Намагничивание вещества. Постоянные магниты могут быть изготовлены лишь из сравнительно немногих веществ, но все вещества, помещенные в магнитное поле, намагничеваются т. е. сами становятся источниками магнитного поля. В результате этого вектор магнитной индукции при наличии вещества отличается от вектора магнитной индукции в вакууме.

Гипотеза Ампера. Причина, вследствие которой тела обладают магнитными свойствами, была установлена французским ученым Ампером . Сначала, под непосредственным впечатлением от наблюдения за поворачивающейся вблизи проводника с током магнитной стрелкой в опытах Эрстеда Лмиер предположил, что магнетизм Земли вызван токами, проходящими внутри земного шара. Главный шаг был сделан: магнитные свойства тела можно объяснить циркулирующими внутри него токами. Далее Ампер пришел к общему заключению: магнитные свойства любого тела определяются замкнутыми электрическими токами внутри него. Этот решающий шаг от возможности объяснения магнитных свойств тела токами к категорическому утверждению, что магнитные взаимодействия - это взаимодействия токов, - свидетельство большой научной смелости Ампера.

Согласно гипотезе Ампера внутри молекул и атомов циркулируют элементарные электрические токи. (Теперь мы хорошо знаем, что эти токи образуются вследствие движения электронов в атомах.) Если плоскости, в которых циркулируют эти токи, расположены беспорядочно по отношению друг к другу из-за теплового движения молекул (рис. 1.28, а), то их действия взаимно компенсируются, и никаких магнитных свойств тело не обнаруживает. В намагниченном состоянии элементарные токи в теле ориентированы так, что их действия складываются (рис. 1.28, б).

Гипотеза Ампера объясняет, почему магнитная стрелка и рамка (контур) с током в магнитном поле ведут себя одинаково (см. § 2). Стрелку можно рассматривать как совокупность маленьких контуров с током, ориентированных одинаково.

Наиболее сильные магнитные поля создают вещества, называемые ферромагнетиками. Магнитные поля создаются ферромагнетиками не только вследствие обращения электронов вокруг ядер, но и вследствие их собственного вращения.

Собственный вращательный момент (момент импульса) электрона называется спином. Электроны всегда как бы вращаются вокруг своей оси и, обладая зарядом, создают магнитное поле наряду с полем, появляющимся за счет их орбитального движения вокруг ядер. В ферромагнетиках существуют области с параллельными ориентациями спинов, называемые доменами; размеры доменов порядка 0,5 мкм. Параллельная ориентация спинов обеспечивает минимум потенциальной энергии. Если ферромагнетик не намагничен, то ориентация доменов хаотична, и суммарное магнитное поле, создаваемое доменами, равно нулю. При включении внешнего магнитного поля домены ориентируются вдоль линий магнитной индукции этого поля, и индукция магнитного поля в ферромагнетиках увеличивается, становясь в тысячи и даже миллионы раз больше индукции внешнего поля.

Температура Кюри. При температурах, больших некоторой определенной для данного ферромагнетика, его ферромагнитные свойства исчезают. Эту температуру называют температурой Кюри по имени открывшего данное явление французского ученого. Если достаточно сильно нагреть намагниченный гвоздь, то он потеряет способность притягивать к себе железные предметы. Температура Кюри для железа 753 °С, для никеля 365 °С, а для кобальта 1000 °С. Существуют ферромагнитные сплавы, у которых температура Кюри меньше 100 °С.

Первые детальные исследования магнитных свойств ферромагнетиков были выполнены выдающимся русским физиком А. Г. Столетовым (1839-1896).

Ферромагнетики и их применение. Хотя ферромагнитных тел в природе не так уж много, именно их магнитные свойства получили наибольшее практическое применение. Железный или стальной сердечник в катушке во много раз усиливает создаваемое ею магнитное поле, не увеличивая силу тока в катушке. Это экономит электроэнергию. Сердечники трансформаторов, генераторов, электродвигателей и т. д. изготовляют из ферромагнетиков.

