Теорема 1 . Если f (x ) = b , то f (x ) = b + a (x ), где a (x ) – б.м. при x ® a .

Доказательство. Пусть f (x ) = b . Рассмотрим функцию a (x ) = f (x ) – b и покажем, что a (x ) – б.м. при x ® +¥ .

Из определения f (x ) = b имеем, что "e > 0 $x 0 "x > x 0 |f (x ) – b | < e , но так как a (x ) = f (x ) – b , то "e > 0 $x 0 "x > x 0 |a (x )| < e , а это означает, что a (x ) – б.м. при
x ® +¥.

Итак, из равенства a (x ) = f (x ) – b имеем f (x ) = b + a (x ), где a (x ) – б.м. при x ® +¥.

Теорема 2. Если функцию f (x ) можно представить в виде: f (x ) = b + a (x ), где
b – число, a (x ) – б.м. функция при x ® a , то f (x ) = b .

Доказательство. Пусть f (x ) = b + a (x ), где a (x ) – б.м. при x ® +¥, т.е.

"e > 0 $x 0 "x > x 0 |a (x )| < e . (*)

Но a (x ) = f (x ) – b , поэтому (*) можно записать так: "e > 0 $x 0 "x > x 0 |f (x ) – b | < e , что означает: f (x ) = b .

Следующие теоремы значительно облегчают нахождение пределов.

Теорема 3 . Предел суммы (разности) двух функций равен сумме (разности) их пределов, т.е. если

f 1 (x ) = b 1 , f 2 (x ) = b 2 , то (f 1 (x ) + f 2 (x )) = b 1 + b 2 , (f 1 (x ) – f 2 (x )) = b 1 – b 2 .

Доказательство. На основании теоремы 1: f 1 (x ) = b 1 + a 1 (x ), f 2 (x ) = b 2 + a 2 (x ), где a 1 (x ), a 2 (x ) – б.м. при x ® a , тогда

f 1 (x ) + f 2 (x ) = (b 1 + a 1 (x )) + (b 2 + a 2 (x )) = (b 1 + b 2) + (a 1 (x ) + a 2 (x )).

Но a 1 (x ) + a 2 (x ) – б.м. функция при x ® a (как сумма двух б.м. функций), поэтому из равенства f 1 (x ) + f 2 (x ) = (b 1 + b 2) + (a 1 (x ) + a 2 (x )) по теореме 2 следует, что

(f 1 (x ) + f 2 (x )) = b 1 + b 2.

Аналогично проводится доказательство для разности.

Теорема 4 . Предел произведения двух функций равен произведению их пределов, т.е. если f 1 (x ) = b 1 , f 2 (x ) = b 2 , то (f 1 (x ) f 2 (x )) = b 1 × b 2 .

Доказательство. По теореме 1: f 1 (x ) = b 1 + a 1 (x ), f 2 (x ) = b 2 + a 2 (x ), где a 1 (x ), a 2 (x ) – б.м. при x ® a , тогда f 1 (x f 2 (x ) = b 1 × b 2 + b 1 ×a 2 (x ) + b 2 ×a 1 (x ) + a 1 (x a 2 (x ).

На основании следствий 2, 3, теоремы 1 (разд. 1.6) функции b 1 ×a 2 (x ), b 2 ×a 1 (x ), a 1 (x a 2 (x ) – б.м. при x ® a и a (x ) = b 1 ×a 2 (x ) + b 2 ×a 1 (x ) + a 1 (x a 2 (x ) – бесконечно малая функция при x ® a . Из равенства f 1 (x ) f 2 (x ) = b 1 b 2 + a (x ) по теореме 2 следует, что
(f 1 (x )f 2 (x )) = b 1 b 2 .

Следствие 1 . Постоянный множитель можно выносить за знак предела, т.е.
(С ×f (x )) = С f (x ), где С – постоянное число.

Доказательство. С f (x ) = С f (x ) = С f (x ), так как С = С.

Следствие 2 . Если n натуральное число, то [(f (x )) n ] = (f (x )) n .

Теорема 5 . Предел дроби равен пределу числителя, деленному на предел знаменателя при условии, что предел знаменателя не равен нулю. Иначе, если f 1 (x ) = b 1 ,
f 2 (x ) = b 2 и b 2 ¹ 0, то .

