Некоторые следствия из аксиом


Теорема 1:


Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна .

Дано: М ₵ а

Доказать: 1) Существует α: а ∈ α , М ∈ b ∈ α

2) α - единственная


Доказательство:

1) На прямой, а выберем точки P и Q. Тогда имеем 3 точки – Р , Q, M , которые не лежат на одной прямой.

2) По аксиоме А1, через три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна, т.е. плоскость α, которая содержит прямую а и точку М , существует.

3) Теперь докажем, что α единственная. Предположим, что существует плоскость β, которая проходит и через точку М, и через прямую а, но тогда эта плоскость через точки Р, Q, M. А через три точки Р, Q, M , не лежащие на одной прямой, в силу 1 аксиомы, проходит только одна плоскость.

4) Значит, эта плоскость совпадает с плоскостью α . Следовательно 1) На прямой, а выберем точки P и Q . Тогда имеем 3 точки – Р, Q, M, которые не лежат на одной прямой. Следовательно α – единственная.

Теорема доказана.

1)На прямой b возьмем точку N, которая не совпадает с точкой М, то есть N ∈ b, N≠M

2)Тогда имеем точку N, которая не принадлежит прямой a. По предыдущей теореме, через прямую и не лежащую на ней точку проходит плоскость. Назовем ее плоскостью α. Значит, такая плоскость, которая проходит через прямую a и точку N, существует.

3)Докажем единственность этой плоскости. Предположим противное. Пусть существует плоскость β, такая, которая проходит и через прямую а, и через прямую b. Но тогда она также проходит и через прямую а и точку N. Но по предыдущей теореме эта плоскость единственна, т.е. плоскость β совпадает с плоскостью α.

4)Значит, мы доказали существование единственной плоскости, проходящей через две пересекающиеся прямые.

Теорема доказана.

Теорема о параллельности прямых

Теорема:


Через любую точку пространства, не лежащей на данной прямой, проходит прямая, параллельная данной прямой.

Дано: прямая а, M ₵ а

Доказать: Существует единственная прямая b ∥ а, М ∈ b


Доказательство:
1) Через прямую а и точку М, не лежащей на ней, можно провести единственную плоскость (1 следствие). В плоскости α можно провести прямую b, параллельную а, проходящую через М.
2) Докажем, что она единственная. Предположим, что существует другая прямая с, проходящая через точку М и параллельная прямой а. Пусть параллельные прямые а и с лежат в плоскости β. Тогда β проходит через М и прямую а. Но через прямую а и точку М проходит плоскость α.
3) Значит, α и β совпадают. Из аксиомы параллельных прямых следует, что прямые b и с совпадают, так как в плоскости существует единственная прямая, проходящая через данную точку и параллельно заданной прямой.
Теорема доказана.

Курс геометрии широк, объемен и многогранен: он включает в себя множество различных тем, правил, теорем и полезных знаний. Можно представить, что все в нашем мире состоит из простого, даже наиболее сложное. Точки, прямые, плоскости - все это есть и в вашей жизни. И они поддаются имеющимся в мире законам о соотношении объектов в пространстве. Чтобы доказать это, можно попытаться доказать параллельность прямых и плоскостей.

Прямая - это линия, которая соединяет две точки по кратчайшей траектории, не заканчиваясь и длясь с обоих сторон в бесконечность. Плоскость - это поверхность, образующаяся при кинематическом движении образующей прямой линии по направляющей. Другими словами, если две любые прямые имеют точку пересечения в пространстве, они могут лежать и в одной плоскости. Однако как выразить и прямых, если этих данных недостаточно для подобного утверждения?

Главное условие параллельности прямой и плоскости - чтобы они не имели общих точек. В отличие от прямых, которые могут при отсутствии общих точек являться не параллельными, а расходящимися, плоскость двухмерна, что исключает такое понятие, как расходящиеся прямые. Если данное условие параллельности не соблюдено - значит, прямая пересекает данную плоскость в какой-то одной точке либо лежит в ней полностью.

Что же показывает нам условие параллельности прямой и плоскости нагляднее всего? То, что в любой точке пространства расстояние между параллельными прямой и плоскостью будет константой. При существовании хоть малейшего, в миллиардные доли градуса, уклона прямая рано или поздно пересечет плоскость за счет обоюдной бесконечности. Именно поэтому параллельность прямой и плоскости возможна только при соблюдении этого правила, иначе главное ее условие - отсутствие общих точек - соблюдено не будет.