При выключении внешнего магнитного поля ферромагнетик остается намагниченным, т. е. создает магнитное поле в окружающем пространстве. Это объясняется тем, что домены не возвращаются в прежнее положение и их ориентация частично сохраняется. Благодаря этому существуют постоянные магниты.

Постоянные магниты находят широкое применение в электроизмерительных приборах, громкоговорителях и телефонах, звукозаписывающих аппаратах, магнитных компасах и т. д.

Большое применение получили ферриты ферромагнитные материалы, не проводящие электрического тока. Они представляют собой химические соединения оксидов железа с оксидами других веществ. Один из известных ферромагнитных материалов - магнитный железняк - является ферритом.

Магнитная запись информации. Из ферромагнегикои изготовляют магнитные ленты и тонкие магнитные пленки. Магнитные ленты широко используют для звукозаписи в магнитофонах и для видеозаписи в видеомагнитофонах.

Магнитная лента представляет собой гибкую основу из полихлорвинила или других веществ. На нее наносится рабочий слой в виде магнитного лака, состоящего из очень мелких игольчатых частиц железа или другого ферромагнетика и связующих веществ.

Запись звука производят на ленту с помощью электромагнита, магнитное поле которого изменяется в такт со звуковыми колебаниями. При движении ленты вблизи магнитной головки различные участки пленки намагничиваются. Схема магнитной индукционной головки показана на рисунке 1.29, а, где 1 - сердечник электромагнита; 2 - магнитная лента; 3 - рабочий зазор; 4 - обмотка электромагнита.

При воспроизведении звука наблюдается обратный процесс: намагниченная лента возбуждает в магнитной головке электрические сигналы, которые после усиления поступают на динамик магнитофона.

Тонкие магнитные пленки состоят из слоя ферромагнитного материала толщиной от 0,03 до 10 мкм.


Их применяют в запоминающих устройствах электронно-вычислительных машин (ЭВМ). Магнитные пленки предназначены для записи, хранения и воспроизведения информации . Их наносят на тонкий алюминиевый диск или барабан. Информацию записывают и воспроизводят примерно так же, как и в обычном магнитофоне. Запись информации в ЭВМ можно производить и на магнитные ленты.

Развитие технологии магнитной записи привело к появлению магнитных микроголовок, которые используются в ЭВМ, позволяющих создавать немыслимую ранее плотность магнитной записи. На ферромагнитном жестком диске диаметром меньше 8 см хранится до нескольких терабайт (10 12 байт) информации. Считывание и запись информации на таком диске осуществляется с помощью микроголовки, расположенной на поворотном рычаге (рис. 1.29, б). Сам диск вращается с огромной скоростью, и головка плавает над ним в потоке воздуха, что предотвращает возможность механического повреждения диска.

Все вещества, помещенные в магнитное поле, создают собственное поле. Наиболее сильные поля создают ферромагнетики. Из них делают постоянные магниты, так как поле ферромагнетика не исчезает после выключения намагничивающего поля. Ферромагнетики широко применяются на практике.


1. Какие вещества называют ферромагнетиками!
2. Для каких целей применяют ферромагнитные материалы!
3. Как осуществляется запись информации в ЭВМ!