Доказательство. По теореме 1: f 1 (x ) = b 1 + a 1 (x ), f 2 (x ) = b 2 + a 2 (x ), где a 1 (x ), a 2 (x ) – б.м. при x ® a , тогда

Обозначим последнюю дробь a (x ) = , тогда + a (x ). Остается показать, что a (x ) – б.м. при x ® a . Действительно, числитель дроби
b 2 a 1 (x ) – b 1 a 2 (x ) – б.м. по свойствам бесконечно малых функций, предел
(b 2 2 + b 2 a 2 (x )) = b 2 2 ¹ 0, на основании теорем 3, 4. Поэтому – функция,ограниченная при x ® a (по теореме 3 разд. 1.6). Значит, a (x ) – б.м. при x ® a (по теореме 4 разд. 1.6). Теорема доказана.

Рассмотрим применение доказанных теорем при нахождении пределов.


Пример . Найти .

Решение. Найдем сначала предел числителя и знаменателя. По свойствам пределов3 x = 3x = 3(–2) = –6, 1 = 1, поэтому (3x – 1) = –6 – 1 = –7. Аналогично, (5 – 4x ) = 5 – 4(–2) = 13. Используя теорему 5, получим:

.

Теорема 6 . Если f (x ) существует и f (x ) ³ 0 для всех x из области определения функции, то f (x ) ³ 0.

Доказательство. Пусть . Докажем методом от противного, предполагая, что f (x ) = b < 0. Зафиксируем e = –, e > 0. По определению предела по e найдется x 0 , такое, что "x > x 0 |f (x ) – b | < e , отсюда b – e < f (x ) < b + e . Но e = –, поэтому "x > x 0 f (x ) < b – , f (x ) < , т.е. f (x ) < 0, что противоречит условию. Теорема доказана .

Теорема 7 . Если "x (f 1 (x ) ³ f 2 (x )) и f 1 (x ), f 2 (x ) существуют, то
f 1 (x ) ³ f 2 (x ).

Доказательство. Рассмотрим функцию F (x ) = f 1 (x ) – f 2 (x ), тогда "x (F (x ) ³ 0) иF (x ) существует. По теореме 6: F (x ) ³ 0, (f 1 (x ) – f 2 (x )) ³ 0, отсюда
f 1 (x ) ³ f 2 (x ). Теорема доказана .

Приводятся формулировки основных теорем и свойств предела функции. Даны определения конечных и бесконечных пределов в конечных точках и на бесконечности (двусторонних и односторонних) по Коши и Гейне. Рассмотрены арифметические свойства; теоремы, связанные с неравенствами; критерий сходимости Коши; предел сложной функции; свойства бесконечно малых, бесконечно больших и монотонных функций. Дано определение функции.

Определение функции

Функцией y = f(x) называется закон (правило), согласно которому, каждому элементу x множества X ставится в соответствие один и только один элемент y множества Y .

Элемент x ∈ X называют аргументом функции или независимой переменной .
Элемент y ∈ Y называют значением функции или зависимой переменной .

Множество X называется областью определения функции .
Множество элементов y ∈ Y , которые имеют прообразы в множестве X , называется областью или множеством значений функции .

Действительная функция называется ограниченной сверху (снизу) , если существует такое число M , что для всех выполняется неравенство:
.
Числовая функция называется ограниченной , если существует такое число M , что для всех :
.

Верхней гранью или точной верхней границей действительной функции называют наименьшее из чисел, ограничивающее область ее значений сверху. То есть это такое число s , для которого для всех и для любого , найдется такой аргумент , значение функции от которого превосходит s′ : .
Верхняя грань функции может обозначаться так:
.

Соответственно нижней гранью или точной нижней границей действительной функции называют наибольшее из чисел, ограничивающее область ее значений снизу. То есть это такое число i , для которого для всех и для любого , найдется такой аргумент , значение функции от которого меньше чем i′ : .
Нижняя грань функции может обозначаться так:
.

Определение предела функции

Определение предела функции по Коши

Конечные пределы функции в конечных точках

Пусть функция определена в некоторой окрестности конечной точки за исключением, может быть, самой точки . в точке , если для любого существует такое , зависящее от , что для всех x , для которых , выполняется неравенство
.
Предел функции обозначается так:
.
Или при .

С помощью логических символов существования и всеобщности определение предела функции можно записать следующим образом:
.

Односторонние пределы.
Левый предел в точке (левосторонний предел):
.
Правый предел в точке (правосторонний предел):
.
Пределы слева и справа часто обозначают так:
; .

