На этой неделе в небе над Землей развернется ярчайшее астрономическое представление года - звездопад, называемый Геминидами.

Геминиды - один из крупнейших метеорных потоков, известных науке. В среднем в час над Землей пролетают порядка сотни метеоров, а в некоторые годы наблюдаются всплески и до 200 метеоров.

Этот «звездопад» не только самый крупный в году, но и самый яркий - метеоры видны гораздо лучше, чем, например, летом, когда проходит второй по важности метеорный дождь - Персеиды. Вот только обязательным условием для того, чтобы полюбоваться падающими «звездами», является чистое небо, а с этим у многих россиян могут быть проблемы.

Когда смотреть

Пик активности Геминид в этом году придется на ночь с 13 на 14 декабря. Начиная с полуночи и вплоть до четырех часов утра четверга небо будет кишеть метеоритами. Каждую минуту над Землей будут пролетать как минимум одно-два небесных тела, поэтому загадать желание под падающую «звезду» вы точно успеете.

При этом 13 числа можно и не ждать - метеоры начнут сверкать в небе уже с ночи понедельника, правда, конечно в значительно меньшем количестве. Если же вы пропустили ночь Геминид, то отчаиваться тоже не стоит - понаблюдать за падением звезд можно будет еще в ночь на пятницу и субботу.

Как смотреть

Прелесть Геминид в том, что для наблюдения за метеоритным дождем в отличие от большинства астрономических явлений вам не понадобится специальная техника - звездопад будет видно невооруженным глазом.

Любоваться им можно из любой точки планеты. Правда, не в любой точке он будет выглядеть одинаково. Нам с вами повезло больше всех - максимальное число метеоритов будет видно из северного полушария Земли, причем тем эффектнее будет зрелище, чем ближе к северному полюсу вы будете находиться. Жители южного полушария увидят почти вдвое меньше.

Ждать появления метеоров нужно с юго-восточной части небосклона, в районе созвездия Близнецов. Лететь они будут не навстречу Земле, а в том же направлении, что и наша планета, так что скорость их будет относительно невысокой (35 км/сек). Это значит, что у вас будет время рассмотреть метеоры и при желании даже зафиксировать событие на фотоаппарат.

Только факты

Очень часто происходит явление попадания твердых частиц, которых много в космосе, в атмосферу. Там они во время торможения начинают нагреваться и светятся за счет накаленных газов. Мы с вами называем это явление "метеоритный дождь". Некоторые частицы раскалываются и падают на Землю. Нередко они сгорают, не долетев до нас, а те, что все-таки достигают поверхности нашей планеты, покрыты черной коркой. Наука разделяет метеориты на: железные, железо-каменные и каменные. Часто находят космические камни спустя много времени после того, как прошел метеоритный дождь. Возраст их очень легко узнать, все зависит от количества радиоактивных элементов и свинца. Есть экземпляры, возраст которых 4,5 млрд. лет. Падение метеоритов часто оставляет после себя на земле кратеры, самый большой находится в Аризоне, в США.

Предположения

Есть версии, что падение метеоритов - это следствие того, что астероиды вместе с орбитами сталкиваются с земной. После некоторых исследований был сделан вывод, что метеориты - это внутренняя частичка какой-то планеты или огромного астероида. Чаще всего метеоритный дождь возникает из его пояса, который находится между орбитами двух планет, а именно Марса и Юпитера. Еще одна версия, это обломки десятой планеты, которая называется Фаэтон. Из расчетов астрофизиков - человек 1 раз в 10 лет может получить камнем по голове. Стало немного страшно, нужно быть внимательнее на улице.

Падение метеорита в числах

На сегодняшний день найдено около 2,5 тысяч штук;

Около 16 строений могут пострадать от метеоритного дождя каждый год;

В Африке нашли экземпляр, который весит 60 т;

6% составляют железные метеориты;

О первом космическом камне стало известно в 644 году до н. э.;

Ежегодно на землю падает около 21,3 тонн;

В 1833 году прошел самый массовый метеоритный дождь; он длился примерно 10 часов, и на протяжении этого времени на Земле оказалось около 240 тысяч камней разного размера.

Самые известные метеориты

Оханск. Весит камень 145 кг. Относится к каменным метеоритам. Очутился на Земле в 1887 году.

Хутор. Его вес равен 107 кг. Относится к каменным метеоритам. Упал на Землю в 1938 году.

Сихотэ-Алинский метеорит. 23 тонны - такой вес этого камня. Относится к железным метеоритам. Приземлился на нашу планету в 1947 году. Входит в ТОП-10 самых больших находок.

Дронино. Метеоритный дождь, который прошел в России в 2003 году.

Самый-самый

Самый старый - вес составляет 2 тонны, и приземлился он на Землю 1,9 млрд. лет тому назад.

Самый большой - носит название Гоба, весит 60 т.

Самое большое количество - находится в ледяном панцире Антарктиды.

Самый мощный метеоритный дождь в современном мире - в Китае в 1976 году, он длился примерно 37 минут.