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

МАГНИТЫ И МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА
Простейшие проявления магнетизма известны очень давно и знакомы большинству из нас. Однако объяснить эти, казалось бы, простые явления на основе фундаментальных принципов физики удалось лишь сравнительно недавно. Существуют магниты двух разных видов. Одни - так называемые постоянные магниты, изготовляемые из "магнитно-твердых" материалов. Их магнитные свойства не связаны с использованием внешних источников или токов. К другому виду относятся так называемые электромагниты с сердечником из "магнитно-мягкого" железа. Создаваемые ими магнитные поля обусловлены в основном тем, что по проводу обмотки, охватывающей сердечник, проходит электрический ток.
Магнитные полюса и магнитное поле. Магнитные свойства стержневого магнита наиболее заметны вблизи его концов. Если такой магнит подвесить за среднюю часть так, чтобы он мог свободно поворачиваться в горизонтальной плоскости, то он займет положение, примерно соответствующее направлению с севера на юг. Конец стержня, указывающий на север, называют северным полюсом, а противоположный конец - южным полюсом. Разноименные полюса двух магнитов притягиваются друг к другу, а одноименные взаимно отталкиваются. Если к одному из полюсов магнита приблизить брусок ненамагниченного железа, то последний временно намагнитится. При этом ближний к полюсу магнита полюс намагниченного бруска будет противоположным по наименованию, а дальний - одноименным. Притяжением между полюсом магнита и индуцированным им в бруске противоположным полюсом и объясняется действие магнита. Некоторые материалы (например, сталь) сами становятся слабыми постоянными магнитами после того, как побывают около постоянного магнита или электромагнита. Стальной стержень можно намагнитить, просто проведя по его торцу концом стержневого постоянного магнита. Итак, магнит притягивает другие магниты и предметы из магнитных материалов, не находясь в соприкосновении с ними. Такое действие на расстоянии объясняется существованием в пространстве вокруг магнита магнитного поля. Некоторое представление об интенсивности и направлении этого магнитного поля можно получить, насыпав на лист картона или стекла, положенный на магнит, железные опилки. Опилки выстроятся цепочками в направлении поля, а густота линий из опилок будет соответствовать интенсивности этого поля. (Гуще всего они у концов магнита, где интенсивность магнитного поля наибольшая.) М. Фарадей (1791-1867) ввел для магнитов понятие замкнутых линий индукции. Линии индукции выходят в окружающее пространство из магнита у его северного полюса, входят в магнит у южного полюса и проходят внутри материала магнита от южного полюса обратно к северному, образуя замкнутую петлю. Полное число линий индукции, выходящих из магнита, называется магнитным потоком. Плотность магнитного потока, или магнитная индукция (В), равна числу линий индукции, проходящих по нормали через элементарную площадку единичной величины. Магнитной индукцией определяется сила, с которой магнитное поле действует на находящийся в нем проводник с током. Если проводник, по которому проходит ток I, расположен перпендикулярно линиям индукции, то по закону Ампера сила F, действующая на проводник, перпендикулярна и полю, и проводнику и пропорциональна магнитной индукции, силе тока и длине проводника. Таким образом, для магнитной индукции B можно написать выражение

Где F - сила в ньютонах, I - ток в амперах, l - длина в метрах. Единицей измерения магнитной индукции является тесла (Тл)
(см. также ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ).
Гальванометр. Гальванометр - чувствительный прибор для измерения слабых токов. В гальванометре используется вращающий момент, возникающий при взаимодействии подковообразного постоянного магнита с небольшой токонесущей катушкой (слабым электромагнитом), подвешенной в зазоре между полюсами магнита. Вращающий момент, а следовательно, и отклонение катушки пропорциональны току и полной магнитной индукции в воздушном зазоре, так что шкала прибора при небольших отклонениях катушки почти линейна. Намагничивающая сила и напряженность магнитного поля. Далее следует ввести еще одну величину, характеризующую магнитное действие электрического тока. Предположим, что ток проходит по проводу длинной катушки, внутри которой расположен намагничиваемый материал. Намагничивающей силой называется произведение электрического тока в катушке на число ее витков (эта сила измеряется в амперах, так как число витков - величина безразмерная). Напряженность магнитного поля Н равна намагничивающей силе, приходящейся на единицу длины катушки. Таким образом, величина Н измеряется в амперах на метр; ею определяется намагниченность, приобретаемая материалом внутри катушки. В вакууме магнитная индукция B пропорциональна напряженности магнитного поля Н:

Где m0 - т.н. магнитная постоянная, имеющая универсальное значение 4pЧ10-7 Гн/м. Во многих материалах величина B приблизительно пропорциональна Н. Однако в ферромагнитных материалах соотношение между B и Н несколько сложнее (о чем будет сказано ниже). На рис. 1 изображен простой электромагнит, предназначенный для захвата грузов. Источником энергии служит аккумуляторная батарея постоянного тока. На рисунке показаны также силовые линии поля электромагнита, которые можно выявить обычным методом железных опилок.