Конечные пределы функции в бесконечно удаленных точках

Аналогичным образом определяются пределы в бесконечно удаленных точках.
.
.
.
Их часто обозначают так:
; ; .

Использование понятия окрестности точки

Если ввести понятие проколотой окрестности точки , то можно дать единое определение конечного предела функции в конечных и бесконечно удаленных точках:
.
Здесь для конечных точек
; ;
.
Любые окрестности бесконечно удаленных точек являются проколотыми:
; ; .

Бесконечные пределы функции

Определение
Пусть функция определена в некоторой проколотой окрестности точки (конечной или бесконечно удаленной). f(x) при x → x 0 равен бесконечности , если для любого, сколь угодно большого числа M > 0 , существует такое число δ M > 0 , зависящее от M , что для всех x , принадлежащих проколотой δ M - окрестности точки : , выполняется неравенство:
.
Бесконечный предел обозначают так:
.
Или при .

С помощью логических символов существования и всеобщности определение бесконечного предела функции можно записать так:
.

Также можно ввести определения бесконечных пределов определенных знаков, равных и :
.
.

Универсальное определение предела функции

Используя понятие окрестности точки, можно дать универсальное определение конечного и бесконечно предела функции, применимое как для конечных (двусторонних и односторонних), так и для бесконечно удаленных точек:
.

Определение предела функции по Гейне

Пусть функция определена на некотором множестве X : .
Число a называется пределом функции в точке :
,
если для любой последовательности , сходящейся к x 0 :
,
элементы которой принадлежат множеству X : ,
.

Запишем это определение с помощью логических символов существования и всеобщности:
.

Если в качестве множества X взять левостороннюю окрестность точки x 0 , то получим определение левого предела. Если правостороннюю - то получим определение правого предела. Если в качестве множества X взять окрестность бесконечно удаленной точки, то получим определение предела функции на бесконечности.

Теорема
Определения предела функции по Коши и по Гейне эквивалентны.
Доказательство

Свойства и теоремы предела функции

Далее мы считаем, что рассматриваемые функции определены в соответствующей окрестности точки , которая является конечным числом или одним из символов: . Также может быть точкой одностороннего предела, то есть иметь вид или . Окрестность является двусторонней для двустороннего предела и односторонней для одностороннего.

Основные свойства

Если значения функции f(x) изменить (или сделать неопределенными) в конечном числе точек x 1 , x 2 , x 3 , ... x n , то это изменение никак не повлияет на существование и величину предела функции в произвольной точке x 0 .

Если существует конечный предел , то существует такая проколотая окрестность точки x 0 , на которой функция f(x) ограничена:
.

Пусть функция имеет в точке x 0 конечный предел, отличный от нуля:
.
Тогда, для любого числа c из интервала , существует такая проколотая окрестность точки x 0 , что для ,
, если ;
, если .

Если, на некоторой проколотой окрестности точки , - постоянная, то .

Если существуют конечные пределы и и на некоторой проколотой окрестности точки x 0
,
то .

Если , и на некоторой окрестности точки
,
то .
В частности, если на некоторой окрестности точки
,
то если , то и ;
если , то и .

Если на некоторой проколотой окрестности точки x 0 :
,
и существуют конечные (или бесконечные определенного знака) равные пределы:
, то
.

Доказательства основных свойств приведены на странице
«Основные свойства пределов функции ».

Арифметические свойства предела функции

Пусть функции и определены в некоторой проколотой окрестности точки . И пусть существуют конечные пределы:
и .
И пусть C - постоянная, то есть заданное число. Тогда
;
;
;
, если .

Если , то .

Доказательства арифметических свойств приведены на странице
«Арифметические свойства пределов функции ».

Критерий Коши существования предела функции

Теорема
Для того, чтобы функция , определенная на некоторой проколотой окрестности конечной или бесконечно удаленной точки x 0 , имела в этой точке конечный предел, необходимо и достаточно, чтобы для любого ε > 0 существовала такая проколотая окрестность точки x 0 , что для любых точек и из этой окрестности, выполнялось неравенство:
.

Предел сложной функции

Теорема о пределе сложной функции
Пусть функция имеет предел и отображает проколотую окрестность точки на проколотую окрестность точки . Пусть функция определена на этой окрестности и имеет на ней предел .
Здесь - конечные или бесконечно удаленные точки: . Окрестности и соответствующие им пределы могут быть как двусторонние, так и односторонние.
Тогда существует предел сложной функции и он равен :
.