Самая огромная коллекция - находится в Санкт-Петербурге в Горном музее.

Самый необычный - весом всего 2 кг, он имеет странный физический и химический состав.

Метеоритный дождь 2013

В августе, а именно 12 числа, прошел метеоритный дождь. В час с неба спускалось около 100 шт. камней. Этим прекрасным зрелищем смогли насладиться многие жители нашей страны. Раньше, конечно, и считалось, что подобные осадки ни к чему хорошему не приведут, то на сегодняшний день это ни больше, ни меньше, чем просто красивое природное явление.

Издревле падающие с неба огненные камни приводили людей с состояние трепета. Народ придавал природному явлению мистическое значение, связывая камнепад с божественными знамениями.

В настоящее время, несмотря на разгадку природы метеоритного дождя, люди продолжают удивляться и бояться таких природных явлений. Верующие говорят, что это наказание за грехи людей. Ученые объясняют, что метеоритный дождь - простое, хотя и редкое явление на Земле. Дело в том, что на других планетах Солнечной системы метеориты падают на поверхность гораздо чаще. Почему? Давайте разберемся.

Метеоритный дождь. Что это такое

Вкратце можно сказать, что это поток камней, падающих на землю с неба. Образование и описание метеоритного дождя сводится к следующему: астероид попадает в верхние слои атмосферы и начинает притягиваться Землей. При достижении им более плотной оболочки атмосферы, он распадается на множество маленьких кусков. Теперь к поверхности Земли летит поток камней, который может быть минерального или металлического состава. Делится болид на части, потому что сам состоит из множества мелких кусочков. Таково природное строение вещества многих метеоритов. Части метеоритов имеют размеры от нескольких микрометров до нескольких сантиметров. В этих камнях между плотными образованиями лежат более рыхлые минеральные прослойки.

В течение всего полета болид испытывает огромное трение об атмосферу Земли. Он нагревается так сильно, что начинает сгорать в потоках воздуха. Свечение крупного болида может оказаться ярче солнечного света, доходящего до Земли. При этом меняется внешняя поверхность падающего тела. На ней образуется рисунок тех воздушных потоков, которые проходили по болиду. Сгорает в воздушных слоях огромная масса вещества: до десятков тонн. Так что до земли долетает совсем малая часть того, что попало в атмосферу.

Защитная оболочка Земли

Наша атмосфера довольно качественно защищает планету от падающих на нее тел. Совсем малое число болидов, вторгшихся в атмосферу, долетает до поверхности Земли. У других планет атмосферы нет. Это объясняет, почему их гораздо чаще "поливает" каменный дождь.

Работа ученых

То, что долетает, оставляет в земной коре кратеры, которые внимательно изучают ученые всего мира. В кратерах всегда находится большое количество обломков метеорита. Найденные куски исследуются на химический состав, анализируется структура метеорита, предполагается возможное его происхождение. Метеориты очень ценятся среди научного общества. Дело в том, что метеоритный дождь - это попавшие на Землю кусочки из космоса, который таит в себе еще много загадок. Гораздо легче собрать куски, сами долетевшие к нам, чем лететь людям в космос за материалом для исследований.

Царевский метеорит

В 1922 году на территорию современной Волгоградской области обрушился метеоритный дождь общим весом более тонны. Свидетели рассказывали, что болид в полете издавал громкий гул, а затем произошел взрыв (метеорит раздробился на куски). В то время так же ценили находки космических тел. Однако найти метеорит исследователям долго не удавалось. Обнаружили Царевский метеорит случайно только в 1968 году во время земельных работ.

Сихотэ-Алинский метеорит

В 1947 году в атмосферу Земли ворвался очень крупный болид. По оценкам ученых он весил 1500 - 2000 тонн. В плотных слоях атмосферы каменная глыба распалась на тысячи частей. На землю обрушилось порядка 60 - 100 тонн космического вещества. Ударная волна выбивала стекла, сносила крыши. Метеоритный дождь осыпал уссурийскую тайгу на несколько квадратных километров. Образовались воронки огромных размеров. Фото метеоритного дождя не удается запечатлеть. На снимке лишь кратеры, сохранившиеся до наших дней.

Самая большая воронка имела диаметр 28 метров. Максимальная глубина - 6 метров. Конечно, лес потерпел значительное опустошение. Деревья в тот день вырывало с корнями.

Метеоритный дождь вызвал Сихотэ-Алинский метеорит, как его позже назвали ученые. Он являлся одним из многочисленных астероидов, вращающихся вокруг Солнца.

Химический состав

Железо - основной химический элемент метеорита (94%). Также в нем обнаружены никель, кобальт, сера, фосфор и многие другие элементы в малом количестве. Имеются в этом "посланце небес" и драгоценные металлы.

Кроме железных метеоритов, бывают и каменные болиды.

Альенде

В 1969 году на территорию Мексики упал углистый метеорит. Он является крупнейшим камнем с неба, у которого имеется такой химический состав.