Что можно добавить, рассказывая про параллельность прямых и плоскостей? То, что если одна из параллельных прямых принадлежит плоскости, то вторая или параллельна плоскости, или тоже принадлежит ей. Как это доказать? Параллельность прямой и плоскости, заключающей в себе прямую, параллельную данной, доказывается очень просто. не имеют общих точек - стало быть, они не пересекаются. А если прямая не пересекается с плоскостью в одной точке - значит, она или параллельна, или лежит на плоскости. Это еще раз доказывает параллельность прямой и плоскости, не имеющих точек пересечения.

В геометрии есть также теорема, которая утверждает, что если существуют две плоскости и прямая линия, перпендикулярна им обеим, то плоскости параллельны. Схожая теорема утверждает, что если две прямые бывают перпендикулярны одной любой плоскости, они обязательно будут параллельны друг другу. Верна ли и доказуема ли параллельность прямых и плоскостей, выраженная данными теоремами?

Оказывается, это так. Прямая, перпендикулярная плоскости, всегда будет строго перпендикулярна любой прямой, которая пролегает в данной плоскости и также имеет с другой прямой точку пересечения. Если прямая имеет подобные пересечения с несколькими плоскостями и во всех случаях является им перпендикулярной - значит, все данные плоскости параллельны друг другу. Наглядным примером может служить детская пирамидка: ее ось будет искомой перпендикулярной прямой, а кольца пирамидки - плоскостями.

Стало быть, доказать параллельность прямой и плоскости достаточно легко. Эти знания получаются школьниками при изучении азов геометрии и во многом определяют дальнейшее усвоение материала. Если уметь грамотно пользоваться полученными в начале обучения знаниями, можно будет оперировать куда большим количеством формул и пропускать ненужные логические связки между ними. Главное - это понимание основ. Если же его нет - то изучение геометрии можно сравнить со строительством без фундамента. Именно поэтому данная тема требует пристального внимания и досконального исследования.

Прямая и плоскость называются параллельными, если они не имеют общих точек. Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой

1.Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.

2.Если одна из двух параллельных прямых параллельна данной плоскости, а другая прямая имеет с плоскостью общую точку, то эта прямая лежит в данной плоскости. плоскости, то она параллельна самой плоскости.

Случаи взаимного расположения прямой и плоскости: а) прямая лежит в плоскости;

б) прямая и плоскость имеют только одну общую точку;в) прямая и плоскость не имеют ни одной общей точки.

2.Определение натуральной величины отрезка прямой общего положения способом прямоугольного треугольника.

Натуральная величина (н.в.) отрезка АВ прямой общего положения является гипотенузой прямоугольного треугольника АВК. В этом треугольнике катет АК параллелен плоскости проекций π1 и равен горизонтальной проекции отрезка A"B". Катет BK равен разности расстояний точек A и B от плоскости π1.

В общем случае для определения натуральной величины отрезка прямой необходимо построить гипотенузу прямоугольного треугольника, одним катетом которого является горизонтальная (фронтальная) проекция отрезка, другим катетом - отрезок, равный по величине алгебраической разности координат Z (Y) крайних точек отрезка.

Из прямоугольного треугольника находят угол α - угол наклона прямой к горизонтальной плоскости проекций.

Для определения угла наклона прямой к фронтальной плоскости проекций необходимо выполнить аналогичные построения на фронтальной проекции отрезка.

3.Главные линии плоскости (горизонталь, фронталь).

Горизонталь плоскости Р – прямая, которая лежит в этой плоскости и параллельна горизонтальной плоскости. Горизонталь как прямая, параллельная горизонтальной плоскости, имеет фронтальную проекцию ѓ, параллельную оси х.

Фронталь плоскости Р – прямая, которая лежит в этой плоскости и параллельна фронтальной плоскости.

Фронталь является прямой, параллельной фронтальной плоскости, и ее горизонтальная проекцияф параллельна оси х.

4.Взаимное положение прямых в пространстве. Определение видимости по конкурирующим точкам. Две прямые в пространстве могут иметь различное расположение: А)пересекаться (лежать в одной плоскости). Частный случай пересечения – под прямым углом;Б)могут быть параллельными (лежать в одной плоскости);В)совпадать – частный случай параллельности;Г)скрещиваться (лежать в разных плоскостях и не пересекаться).

Точки, у которых проекции на П1 совпадают, называют конкурирующими по отношению к плоскости П1, а точки, у которых проекции на П2 совпадают, называют конкурирующими по отношению к плоскости П2.