Теорема о пределе сложной функции применяется в том случае, когда функция не определена в точке или имеет значение, отличное от предельного . Для применения этой теоремы, должна существовать проколотая окрестность точки , на которой множество значений функции не содержит точку :
.

Если функция непрерывна в точке , то знак предела можно применять к аргументу непрерывной функции:
.
Далее приводится теорема, соответствующая этому случаю.

Теорема о пределе непрерывной функции от функции
Пусть существует предел функции g(t) при t → t 0 , и он равен x 0 :
.
Здесь точка t 0 может быть конечной или бесконечно удаленной: .
И пусть функция f(x) непрерывна в точке x 0 .
Тогда существует предел сложной функции f(g(t)) , и он равен f(x 0) :
.

Доказательства теорем приведены на странице
«Предел и непрерывность сложной функции ».

Бесконечно малые и бесконечно большие функции

Бесконечно малые функции

Определение
Функция называется бесконечно малой при , если
.

Сумма, разность и произведение конечного числа бесконечно малых функций при является бесконечно малой функцией при .

Произведение функции, ограниченной на некоторой проколотой окрестности точки , на бесконечно малую при является бесконечно малой функцией при .

Для того, чтобы функция имела конечный предел , необходимо и достаточно, чтобы
,
где - бесконечно малая функция при .


«Свойства бесконечно малых функций ».

Бесконечно большие функции

Определение
Функция называется бесконечно большой при , если
.

Сумма или разность ограниченной функции, на некоторой проколотой окрестности точки , и бесконечно большой функции при является бесконечно большой функцией при .

Если функция является бесконечно большой при , а функция - ограничена, на некоторой проколотой окрестности точки , то
.

Если функция , на некоторой проколотой окрестности точки , удовлетворяет неравенству:
,
а функция является бесконечно малой при :
, и (на некоторой проколотой окрестности точки ), то
.

Доказательства свойств изложены в разделе
«Свойства бесконечно больших функций ».

Связь между бесконечно большими и бесконечно малыми функциями

Из двух предыдущих свойств вытекает связь между бесконечно большими и бесконечно малыми функциями.

Если функция являются бесконечно большой при , то функция является бесконечно малой при .

Если функция являются бесконечно малой при , и , то функция является бесконечно большой при .

Связь между бесконечно малой и бесконечно большой функцией можно выразить символическим образом:
, .

Если бесконечно малая функция имеет определенный знак при , то есть положительна (или отрицательна) на некоторой проколотой окрестности точки , то этот факт можно выразить так:
.
Точно также если бесконечно большая функция имеет определенный знак при , то пишут:
.

Тогда символическую связь между бесконечно малыми и бесконечно большими функциями можно дополнить следующими соотношениями:
, ,
, .

Дополнительные формулы, связывающие символы бесконечности, можно найти на странице
«Бесконечно удаленные точки и их свойства ».

Пределы монотонных функций

Определение
Функция , определенная на некотором множестве действительных чисел X называется строго возрастающей , если для всех таких что выполняется неравенство:
.
Соответственно, для строго убывающей функции выполняется неравенство:
.
Для неубывающей :
.
Для невозрастающей :
.

Отсюда следует, что строго возрастающая функция также является неубывающей. Строго убывающая функция также является невозрастающей.

Функция называется монотонной , если она неубывающая или невозрастающая.

Теорема
Пусть функция не убывает на интервале , где .
Если она ограничена сверху числом M : , то существует конечный предел . Если не ограничена сверху, то .
Если ограничена снизу числом m : , то существует конечный предел . Если не ограничена снизу, то .

Если точки a и b являются бесконечно удаленными, то в выражениях под знаками пределов подразумевается, что .
Эту теорему можно сформулировать более компактно.

Пусть функция не убывает на интервале , где . Тогда существуют односторонние пределы в точках a и b :
;
.

Аналогичная теорема для невозрастающей функции.

Пусть функция не возрастает на интервале , где . Тогда существуют односторонние пределы:
;
.

Доказательство теоремы изложено на странице
«Пределы монотонных функций ».

Использованная литература:
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

Основные теоремы о пределах .

Теорема (о предельном переходе в равенствах). Если в некоторой окрестности точки значения функций f(x) и g(x) совпадают, то их пределы в этой точке равны:

f(x)=g(x) => .

Теорема (о предельном переходе в неравенствах) . Если в некоторой окрестности точки выполняется неравенство f(x)≤ g(x), то верно и неравенство: .

Теорема . Предел постоянной равен самой постоянной: .