Ценится эта находка тем, что является самым древним телом из имеющихся у людей объектов. Возраст обломков метеорита, которые в настоящее время разбросаны по разным музеям мира, составляет более 4,5 миллиардов лет. Ученые обнаружили в составе Альенде новый минерал пангит, которого, видимо, нет на нашей планете.

Метеоритный дождь - яркое и зрелищное явление природы. Оно всегда обращает на себя внимание местных жителей, а также ученых и любителей загадок космоса. Как выяснилось, состав астероидов заметно отличается от состава планеты Земля. Огромные куски чистого железа и новые минералы исследуются с большой внимательностью.

Для наблюдения метеорного дождя не требуются телескопы и другие астрономические приборы, поэтому насладиться ночным звездным зрелищем лета может любой желающий. Вести наблюдение лучше на природе, например, в поле, на даче или в деревне. Однако облачность и дождь могут помешать даже там. Считается, что метеоритные дожди очень благоприятно влияют на энергетику человека. Во время звездопада также принято загадывать желания.

Для наблюдателя в средней полосе России в районе полуночи созвездие Персея располагается в северо-восточной части неба. Вечером оно начинает свой путь от восточного горизонта, поднимается к утру очень высоко, так что "падающие звезды" становятся видны по всему небосводу.

История открытия Персеид

Название Персеиды произошло от названия созвездия Персея. Метеорный поток Персеиды известен человечеству уже около 2 тысяч лет. Первые упоминания о них содержатся в китайских исторических анналах, датируемых 36 годом нашей эры. Также Персеиды часто упоминались в японских и корейских летописях VIII—XI веков. В Европе Персеиды называли "Слезами святого Лаврентия", так как фестиваль святого Лаврентия, который проходит в Италии, приходится на самый активный период метеорного дождя — 10 августа.

Метеорный поток

Метеорный поток (звездопад, звёздный дождь) — совокупность метеоров, порождённых вторжением в атмосферу Земли роя метеорных тел.

Метеоритный поток Леониды

Метеорный дождь Леониды над Ниагарским водопадом в 1833 году, в разгар которого можно было наблюдать несколько метеоров в секунду. Прародителем потока стала комета 55P/Темпеля—Таттла.

Иллюстрация. Леониды в 1833 г. (в газете)

Метеоритный дождь, наблюдавшийся Гумбольтом и Бонпланом в Андах, в Южной Америке 12 ноября 1799 года.

Чаще всего звёздным или метеорным дождём называют метеорный поток большой интенсивности (с зенитным часовым числом более тысячи метеоров в час).

Зенитное часовое число — расчётная величина, характеризующая активность метеорного потока и показывающая, сколько метеоров в час смог бы увидеть наблюдатель, если бы его предельная видимая звёздная величина равнялась теоретической, при расположении радианта потока в зените (прямо над головой).

Поскольку метеорные рои занимают чётко определённые орбиты в космическом пространстве, то, во-первых, метеорные потоки наблюдаются в строго определённое время года, когда Земля проходит точку пересечения орбит Земли и роя, а во-вторых, радианты потоков при этом оказываются в строго определённой точке на небе. По созвездию, в котором расположен радиант, или по ближайшей к радианту звезде метеорный поток и получает своё название.

Анимация одиночного метеора

Радиа́нт (лат. radians , род. п. лат. radiantis — излучающий) — область небесной сферы, кажущаяся источником метеоров, которые наблюдаются при встрече Земли с роем метеорных тел, движущихся вокруг Солнца по общей орбите.

Так как траектории метеорных тел, принадлежащих одному рою, в пространстве почти точно параллельны, то пути метеоров соответствующего метеорного потока, продолженные на небесной сфере в обратном направлении, вследствие перспективы пересекаются на небольшой площадке неба, центр которой и является радиантом.

Положение радианта обычно указывается на день максимума потока. У потоков с длительным периодом активности, например, у Персеид, радиант за это время может проходить достаточно протяженный путь по небесной сфере.

Метеорный поток и его радиант (отмечен окружностью)

Метеор потока Персеид в августе 2007 года

След одного из метеоров потока Персеиды, 2006

Орбиты некоторых метеорных роев очень близки к орбитам существующих или существовавших в прошлом комет, и по мнению учёных образовались в результате их распада. Например, Ориониды и эта-Аквариды связаны с кометой Галлея.

Метеор потока Орионид

Расположение эта-Акварид для наблюдателей Северного Полушария

Расположение эта-Акварид для наблюдателей Южного Полушария

Астрономами было зарегистрировано около тысячи метеорных потоков. Однако с развитием автоматизированных средств наблюдений звёздного неба количество их сократилось. На настоящий момент имеют подтверждение 64 метеорных потока, ещё более 300 ожидают подтверждения.

При вхождении Земли в плотную область метеорного потока наблюдается метеоритный дождь - резкое увеличение зенитное часовое числа (ZHR). Знаменитые метеорные дожди связаны с метеорным потоком Леониды. Они наблюдались в 1933 и 1966 году.

