Моделирование зависимостей между величинами»

Цели урока:

1. Познакомиться с понятиями:

«величины»,

«математическая модель»,

«табличная модель»,

«графическая модель»

Развивающие:

Создать условия для развития умения выделять главное, сравнивать, анализировать, обобщать.

Воспитательные:

Воспитывать внимательность, стремление довести дело до намеченного результата;

Установление взаимных контактов и обмен опытом между учащимися и преподавателем.

Оборудование: компьютер учителя с мультимедийным проектором.

План урока

Организационный момент (2 мин) Постановка целей урока. Объяснение нового материала. (17 мин) Закрепление нового материала (5 мин) Решение заданий из демоверсии ЕГЭ 2010г (15 мин) Подведение итогов (3 мин) Задание на дом (3 мин)

Ход урока

Сообщить учащимся тему урока. (слайд 1) Постановка цели урока

(слайд 2)

Цели урока:

1. Познакомиться с понятиями:

«величины»,

« зависимости между величинами»,

«математическая модель»,

«табличная модель»,

«графическая модель»

Рассмотреть на примерах зависимости между величинами.

2. Совершенствовать навыки решения заданий из КИМов ЕГЭ.

Объяснение нового материала. (17 мин)

(слайд 3)

Применение математического моделирования постоянно требует учета зависимостей одних величин от других.

1. Время падения тела на землю зависит от первоначальной высоты;

2. Давление газа в баллоне зависит от его температуры;

3. Частота заболеваний жителей бронхиальной астмой зависит от качества городского воздуха

(слайд 4)

Всякое исследование нужно начинать с выделения количественных характеристик исследуемого объекта. Такие характеристики называются величинами. Со всякой величиной связаны три основных свойства: имя, значения, тип.

Имя величины может быть полным (давление газа), а может быть символическим (Р). Для определенных величин используются стандартные имена: время – T, скорость – V, сила – F…

(слайд 5)

Если значение величины не меняется, то она называется постоянной величиной или константой

(π =3,14159…).

Величина, меняющая свое значение, называется переменной.

(слайд 6)

Тип определяет множество значений, которые может принимать величина. Основные типы величин: числовой, символьный, логический. Так как мы будем говорить лишь о количественных характеристиках, то и рассматриваться будут только величины числового типа.

(Слайд 7)

Вернемся к примерам и обозначим переменные величины, зависимости между которыми нас интересуют.

В примере 1:

Т (сек) – время падения; Н (м) – высота падения. Ускорения свободного падения g (м/сек2) – константа.

В примере 2: Р(н/м2) – давление газа; C - температура газа.

В примере 3:

Загрязненность воздуха характеризуется концентрацией примесей С(мг/куб. м). Уровень заболеваемости характеризуется числом хронических больных астмой на 1000 жителей данного города – Р(бол/тыс.)

(Слайд 8)

Рассмотрим Методы представления зависимостей

Математическая модель Табличная модель Графическая модель

(Слайд 9)

Математическая модель

Это совокупность количественных характеристик некоторого объекта(процесса) и связей между ними, представленных на языке математики.

Для первого примера математическая модель представляется в виде формулы:

455 " style="width:341.25pt">

(Слайд 11)

Графическая модель

и нарисуем график

(Слайд 12)

Информационные модели, которые описывают развитие систем во времени, имеют специальное название: динамические модели.

В физике динамические информационные модели описывают движение тел; в биологии – развитие организмов и популяций животных; в химии – протекание химических реакций и т. д

(слайд 13)

Решение задачи: (1 ученик у доски, остальные в тетрадях)

Построить математическую, табличную и графическую модели задачи:

Тело движется по закону x (t)=5 t2+2 t-5,

где x – перемещение в метрах, t – время в секундах. Найти скорость тела в момент времени t=2.

Построить таблицу, отражающую зависимость скорости тела от времени движения тела с интервалом в 3 секунды.

Закрепление изученного материала.

Ответьте на Вопросы:

1. Какие вам известны формы представления зависимостей между величинами? (ответ 1 ученика )

2. Обоснуйте преимущества и недостатки каждой из трёх форм представления

зависимостей. (ответ 1 ученика )

Решение заданий из демоверсии ЕГЭ 2010г (15 мин)

Повторение 10-ой, 2-ой, 8-ой и 16-ой систем счисления.

Решение задания из демоверсии ЕГЭ (1 )

1. Как представлено число 26310 в восьмеричной системе счисления?

Решение:

Как записывается число 5678 в двоичной системе счисления?

(1 ученик у доски, остальные в тетрадях )

Решение:

Как записывается число А8716 в восьмеричной системе счисления?

(1 ученик у доски, остальные в тетрадях )

Решение:

Задание А1 из демоверсии 2010г. (1 ученик у доски, остальные в тетрадях )

Дано: а=9D16, b=2378 . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству

Решение:

Подведение итогов (3 мин) Задание на дом (3 мин) §36, вопросы. Пример.