Док-во. Проводится на основании определения, где в качестве можно взять любое положительное число. Тогда при .▲

Теорема (о единственности предела). Функция не может иметь более одного предела в данной точке.

Док-во. Предположим противное. Пусть и , . Тогда по теореме о связи предела и БМ:

- БМ при ,

- БМ при . Вычитая эти равенства, получим:

На основании свойства 1 БМФ это есть БМ. Переходя в этом равенстве к пределу, получим:

,

Получено противоречие, доказывающее теорему.▲

Необходимые условия существования конечного предела функции.

Теорема (о локальной ограниченности) . Для существования конечного предела функции в точке необходимо, чтобы в некоторой окрестности этой точки (за исключением самой точки) функция была ограничена.

Теорема (о локальном повторении функцией свойств предела). Для существования в точке конечного предела необходимо, чтобы в некоторой окрестности этой точки (за исключением самой точки) .

Достаточные условия существования конечного предела функции.

Теорема (об арифметике) . Если для и существуют конечные пределы, то для их суммы и произведения также существуют конечные пределы, причем:

Если , то существует конечный предел частного:

Док-во. Докажем, например, второе равенство.

Пусть существуют конечные пределы и . Докажем, что существует конечный предел .

Итак, мы должны доказать, что:

Возьмем произвольное . Найдем из условия , т.е. для этого : .

Найдем из условия , т.е. для этого :

Т.к. для по условию существует конечный предел в т. , то эта функция будет ограниченной в некоторой окрестности т. (по теореме о локальной ограниченности), т.е. - некоторой константы.

Положим . Проверим, что это - искомое. Действительно,

Теорема (о промежуточной функции) . Пусть для функций и существуют конечные пределы в т., равные друг другу, и в некоторой окрестности т. , за исключением самой этой точки, выполняется условие:

. Тогда для тоже существует конечный предел в т. , равный значению пределов функций и .

Теорема (о пределе монотонной ограниченной функции) . Если функция монотонно возрастает (убывает) в некоторой окрестности т. и ограничена сверху (снизу), то она имеет в этой точке соответствующий односторонний предел.

Вычисление пределов функций .

Теорема об арифметике позволяет не только устанавливать факт существования конечного предела, но и вычислять его.

Пример. .

Однако, в ряде случаев теорема об арифметике не может быть применена.

, . Теорему применять нельзя, хотя

В этих случаях говорят, что имеет место неопределенность. Для вычисления предела необходимо преобразовать функцию тождественным образом так, чтобы теорема об арифметике стала применима (т.е. раскрыть неопределенность).

К неопределенностям относят следующие ситуации:

Замечательные пределы .

Теорема 1 (первый замечательный предел) . Предел отношения синуса бесконечно малой дуги к самой дуге, выраженной в радианах, равен единице:

Док-во. Рассмотрим круг радиуса R с центром в точке О. Пусть сначала . Из рисунка видно, что.

;

;

Таким образом,

Разделив обе части этого выражения на

>0, получим:

или .

Переходя в этом неравенстве к пределу при , получим: .

По теореме о промежуточной функции .

При полученные выводы также будут справедливы (доказать самостоятельно).▲

Следствия. ; ; .

Теорема 2 (второй замечательный предел) . Числовая последовательность имеет конечный предел, равный числу е:

, ()

Следствия. ; .

К числу е приводят многие задачи из области физики, биологии, ядерной физики, демографии и т.п. Рассмотрим применение второго замечательного предела в экономических расчетах.

Задача о непрерывном начислении процентов .

1. Простые проценты . В банк под проценты положена денежная сумма . Ежегодная процентная ставка составляет р %. Каков будет размер вклада Q через t лет?

При использовании простых процентов размер вклада ежегодно увеличивается на одну и ту же величину.

Через год сумма составит ,

Через два года: ;

Через t лет:

- формула простых процентов.

2. Сложные проценты . При использовании сложных процентов начисляются «проценты на проценты», т.е. размер вклада увеличивается ежегодно в одно и то же число раз:

- формула сложных процентов.

В практических финансово-кредитных операциях непрерывное начисление процентов не применяется, но используется в демографических, инвестиционных и др. расчетах.

Пусть f(x) и j (x) – функции, для которых существуют пределы при х ® х 0 (¥):

,

Тогда имеют место следующие теоремы о пределах:

1. Функция не может иметь более одного предела.