Метеорный поток Леониды. 1966 год

Метеоритный дождь

Не следует путать понятия метеорный поток и метеоритный дождь . Метеорный поток состоит из метеоров, которые сгорают в атмосфере и не достигают земли, а метеоритный дождь — из метеоритов, которые выпадают на землю.

Метеоритный дождь (железный дождь, каменный дождь, огненный дождь) — множественное падение метеоритов вследствие разрушения крупного метеорита в процессе падения на Землю.

При падении одиночного метеорита образуется кратер. При выпадении метеоритного дождя образуется кратерное поле . Оно характеризуется направлением (ориентацией) основной оси по сторонам света, эллипсом рассеяния.

Раньше не отличали метеорные потоки от метеоритного дождя. Как первые, так и вторые называли одинаково: огненный дождь. Метеоритные дожди часто истолковывались как «божественные знамения» (либо как позитивно-благоприятные, либо как негативные). Например, Крестьянский крестовый поход 1095 года.

Поражение крестьянского крестового похода

Огненный дождь часто вызывал страх, а также различные суеверные и мистические переживания.

Коран (гл. 89) упоминает о разрушении Богом дворца Ирама — земного рая, дерзко выстроенного царём южного народа ’Ад, и говорит (гл. 11) о гибели адитов от огненного дождя за нечестивую жизнь .

Некоторые метеоритные дожди

Оханск — каменный метеорит-хондрит общим весом 145000 грамм. Выпал в виде метеоритного дождя возле села Таборы и окрестности города Оханска (Оханский район Пермского края, Россия) 30 августа 1887 года в 13 ч.

Общий вид одного из обломков Оханского метеорита. Коллекция минералогического музея ПГУ

Ниши выдувания на поверхности метеорита, свидетельствующие о его оплавлении в атмосфере Земли вследствие трения с воздухом

Собрано несколько экземпляров общим весом (сохр.) 145,555 кг, часть из них экспонируется в Пермском областном краеведческом музее.

18 (30) авг. 1887 г. в полдень жители Перми, Оханска, Частых и многих других населенных пунктов среднего Прикамья наблюдали необычное явление на небе - падение метеорита (аэролита, как тогда говорили). «Аэролит летел быстро в наклонном положении к земле, - сообщал на страницах «Пермских губернских ведомостей» заведующий Пермской метеорологической станцией Ф. Н. Панаев. - Как ядро, так и хвост позади его, создающий искры, казались огненными, а след - в виде беловатого дыма тонкою полосою, исчезавшей медленно... Спустя 2-3 минуты после этого явления в Перми был слышен глухой раскат грома». Грандиозный небесный пришелец промчался по небосклону с северо-востока на юго-запад и взорвался над деревней Таборы около города Оханска. Взрыв был очень мощным, непрерывный грохот длился порядка трех-четырех минут. Обломки раскаленного метеорита разбросало по всей округе. Метеорит упал в нескольких местах. Самый большой «небесный камень» был найден близ с. Таборы (ныне Оханского р-на) на поле. Он «упал с таким шумом и грохотом, что работавший на том поле крестьянин свалился..., а в селе Таборах стекла в домах дрожали, а некоторые разбились». В месте падения образовалась яма глубиной около полутора метров. Кругом ямы была выброшена земля на расстояние около двух с половиной метров. Метеорит был до шестидесяти сантиметров в поперечнике, при ударе о землю раскололся на части. Упали метеориты в г. Оханске, около с. Ерзовки (ныне Частинского р-на), близ пристани Усть-Нытва и в некоторых других местах бывшего Оханского уезда Пермской губернии. Лесной сторож пристани Усть-Нытва видел падение камня в Каму. «Вода при ударе поднялась столбом кверху. Лошади, пившие на берегу воду, обратились в бегство», - доносил пермскому губернатору уездный исправник. Падение метеорита вызвало переполох среди части населения, тем более что незадолго до него наблюдалось затмение солнца. В сообщении из с. Рождественского (ныне Осинского р-на) на страницах «Пермских губернских ведомостей» говорилось: затмение солнца и падение метеорита «произвели такое гнетущее впечатление... что человек десять приходили исповедаться к священнику и теперь разным толкам... нет конца». Выпавший каменный дождь произвел на местных жителей такое колоссальное впечатление, что на месте падения одного из фрагментов метеорита установили часовню, от которой на сегодняшний день, правда, ничего не осталось. «Пермские губернские ведомости» уделили много места Оханскому метеориту. О метеорите, упавшем в виде крупного каменного дождя, газета писала на протяжении трех месяцев. С материалами выступал целый ряд лиц, в частности акадмик Ю. И. Симашко. Каменный дождь под Оханском положил начало новой науке в нашей стране - метеоритике. Ученый-химик Дмитрий Менделеев осенью этого же года на заседании Русского физико-химического общества представил доклад об Оханском аэролите. Его лаборатория сделала химический анализ собранных обломков. Анализ показал, что главными элементами в его составе являются: Fe - 79,123%, N - 11,378%, P - 0,763%, S - 4,438%. Метеорит получил имя - Оханск НII(4) и его отнесли к разряду обыкновенных хондритов. В настоящее время большинство осколков метеорита разошлись по рукам местного населения, бесследно пропали, многие очутились в разных музеях и частных коллекциях нашей страны и мира. Основная часть Оханского метеорита хранится в Казанском университете, части небесного пришельца выставляются в Народном музее Очера, в Пермском областном краеведческом музее. Место падения большого обломка метеорита на склоне высокого холма недалеко от поселка Таборы объявлено геологическим памятником природы Пермского края.