Точки К и L конкурирующие по отношению к плоскости П1, так как на плоскости П1 точки К и L проецируются в одну точку: К1 = L1.

Точка К выше точки L, т.к. К2 выше точки L2, потому К1 на П1 видима.

Определение параллельных прямых и их свойства в пространстве такие же, как и на плоскости (см. п. 11).

Вместе с тем в пространстве возможен еще один случай расположения прямых - скрещивающиеся прямые. Прямые, которые не пересекаются и не лежат в одной плоскости, называются скрещивающимися.

На рисунке 121 изображен макет жилой комнаты. Вы видите, что прямые, которым принадлежат отрезки АВ и ВС и являются скрещивающимися.

Углом между скрещивающимися прямыми называется угол между пересекающимися параллельными им прямыми. Этот угол не зависит от того, какие взяты пересекающиеся прямые.

Градусная мера угла между параллельными прямыми считается равной нулю.

Общим перпендикуляром двух скрещивающихся прямых называется отрезок с концами на этих прямых, являющийся перпендикуляром к каждой из них. Можно доказать, что две скрещивающиеся прямые имеют общий перпендикуляр, и притом только один. Он является общим перпендикуляром параллельных плоскостей, проходящих через эти прямые.

Расстоянием между скрещивающимися прямыми называется длина их общего перпендикуляра. Оно равно расстоянию между параллельными плоскостями, проходящими через эти прямые.

Таким образом, для нахождения расстояния между скрещивающимися прямыми а и b (рис. 122) нужно провести через каждую из этих прямых параллельные плоскости а и . Расстояние между этими плоскостями и будет расстоянием между скрещивающимися прямыми а и b. На рисунке 122 этим расстоянием является, например, расстояние АВ.

Пример. Прямые а и b параллельны, а прямые с и d скрещиваются. Может ли каждая из прямых а и пересекать обе прямые

Решение. Прямые а и b лежат в одной плоскости, и поэтому любая прямая, пересекающая каждую из них, лежит в той же плоскости. Следовательно, если бы каждая из прямых а, b пересекала обе прямые с и d, то прямые лежали бы в одной плоскости с прямыми а и b, а этого быть не может, так как прямые скрещиваются.

42. Параллельность прямой и плоскости.

Прямая и плоскость называются параллельными, если они не пересекаются, т. е. не имеют общих точек. Если прямая а параллельна плоскости а, то пишут: .

На рисунке 123 изображена прямая а, параллельная плоскости а.

Если прямая, не принадлежащая плоскости, параллельна какой-нибудь прямой в этой плоскости, то она параллельна и самой плоскости (признак параллельности прямой и плоскости).

Эта теорема позволяет в конкретной ситуации доказать, что прямая и плоскость являются параллельными. На рисунке 124 изображена прямая b, параллельная прямой а, лежащей в плоскости а, т. е. по прямая b параллельна плоскости а, т. е.

Пример. Через вершину прямого угла С прямоугольного треугольника ABC параллельно гипотенузе на расстоянии 10 см от нее проведена плоскость. Проекции катетов на эту плоскость равны 30 и 50 см. Найти проекцию гипотенузы на ту же плоскость.

Решение. Из прямоугольных треугольников BBVC и (рис. 125) находим:

Из треугольника ABC находим:

Проекция гипотенузы АВ на плоскость а равна . Так как АВ параллельна плоскости а, то Итак, .

43. Параллельные плоскости.

Две плоскости называются параллельными. если они не пересекаются.

Две плоскости параллельны» если одна на них параллельна двум пересекающимся прямым, лежащим в другой плоскости (признак параллельности двух плоскостей).

На рисунке 126 плоскость а параллельна пересекающимся прямым а и b, лежащим в плоскости , тогда по эти плоскости параллельны.

Через точку вне данной плоскости можно провести плоскость, параллельную данной, и притом только одну.

Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны.

На рисунке 127 изображены две параллельные плоскости , а плоскость у их пересекает по прямым а и b. Тогда по теореме 2.7 можно утверждать, что прямые а и b параллельны.

Отрезки параллельных прямых, заключенные между двумя параллельными плоскостями, равны.

По Т.2.8 отрезки АВ и изображенные на рисунке 128, равны, так как

Пусть данные плоскости пересекаются. Проведем плоскость, перпендикулярную прямой их пересечения. Она пересекает данные плоскости по двум прямым. Угол между этими прямыми называется углом между данными плоскостями (рис. 129). Определяемый так угол между плоскостями не зависит от выбора секущей плоскости.