Дано: а= 3328, b= D416. Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству a

Регрессионного анализа

Обработка результатов эксперимента методом

При изучении процессов функционирования сложных систем приходится иметь дело с целым рядом одновременно действующих случайных величин. Для уяснения механизма явлений, причинно-следственных связей между элементами системы и т.д., по полученным наблюдениям мы пытаемся установить взаимоотношения этих величин.

В математическом анализе зависимость, например, между двумя величинами выражается понятием функции

где каждому значению одной переменной соответствует только одно значение другой. Такая зависимость носит название функциональной .

Гораздо сложнее обстоит дело с понятием зависимости случайных величин. Как правило, между случайными величинами (случайными факторами), определяющими процесс функционирования сложных систем, обычно существует такая связь, при которой с изменением одной величины меняется распределение другой. Такая связь называется стохастической , или вероятностной . При этом величину изменения случайного фактора Y , соответствующую изменению величины Х , можно разбить на два компонента. Первый связан с зависимостью Y от X , а второй с влиянием "собственных" случайных составляющих величин Y и X . Если первый компонент отсутствует, то случайные величины Y и X являются независимыми. Если отсутствует второй компонент, то Y и X зависят функционально. При наличии обоих компонент соотношение между ними определяет силу или тесноту связи между случайными величинами Y и X .

Существуют различные показатели, которые характеризуют те или иные стороны стохастической связи. Так, линейную зависимость между случайными величинами X и Y определяет коэффициент корреляции.

где – математические ожидания случайных величин X и Y .

– средние квадратические отклонения случайных величин X и Y .


Линейная вероятностная зависимость случайных величин заключается в том, что при возрастании одной случайной величины другая имеет тенденцию возрастать (или убывать) по линейному закону. Если случайные величины X и Y связаны строгой линейной функциональной зависимостью, например,

y=b 0 +b 1 x 1 ,

то коэффициент корреляции будет равен ; причем знак соответствует знаку коэффициента b 1 .Если величины X и Y связаны произвольной стохастической зависимостью, то коэффициент корреляции будет изменяться в пределах

Следует подчеркнуть, что для независимых случайных величин коэффициент корреляции равен нулю. Однако коэффициент корреляции как показатель зависимости между случайными величинами обладает серьезными недостатками. Во-первых, из равенства r = 0 не следует независимость случайных величин X и Y (за исключением случайных величин, подчиненных нормальному закону распределения, для которых r = 0 означает одновременно и отсутствие всякой зависимости). Во- вторых, крайние значения также не очень полезны, так как соответствуют не всякой функциональной зависимости, а только строго линейной.



Полное описание зависимости Y от X , и притом выраженное в точных функциональных соотношениях, можно получить, зная условную функцию распределения .

Следует отметить, что при этом одна из наблюдаемых переменных величин считается неслучайной. Фиксируя одновременно значения двух случайных величин X и Y , мы при сопоставлении их значений можем отнести все ошибки лишь к величине Y . Таким образом, ошибка наблюдения будет складываться из собственной случайной ошибки величины Y и из ошибки сопоставления, возникающей из-за того, что с величиной Y сопоставляется не совсем то значение X , которое имело место на самом деле.

Однако отыскание условной функции распределения, как правило, оказывается весьма сложной задачей. Наиболее просто исследовать зависимость между Х и Y при нормальном распределении Y , так как оно полностью определяется математическим ожиданием и дисперсией. В этом случае для описания зависимости Y от X не нужно строить условную функцию распределения, а достаточно лишь указать, как при изменении параметра X изменяются математическое ожидание и дисперсия величины Y .

Таким образом, мы приходим к необходимости отыскания только двух функций:

(3.2)

Зависимость условной дисперсии D от параметра Х носит название сходастической зависимости. Она характеризует изменение точности методики наблюдений при изменении параметра и используется достаточно редко.

Зависимость условного математического ожидания M от X носит название регрессии , она дает истинную зависимость величин Х и У , лишенную всех случайных наслоений. Поэтому идеальной целью всяких исследований зависимых величин является отыскание уравнения регрессии, а дисперсия используется лишь для оценки точности полученного результата.

Предварительная подготовка. Вопросы и задания

При решении каких информационных задач используются
электронные таблицы?

а) Как адресуются данные в электронной таблице?

б) Данные каких типов могут храниться в ячейках ЭТ?

в) Что такое принцип относительной адресации?

г) Как можно отменить действие относительной адресации?

В чем состоит назначение диаграмм?

Как определяется область выбора данных из таблицы для построения диаграммы и порядок выбора? Какие величины откладываются по горизонтальной (ОХ) оси и вертикальной (OY) оси?

В каких ситуациях предпочтительнее использовать: гистограммы; графики; круговые диаграммы?