Сихотэ́-Али́нский метеорит — железный метеорит разрушившийся при входе в атмосферу и выпавший в виде метеоритного дождя, общая масса осколков оценивается в 60—100 тонн. Собрано более 3500 фрагментов, общей массой 27 тонн. Крупнейший целый фрагмент имеет массу 1745 кг. Другие — 1000, 700, 500, 450, 350 кг и меньше. Входит в десятку крупнейших метеоритов мира.

Метеорит упал в 10 часов 38 минут 12 февраля 1947 года около посёлка Бейцухе Приморского края в Уссурийской тайге в горах Сихотэ-Алинь на Дальнем Востоке. Он раздробился в атмосфере и выпал железным дождём на площади 35 квадратных километров. Отдельные части дождя рассеялись по тайге на площади в виде эллипса с большою осью длиной около 10 километров. В головной части эллипса рассеяния, площадью около квадратного километра, получившей название кратерного поля, было обнаружено 106 воронок диаметром от 1 до 28 метров, причём глубина самой большой воронки достигала 6 метров. На площадь около 20 км 2 выпало более 100 тысяч фрагментов массой от долей грамма до сотен и даже тысяч кг. Всего было собрано несколько десятков тысяч фрагментов общей массой более 27 т. Самый крупный неразрушившийся экземпляр весит 1745 кг. Сихотэ-Алинский метеорит отнесен к типу грубоструктурных октаэдров химической группы IIB. Его химический состав: железо Fе 93.29%; никель Ni 5.94%; кобальт Со 0.38%; фосфор Р 0.46%; сера S 0.28%. В минеральном составе доминирует металлическое железо, в незначительных количествах присутствуют троилит (FeS), шрейберзит ( 3 Р) и хромит (FеCr 2 O 4 ). Предел прочности при растяжении 4.4 кгс/мм 2 , при сжатии - 40.6 кгс/мм 2 . Расчеты орбиты показали, что Сихотэ-Алинcкое метеоритное тело даже на наибольшем расстоянии от Солнца находилось внутри пояса астероидов и никогда не приближалось к Солнцу ближе чем на радиус земной орбиты. Распад родительского тела Сихотэ-Алинского метеорита, который привел к формированию данной орбиты, произошел 350 млн. лет назад.

Художник Петр Медведев из Имана стал свидетелем падения Сихотэ-Алинского метеорита во время рисования картины с местным пейзажем и запечатлел метеорит на ней.

В 1957 году в СССР была выпущена почтовая марка, созданная на основе этого этюда (ЦФА (ИТЦ «Марка») № 2097).

Почтовая марка СССР, 1957 год

Первыми обнаружили место падения лётчики Дальневосточного геологического управления (14 февраля, П. Я. Фарциков и А. И. Агеев), которые возвращались с задания. По прибытии в Хабаровск они сообщили о своих наблюдениях в геологическое управление, которое немедленно организовало экспедицию для предварительного исследования места падения. В состав экспедиции входили геологи В. А. Ярмолюк, Г. Т. Татаринов и В. В. Онихимовский. 21 февраля экспедиция вылетела из Хабаровска и 24 февраля после двухдневного тяжелого перехода по тайге геологи добрались до места падения. Часом позже место падения достиг владивостокский геолог Ф. К. Шипулин с двумя местными охотниками, который предпринял самостоятельные поиски, руководствуясь показаниями очевидцев о направлении полёта болида.

Фрагменты Сихотэ-Алинского метеорита в Хабаровском краевом музее имени Н. И. Гродекова

Сихотэ-Алинский метеорит в разрезе

На месте падения тайга была опустошена. Многие деревья были разбиты, их вершины срублены. Обломки древесных стволов висели на кронах уцелевших деревьев. Снег был уплотнен и образовавшийся плотный наст свободно выдерживал человека. Среди этого хаоса зияли кратеры и воронки. Наибольший кратер имел диаметр 26 м и глубину 6 м. Огромные кедры, поваленные с корнями, лежали радиально вокруг кратеров. Геологи обнаружили около 30 кратера и воронок и составили план их расположения. В одной из воронок среди разбитых скальных пород они собрали метеоритные осколки. В Комитете по метеоритам о произошедшем событии было известно из сообщений прессы. Позже пришли телеграммы от геолога Р. К. Шипулина, Красноармейского райкома КПСС и Дальневосточного геологического управления. В район падения была направлена специальная экспедиция, которая к концу апреля достигла места проведения работ. Возглавил экспедицию академик В. Г. Фесенков. В помощь экспедиции Приморским военным округом было выделено подразделение саперов. Экспедиция провела детальное обследование места падения, опросила очевидцев, выполнила теодолитную съемку местности и собрала несколько тонн индивидуальных экземпляров и фрагментов метеоритного дождя. Но главное состоит в том, что эта экспедиция положила начало многолетним последующим исследованиям Сихотэ-Алинского падения, которые продолжаются и до сих пор. Организатором и лидером этих исследований был Евгений Леонидович Кринов. В ходе этих работ удалось установить следующее:

Схема дробления метеоритного тела во время движения в земной атмосфере с космической скоростью

В земную атмосферу вошло космическое тело диаметром в несколько метров и массой в сотни тонн. При движении через нее оно испытало многократное дробление. Первый разрыв тела на части произошел на высоте около 25 км, последний примерно на 6 км. Куски первых стадий дробления прошли наиболее длинный путь в атмосфере, во время которого их поверхность испытывала сильный нагрев. Плавление и абляция привели к хорошо сформировавшейся коре и волнообразному рельефу поверхности метеоритов. Фрагменты второй стадии дробления имеют более мелкий и резкий рельеф. Фрагменты, образовавшиеся вблизи от поверхности Земли на последних стадиях дробления, не несут заметных следов атмосферной обработки и сохраняют обломочную форму, возникшую в результате атмосферного разрушения метеоритного тела. Часто они лишены коры плавления и регмаглиптового рельефа. Такие обломки легко покрываются слоем ржавчины. Наконец куски третьей стадии повторяют форму частей внутренней структуры метеоритного вещества.

Фрагмент образовался на первых стадиях дробления высоко от поверхности Земли и почти не менял ориентации при дальнейшем полете в атмосфере. В результате воздушной обработки он приобрел форму, напоминающую головку снаряда.

Фрагменты второй стадии дробления отделялись от метеорного тела на меньшей высоте. Они имеют регмаглиптовый рельеф и кору плавления, т. е. еще успевают испытать значительную атмосферную обработку, но сохраняют обломочную форму, возникающую в результате атмосферного разрушения метеорного тела.

Один из кратеров, образовавшихся при падении Сихотэ-Алинского метеорита. Картина художника Н. А. Кравченко (1948 г.). На месте падения многие деревья были повалены вместе с корнями. Отдельные уцелевшие деревья стояли вместе с обломанными вершинами и кронами. Обломки древесных стволов, сучья, кедровая и еловая хвоя были разбросаны по всему кратерному полю. Среди этого хаоса зияли кратеры и воронки. Е. Л. Кринов, 1981 г.

Дронино — крупный метеоритный дождь, найденный в апреле 2003 года в Касимовском районе Рязанской области. В результате нескольких экспедиций Лаборатории метеоритики ГЕОХИ РАН, а также ряда частных поисковиков в районе находки было найдено более 550 фрагментов атаксита общим весом около 2800 кг. Максимальный фрагмент — 250 кг.

История открытия метеорита Дронино началась в начале 90-х годов, когда вблизи одноименной с ним деревни проводились мелиоративные работы, и вдоль краев полей были вырыты канавы глубиной до 3 метров. Местные жители рассказывают, что уже тогда они видели крупные ржавые камни на брустверах этих канав. Но тогда им никто не придал значения. Лишь в июле 2000 г. москвич Олег Николаевич Гуськов, возвращаясь после сбора грибов, обратил внимание на торчавший из суглинка ржавый кусок металла и заподозрил в нем метеорит. Но вряд ли он ожидал, что эта находка положит начало открытию уникального метеоритного дождя. Поскольку сковырнуть кусок ножом не удалось, О. Н. Гуськов сходил домой за лопатой и тачкой и, выкопав образец из земли, привез его на дачу. Его вес составил около 40 кг. Более двух лет железный кусок пролежал на огороде, пока в 2003 г. О. Н. Гуськов не принес его образец в лабораторию метеоритики ГЕОХИ РАН.

Проведенная экспертиза показала, что он имеет метеоритное происхождение. Кроме того, морфология исследованного образца, его сколотые края свидетельствовали об интенсивной фрагментации метеоритного тела в атмосфере Земли, что позволяло надеяться на новые находки. Весной 2003 г. силами членов лаборатории метеоритики были проведены поиски с применением металлоискателей, которые дали положительные результаты. Свыше 250 фрагментов метеорита было извлечено из грунта с глубины от 20 см до 2 м. Их масса достигла 550 кг. С этого времени научными и частными экспедициями в районе деревни Дронино было найдено почти 3 тонны метеоритного вещества. Самый крупный метеорит весом около 1 тонны при падении образовал воронку диаметром около 30 метров и раскололся на сотни крупных и мелких фрагментов. Эта воронка не выражена в современном рельефе, но прослеживалась в шурфах.