2. Предел алгебраической суммы конечного числа функций равен такой же сумме пределов этих функций:

3. Предел произведения конечного числа функций равен произведению пределов этих функций:

В частности, постоянный множитель можно выносить за знак предела:

4. Предел частного двух функций равен частному пределов этих функций (при условии, что предел делителя не равен нулю):

(B ¹ 0)

Пример. Вычислить предел .

◄ Пределы числителя и знаменателя существуют и предел знаменателя не равен нулю. Пользуясь теоремой о пределе частного, получаем:

Пример. Вычислить .

◄ Теорему о переделе частного здесь применять нельзя, т.к. числитель и знаменатель конечного предела не имеют. Имеем неопределенность . В подобных случаях для раскрытия неопределенности целесообразно числитель и знаменатель разделить на степень х с наивысшим показателем, а затем перейти к пределу:

.

Замечательные пределы

Первый замечательный предел :

Второй замечательный предел :

,

где –число Эйлера, которое является основанием для натуральных логарифмов. Последний предел можно записать в других формах:

,

.

Пример. Вычислить .

◄ Для раскрытия подобных неопределенностей используется первый замечательный предел:

Непрерывность функции.

Функция f (x ) называется непрерывной в точке х 0 , если она удовлетворяет следующим условиям:

1) она определена в точке ,т.е. существует f(х 0);

2) она имеет конечный предел функции при х ® х 0 ;

3) этот предел равен значению функции в точке х 0 ,

т.е.

Например, в точке х = 0 функция не является непрерывной (нарушено 1-е условие).

Функция, заданная выражением:

в точке х = 0 не является непрерывной из-за отсутствия предела при х ® 0, хотя существуют пределы слева и справа (см. рис.).

Точка называется точкой разрыва функции , если эта функция в данной точке не является непрерывной. Существует две разновидности точек разрыва.

Точка разрыва 1-го рода : существуют конечные односторонние пределы функции слева и справа при х ® х 0 , не равные друг другу.

х = 0 для рассмотренной выше функции .

Точка разрыва 2-го рода : хотя бы один из односторонних пределов равен бесконечности или не существует.

В качестве примера можно указать точку х = 0 для функции .

Свойства функций непрерывных в точке:

1. Если функции и непрерывны в точке , то их сумма , произведение и частные () являются функциями, непрерывными в точке .

2. Если функция y = f (x ) непрерывна в точке х 0 и f(x 0) > 0, то существует такая окрестность точки x 0 , в которой и f(x) > 0.

3. Если функция y = f (u ) непрерывна в точке u 0 и f(x 0) > 0, а функция непрерывна в точке х 0 , то сложная функция y = f [j (х )] непрерывна в точке х 0 .

Функция y = f (x ) называется непрерывной на промежутке Х, если она непрерывна в каждой точке этого промежутка.

Свойства функций непрерывных на отрезке:

1. Если функция y = f (x ) непрерывна на отрезке [a, b ], то она ограничена на этом отрезке.

2. Если функция y = f (x ) непрерывна на отрезке [a, b ], она достигает на этом отрезке наименьшего значения m и наибольшего значения M.

3. Если функция y = f (x ) непрерывна на отрезке [a, b ] и ее значения на концах отрезка f(a) и f(b) имеют противоположные знаки, то внутри отрезка найдется точка x Î (a, b ) такая, что f (x)=0.

Лекция 2.7.2 «Производная. Дифференциал»

Учебные вопросы:

1. Производная

2. Дифференциал

Производная

Производной от функции называется предел отношения приращения функции к приращению независимой переменной при стремлении последнего к нулю (если этот предел существует):

.

Другие обозначения производной: .

Дифференцирование функции – это нахождение производной этой функции. Если функция имеет в точке x производную (конечную), то она называется дифференцируемой в этой точке.

Геометрический смысл производной: производная равна тангенсу угла между осью Ox и касательной, проведенной к графику функции в точке (см. рис.).

Механический смысл: производная пути по времени есть скорость точки в момент т.е. .

Производительность труда в момент есть производная объема произведенной продукции по времени .

Теорема. Если функция дифференцируема в точке , то она в этой точке непрерывна.

Обратная теорема, вообще говоря, не верна, т.е. непрерывная функция может быть не дифференцируемой в точке , например, функция в точке .

Правила дифференцирования

1. Производная константы равна нулю, т.е. , где С - const.

2. Производная аргумента равна 1, т.е. .

3. Производная алгебраической суммы конечного числа дифференцируемых функций равна такой же сумме производных этих функций, т.е.