Крупные электромагниты с железными сердечниками и очень большим числом ампер-витков, работающие в непрерывном режиме, обладают большой намагничивающей силой. Они создают магнитную индукцию до 6 Тл в промежутке между полюсами; эта индукция ограничивается лишь механическими напряжениями, нагреванием катушек и магнитным насыщением сердечника. Ряд гигантских электромагнитов (без сердечника) с водяным охлаждением, а также установок для создания импульсных магнитных полей был сконструирован П.Л.Капицей (1894-1984) в Кембридже и в Институте физических проблем АН СССР и Ф.Биттером (1902-1967) в Массачусетском технологическом институте. На таких магнитах удавалось достичь индукции до 50 Тл. Сравнительно небольшой электромагнит, создающий поля до 6,2 Тл, потребляющий электрическую мощность 15 кВт и охлаждаемый жидким водородом, был разработан в Лосаламосской национальной лаборатории. Подобные поля получают при криогенных температурах.
Магнитная проницаемость и ее роль в магнетизме. Магнитная проницаемость m - это величина, характеризующая магнитные свойства материала. Ферромагнитные металлы Fe, Ni, Co и их сплавы обладают очень высокими максимальными проницаемостями - от 5000 (для Fe) до 800 000 (для супермаллоя). В таких материалах при сравнительно малых напряженностях поля H возникают большие индукции B, но связь между этими величинами, вообще говоря, нелинейна из-за явлений насыщения и гистерезиса, о которых говорится ниже. Ферромагнитные материалы сильно притягиваются магнитами. Они теряют свои магнитные свойства при температурах выше точки Кюри (770° С для Fe, 358° С для Ni, 1120° С для Co) и ведут себя как парамагнетики, для которых индукция B вплоть до очень высоких значений напряженности H пропорциональна ей - в точности так же, как это имеет место в вакууме. Многие элементы и соединения являются парамагнитными при всех температурах. Парамагнитные вещества характеризуются тем, что намагничиваются во внешнем магнитном поле; если же это поле выключить, парамагнетики возвращаются в ненамагниченное состояние. Намагниченность в ферромагнетиках сохраняется и после выключения внешнего поля. На рис. 2 представлена типичная петля гистерезиса для магнитно-твердого (с большими потерями) ферромагнитного материала. Она характеризует неоднозначную зависимость намагниченности магнитоупорядоченного материала от напряженности намагничивающего поля. С увеличением напряженности магнитного поля от исходной (нулевой) точки (1) намагничивание идет по штриховой линии 1-2, причем величина m существенно изменяется по мере того, как возрастает намагниченность образца. В точке 2 достигается насыщение, т.е. при дальнейшем увеличении напряженности намагниченность больше не увеличивается. Если теперь постепенно уменьшать величину H до нуля, то кривая B(H) уже не следует по прежнему пути, а проходит через точку 3, обнаруживая как бы "память" материала о "прошлой истории", откуда и название "гистерезис". Очевидно, что при этом сохраняется некоторая остаточная намагниченность (отрезок 1-3). После изменения направления намагничивающего поля на обратное кривая В (Н) проходит точку 4, причем отрезок (1)-(4) соответствует коэрцитивной силе, препятствующей размагничиванию. Дальнейший рост значений (-H) приводит кривую гистерезиса в третий квадрант - участок 4-5. Следующее за этим уменьшение величины (-H) до нуля и затем возрастание положительных значений H приведет к замыканию петли гистерезиса через точки 6, 7 и 2.