Уникальность метеорита Дронино не ограничивается рекордом массы. Это древнейший ископаемый метеорит России. Поскольку город Касимов (первоначально Мещерский Городок), основанный в 1152 г. Юрием Долгоруким, находится всего в 20 км от деревни Дронино, то падение такого метеорита, наверняка было бы замечено местным населением. И не только в Касимове, но и в Рязани, Муроме и даже Владимире, что нашло бы отражение в русских летописях или более поздних хрониках. Однако никаких письменных известий об этом событии обнаружить не удалось. Подтверждает значительный возраст падения и то, что собранные метеоритные фрагменты сильно окислены. Более того, не подвергнутый специальной обработке метеоритный металл в атмосферном кислороде окисляется с чудовищной скоростью. Образец размером с кулак в течение месяца может превратиться в труху! Для археологов это явный показатель древности.

Метеорит на 90% состоит из никелистого железа, представляющего собой микроскопическое взаимное прорастание двух минералов - бедного никелем камасита и богатого никелем тэнита. Такая структура характерна для редкого типа железных метеоритов атакситов.

Третьим по распространенности минералом (10%) в Дронино является сульфид железа - троилит. Включения троилита в металле напоминают следы древоточца в дереве. Толщиной 1-5 миллиметра они по длине достигают 2-3 сантиметров и ориентированы в одном направлении. Эту необычную структуру объясняют следующим образом. Предполагается, что 4,5 млрд. лет назад крупные скопления металлического железа образовались в процессе магматической дифференциации космических тел: тяжелый расплавленный металл тонул и скапливался в центре астероида, образуя ядро, а легкий силикатный расплав всплывал и, застывая, образовывал кору. (Подобным путем формировалась и Земля). Сульфиды же, промежуточные по весу, сосредоточивались главным образом в верхней части ядра. В недрах астероида нагретое вещество было пластично и из-за разности температур и плотности находилось в непрерывном движении. Оно текло. Возможно, именно направление этого течения указывают включения троилита. При медленном остывании внутренних частей тела, такое течение должно было прекратиться, не оставив и следов о себе. Но произошедшая катастрофа прервала нормальный ход процесса. Другой крупный астероид столкнулся с родительским телом метеорита Дронино и вызвал его полное разрушение. Это привело к быстрому остыванию металла. Он не успел раскристаллизоваться, поэтому железо атаксита Дронино не имеет столь знаменитой кристаллической Видманштеттовой структуры, наблюдаемой в группах железных метеоритов - гексаидритах и октаэдритах.

Есть и другое объяснение необычной структуры сульфидных включений и металла. Столкновение двух астероидов вызвало частичное плавление и пластическую деформацию вещества. В результате кристаллы металла и троилит вытянулись по направлению приложенной силы. С тем или иным процессом связана эта уникальная структура пока не ясно, но что бесспорно важно, так это то, что метеорит Дронино является многообещающим объектом для объяснения образования металла в Солнечной системе и его последующей истории.

Один из осколков метеорита Дронино

Эллипс падения метеоритов был составлен в основном по находкам. Точно его определить нельзя. Есть мнение, что это только часть дождя.

Метеорит Гири́н — метеорит-хондрит весом более 4 тонн, упавший вблизи города Гирин в одноимённой китайской провинции в 1976 году. Крупнейший каменный дождь в мире.

Каменный метеорит Гирин, 1,7 тонны

В 1976 году в результате сильнейшего за последнее столетие метеоритного дождя на Землю в Китае упал каменный метеорит Гирин. Самый большой осколок данного метеорита весит 1770 килограммов. На сегодняшний день этот осколок находится в музее в Гирине, и туристы могут на него посмотреть.

В марте 1976 года в китайской провинции Цзилинь прошел крупнейший метеоритный каменный дождь в мире, продолжавшийся 37 минут. Космические тела падали на землю со скоростью 12 км/сек. Обломки сыпались с неба на Китай в течение 37 минут. Потом нашли около сотни метеоритов.

Царе́в или Царе́вский метеорит — метеорит-хондрит весом 1225 килограммов, найденный в Волгоградской области поблизости от села Царев.

Метеоритный каменный дождь Царев представляет собой наиболее крупный метеоритный дождь как в России так и в СССР, и третий в мире, уступая лишь каменным метеоритным дождям Kiren (Китай) и Allende (Мексика). Это 82 найденных хондритовых метеорита, общим весом приблизительно 1.5 тонны, распределившихся на площади свыше 25 квадратных километров. Почти наверняка найдены далеко не все фрагменты этого падения. В начале декабря 1922 года на севере Астраханской губернии наблюдалось падение с неба камня (метеорита). Слух об этом разошёлся по всей России, причем камню (метеориту) приписывались необычайно большие размеры. Хотя различные учреждения юга России и посылали на предполагаемое место падения своих представителей, тем не менее найти этот камень (метеорит) никому не удалось.

Из листовки Академии Наук, 1923 г.:
«Геологический и Минералогический Музей Академии Наук для поощрения поисков нашел возможным объявить премию за находку метеорита на следующих условиях: Геологический и Минералогический Музей Российской Академии Наук уплачивает современной валютой сто (100) рублей золотом по существующему курсу рубля (свыше двух с половиной миллиардов по счету 1921 г.) из отпущенного ему специального фонда на приобретение метеоритов…».