Информационное моделирование в планировании и управлении производством

Изучаемые вопросы

Наиболее распространенные типы задач планирования и управления

Представление зависимостей между величинами

Статистика и статистические данные

Метод наименьших квадратов

Построение регрессионных моделей с помощью табличного процессора

Прогнозирование по регрессионной модели

Понятие о корреляционных зависимостях. Расчет корреляционных зависимостей в электронной таблице

Оптимальное планирование. Использование MS Excel для решения задачи оптимального планирования

Наиболее распространенные типы задач планирования и управления

В управлении и планировании существует целый ряд ти­повых задач, которые можно переложить на плечи компью­тера. Пользователь таких программных средств может даже и не знать глубоко математику, стоящую за применяемым аппаратом. Он лишь должен понимать суть решаемой проб­лемы, готовить и вводить в компьютер исходные данные, интерпретировать полученные результаты.

В данной теме рассмотрим три типа задач, которые часто приходится решать специалистам в области планирования и управления:

1) прогнозирование - поиск ответа на вопросы «Что будет через какое-то время?», или «Что будет, если...?»;

2) определение влияния одних факторов на другие - поиск ответа на вопрос «Как сильно влияет фактор Б на фактор А?», или «Какой фактор - Б или В - влияет сильнее на фактор А?»;

3) поиск оптимальных решений - поиск ответа на вопрос «Как спланировать производство, чтобы достичь оптимального значения некоторого показателя (например, максимума прибыли, или минимума расхода электроэнергии)? ».

Инструментом информационных технологий, который мы будем использовать, является табличный процессор MS Excel.

Представление зависимостей между величинами

Решение задач планирования и управления постоянно требует учета зависимостей одних факторов от других. Примеры зависимостей:

‒ время падения тела на землю зависит от первоначальной высоты;

‒ давление зависит от температуры газа в баллоне;

‒ частота заболевания жителей бронхиальной астмой зависит от качества городского воздуха.

Рассмотрим различные методы представления зависимостей .

Всякое исследование нужно начинать с выделения количественных характеристик исследуемого объекта (процесса, явления). Такие характеристики называются величинами.

Со всякой величиной связаны три основные свойства : имя, значение, тип.

Имя величины может быть полным (подчеркивающим ее смысл), а может быть символическим. Примером полного имени является «Давление газа»; а символическое имя для этой же величины - Р. В базах данных величинами явля­ются поля записей. Для них, как правило, используются полные имена, например: «Фамилия», «Вес», «Оценка» и т. п. В физике и других науках, использующих математи­ческий аппарат, применяются символические имена для обозначения величин.

Если значение величины не изменяется, то она называет­ся постоянной величиной или константой. Пример кон­станты - число Пифагора π=3,14159... Величина, меняю­щая свое значение, называется переменной . Например, в описании процесса падения тела переменными величинами являются высота (Н) и время падения (t).

Третьим свойством величины является ее тип . Тип определяет множество значений, которые может прини­мать величина. Основные типы величин: числовой, символь­ный, логический.

А теперь вернемся к примерам 1-3 и обозначим (поименуем) все переменные ве­личины, зависимости между которыми нас будут интересо­вать. Кроме имен укажем размерности величин. Размерности определяют единицы, в которых представляются значения величин.

1. t (сек) - время падения; Н (м) - высота падения. Зависимость будем представлять, пренебрегая учетом сопротивления воздуха. Ускорение свободного падения g (м/сек 2) - константа.

2. Р (кг/м 2) - давление газа; t (С) - температура газа. Давление при нуле градусов Р о считается константой для данного газа.

3. Загрязненность воздуха будем характеризовать концентрацией примесей - С (мг/куб. м). Единица измерения - масса примесей, содержащихся в 1 кубическом метре воздуха, выраженная в миллиграммах. Уровень заболеваемости будем характеризовать числом хронических больных астмой, приходящимся на 1000 жителей данного города - Р (бол./тыс).

Если зависимость между величинами удается предста­вить в математической форме, то мы имеем математическую модель.

Математическая модель - это совокупность количественных характеристик некоторого объекта (процесса) и связей между ними, представленных на языке ма­тематики.

Хорошо известны математические модели для первых двух примеров из перечисленных выше. Они отражают фи­зические законы, и представляется в виде формул:

Это примеры зависимостей, представленных в функциональной форме. Первую зависимость называют корневой (время пропорционально квадратному корню от высоты), вторую - линейной (давление прямо пропорционально тем­пературе).

В более сложных задачах математические модели пред­ставляются в виде уравнений или систем уравнений. В этом случае для извлечения функциональной зависимости вели­чин нужно уметь решать эти уравнения. В конце данной главы будет рассмотрен пример математической модели, ко­торая выражается системой неравенств.

Рассмотрим примеры двух других способов представления зависимостей между величинами: табличного и графического . Представьте себе, что мы решили проверить закон свободного падения тела экспериментальным путем. Эксперимент организовали следующим образом: бросаем стальной шарик с балкона 2-го этажа, 3-го этажа (и так далее) десятиэтажного дома, замеряя высоту начального положения шарика и время падения. По результатам эксперимента мы со­ставили таблицу и нарисовали график.