Магнитно-твердые материалы характеризуются широкой петлей гистерезиса, охватывающей значительную площадь на диаграмме и потому соответствующей большим значениям остаточной намагниченности (магнитной индукции) и коэрцитивной силы. Узкая петля гистерезиса (рис. 3) характерна для магнитно-мягких материалов - таких, как мягкая сталь и специальные сплавы с большой магнитной проницаемостью. Такие сплавы и были созданы с целью снижения обусловленных гистерезисом энергетических потерь. Большинство подобных специальных сплавов, как и ферриты, обладают высоким электрическим сопротивлением, благодаря чему уменьшаются не только магнитные потери, но и электрические, обусловленные вихревыми токами.



Магнитные материалы с высокой проницаемостью изготовляются путем отжига, осуществляемого выдерживанием при температуре около 1000° С, с последующим отпуском (постепенным охлаждением) до комнатной температуры. При этом очень существенны предварительная механическая и термическая обработка, а также отсутствие в образце примесей. Для сердечников трансформаторов в начале 20 в. были разработаны кремнистые стали, величина m которых возрастала с увеличением содержания кремния. Между 1915 и 1920 появились пермаллои (сплавы Ni с Fe) с характерной для них узкой и почти прямоугольной петлей гистерезиса. Особенно высокими значениями магнитной проницаемости m при малых значениях H отличаются сплавы гиперник (50% Ni, 50% Fe) и му-металл (75% Ni, 18% Fe, 5% Cu, 2% Cr), тогда как в перминваре (45% Ni, 30% Fe, 25% Co) величина m практически постоянна в широких пределах изменения напряженности поля. Среди современных магнитных материалов следует упомянуть супермаллой - сплав с наивысшей магнитной проницаемостью (в его состав входит 79% Ni, 15% Fe и 5% Mo).
Теории магнетизма. Впервые догадка о том, что магнитные явления в конечном счете сводятся к электрическим, возникла у Ампера в 1825, когда он высказал идею замкнутых внутренних микротоков, циркулирующих в каждом атоме магнита. Однако без какого-либо опытного подтверждения наличия в веществе таких токов (электрон был открыт Дж.Томсоном лишь в 1897, а описание структуры атома было дано Резерфордом и Бором в 1913) эта теория "увяла". В 1852 В.Вебер высказал предположение, что каждый атом магнитного вещества представляет собой крошечный магнит, или магнитный диполь, так что полная намагниченность вещества достигается, когда все отдельные атомные магниты оказываются выстроенными в определенном порядке (рис. 4,б). Вебер полагал, что сохранять свое упорядочение вопреки возмущающему влиянию тепловых колебаний этим элементарным магнитам помогает молекулярное или атомное "трение". Его теория смогла объяснить намагничивание тел при соприкосновении с магнитом, а также их размагничивание при ударе или нагреве; наконец, объяснялось и "размножение" магнитов при разрезании намагниченной иглы или магнитного стержня на части. И все же эта теория не объясняла ни происхождения самих элементарных магнитов, ни явлений насыщения и гистерезиса. Теория Вебера была усовершенствована в 1890 Дж.Эвингом, заменившим его гипотезу атомного трения идеей межатомных ограничивающих сил, помогающих поддерживать упорядочение элементарных диполей, которые составляют постоянный магнит.



Подход к проблеме, предложенный когда-то Ампером, получил вторую жизнь в 1905, когда П.Ланжевен объяснил поведение парамагнитных материалов, приписав каждому атому внутренний нескомпенсированный электронный ток. Согласно Ланжевену, именно эти токи образуют крошечные магниты, хаотически ориентированные, когда внешнее поле отсутствует, но приобретающие упорядоченную ориентацию после его приложения. При этом приближение к полной упорядоченности соответствует насыщению намагниченности. Кроме того, Ланжевен ввел понятие магнитного момента, равного для отдельного атомного магнита произведению "магнитного заряда" полюса на расстояние между полюсами. Таким образом, слабый магнетизм парамагнитных материалов обусловлен суммарным магнитным моментом, создаваемым нескомпенсированными электронными токами. В 1907 П. Вейс ввел понятие "домена", ставшее важным вкладом в современную теорию магнетизма. Вейс представлял домены в виде небольших "колоний" атомов, в пределах которых магнитные моменты всех атомов в силу каких-то причин вынуждены сохранять одинаковую ориентацию, так что каждый домен намагничен до насыщения. Отдельный домен может иметь линейные размеры порядка 0,01 мм и соответственно объем порядка 10-6 мм3. Домены разделены так называемыми блоховскими стенками, толщина которых не превышает 1000 атомных размеров. "Стенка" и два противоположно ориентированных домена схематически изображены на рис. 5. Такие стенки представляют собой "переходные слои", в которых происходит изменение направления намагниченности доменов.