Метеорит был найден только в 1968 г. при распашке полей совхоза «Ленинский». Первое сообщение о находке было получено ещё через 11 лет (в 1979 г.) от электросварщика Б. Г. Никифорова.

Электрик по имени Борис Никифоров из села Царев написал письмо (1979 г.) в Комитет по Метеоритам Академии Наук (АН) СССР, в котором сообщил, что начиная с весны 1968 года на полях совхоза при полевых работах рабочие неоднократно находили большие заржавленные камни. Трактористы на поле много раз ощущали характерный толчок, натыкаясь на один из этих камней и даже ставили их на плуг в качестве дополнительного груза. Никифоров когда-то работал с геологами-нефтяниками и интересовался астрономией и метеоритикой, поэтому камни на полях не случайно показались ему подозрительными. Ничего подобного он никогда не видел. Особенно настораживал большой удельный вес этих камней. В своем письме Никифоров сообщил Комитету, что он, похоже, обнаружил множество крупных метеоритов. В Комитете ему не особенно поверили. Казалось маловероятным, что камни, столь долго пролежавшие в совершенно открытой безлесной местности, так сказать на всеобщем обозрении, могут оказаться метеоритами. Тем не менее Комитет послал Никифорову стереотипный ответ, в котором попросил его отколоть небольшой образец и выслать его в Москву для анализа. К величайшему удивлению сотрудников Комитета, 324-граммовый образец оказался метеоритом - хондритом типа L5 и стал новым добавлением к коллекции метеоритов Академии Наук. Сотрудник Комитета по Метеоритам Р. Хотинок немедленно был послан в Царев. Когда он вошел через ворота во двор к Никифорову, то буквально остолбенел, увидев целую кучу ржавых камней, каждый из которых был более полуметра в диаметре. Никифоров сообщил, что в полях есть по крайней мере четыре камня еще большего размера, но они слишком тяжелы и на себе их не принести. Каждый из семи метеоритов во дворе Никифорова весил несколько десятков килограммов. Их поверхность в результате долговременного окисления была покрыта яркой ржавчиной, но несмотря на это хорошо сохранилась остеклованная кора плавления с прекрасно выраженными специфическими углублениями, так называемыми регмаглиптами, - результатом полета метеорита в атмосфере с космической скоростью. Согласно Р. Хотинку - автору первой научной публикации, посвященной метеориту Царев, в его внутренней структуре явно присутствуют следы поздних изменений - метаморфизма. Эти изменения возникли скорее всего в результате грандиозного столкновения, которое метеорит претерпел сотни миллионов лет назад во время своего странствия в космическом пространстве. В то время еще много метеоритов оставалось непосредственно на месте их падения. Совхоз был относительно молод и рабочие достаточно точно знали как поля распахивались и где и какие камни были найдены. 4 самых крупных метеорита остались на месте, да и Никифоров смог точно показать, где он нашел 7 крупных камней, перетащенных им в свой двор.

Борис Никифоров из села Царев

В октябре 1979 г. был найден двенадцатый метеорит с массой более 50 килограммов, а в апреле и августе 1980 г. - еще тринадцать. Остается только удивляться, как такое грандиозное падение, сопровождавшееся к тому же виденным массой очевидецeв ярким болидом и широко освещенное в отчетах в газетах, ждало своего окончательного открытия столь долго. Поскольку траектория и расстояния до болида изначально были оценены неправильно, поиски "по горячим следам" проводились просто не в том месте. "Странные" камни начали обнаруживаться только когда трактора совхоза Царев стали поднимать здесь целину. Найденные фрагменты позволили хотя бы приблизительно оценить начальную, доатмосферную массу Царева. По мнению Валентина Цветкова - главного исследователя места падения, она могла достигать 10 тонн. Прямой химический и физический анализ фрагментов обеспеченных состав камней и структуру. Дальнейшие полевые работы, проведенные Комитетом по Метеоритам, позволили в общих чертах определить ориентацию, размер и форму области падения отдельных фрагментов метеорита - так называемого "эллипсоида рассеивания", а также установить характер распределения масс внутри эллипсоида. Во время метеоритного дождя, фрагменты рассыпавшегося в атмосфере космического тела отсортировываются согласно их массе. Более легкие камни быстрее тормозятся во время их полета через атмосферу и таким образом падают раньше, чем более крупные обломки. Исследование эллипсоида рассеивания явно подтвердило свидетельства очевидцев о направлении полета болида в целом с юга на север, поскольку наиболее крупные фрагменты были найдены в северной части области падения. Согласно окончательной оценке, траектория имела азимут 140 градусов, что соответствует направлению полета с юго-востока на северо-запад. Состав метеорита Царев отвечает составу типичного хондрита типа L5 - 40% SiО 2 , 25% MgО, и 22.3% никелистого железа. Плотность вещества метеорита колеблется в пределах от 3.3 до 3.5 гр/см 3 . На данный момент общая масса собранных осколков на площади около 25 кв. км составила 1,5 тонны. Вес самого большого упавшего фрагмента составил 284 кг.