В общем случае на кривой первоначального намагничивания можно выделить три участка (рис. 6). На начальном участке стенка под действием внешнего поля движется сквозь толщу вещества, пока не встретит дефект кристаллической решетки, который ее останавливает. Увеличив напряженность поля, можно заставить стенку двигаться дальше, через средний участок между штриховыми линиями. Если после этого напряженность поля вновь уменьшить до нуля, то стенки уже не вернутся в исходное положение, так что образец останется частично намагниченным. Этим объясняется гистерезис магнита. На конечном участке кривой процесс завершается насыщением намагниченности образца за счет упорядочения намагниченности внутри последних неупорядоченных доменов. Такой процесс почти полностью обратим. Магнитную твердость проявляют те материалы, у которых атомная решетка содержит много дефектов, препятствующих движению междоменных стенок. Этого можно достичь механической и термической обработкой, например путем сжатия и последующего спекания порошкообразного материала. В сплавах алнико и их аналогах тот же результат достигается путем сплавления металлов в сложную структуру.



Кроме парамагнитных и ферромагнитных материалов, существуют материалы с так называемыми антиферромагнитными и ферримагнитными свойствами. Различие между этими видами магнетизма поясняется на рис. 7. Исходя из представления о доменах, парамагнетизм можно рассматривать как явление, обусловленное наличием в материале небольших групп магнитных диполей, в которых отдельные диполи очень слабо взаимодействуют друг с другом (или вообще не взаимодействуют) и потому в отсутствие внешнего поля принимают лишь случайные ориентации (рис. 7,а). В ферромагнитных же материалах в пределах каждого домена существует сильное взаимодействие между отдельными диполями, приводящее к их упорядоченному параллельному выстраиванию (рис. 7,б). В антиферромагнитных материалах, напротив, взаимодействие между отдельными диполями приводит к их антипараллельному упорядоченному выстраиванию, так что полный магнитный момент каждого домена равен нулю (рис. 7,в). Наконец, в ферримагнитных материалах (например, ферритах) имеется как параллельное, так и антипараллельное упорядочение (рис. 7,г), итогом чего оказывается слабый магнетизм.



Имеются два убедительных экспериментальных подтверждения существования доменов. Первое из них - так называемый эффект Баркгаузена, второе - метод порошковых фигур. В 1919 Г.Баркгаузен установил, что при наложении внешнего поля на образец из ферромагнитного материала его намагниченность изменяется небольшими дискретными порциями. С точки зрения доменной теории это не что иное, как скачкообразное продвижение междоменной стенки, встречающей на своем пути отдельные задерживающие ее дефекты. Данный эффект обычно обнаруживается с помощью катушки, в которую помещается ферромагнитный стерженек или проволока. Если поочередно подносить к образцу и удалять от него сильный магнит, образец будет намагничиваться и перемагничиваться. Скачкообразные изменения намагниченности образца изменяют магнитный поток через катушку, и в ней возбуждается индукционный ток. Напряжение, возникающее при этом в катушке, усиливается и подается на вход пары акустических наушников. Щелчки, воспринимаемые через наушники, свидетельствует о скачкообразном изменении намагниченности. Для выявления доменной структуры магнита методом порошковых фигур на хорошо отполированную поверхность намагниченного материала наносят каплю коллоидной суспензии ферромагнитного порошка (обычно Fe3O4). Частицы порошка оседают в основном в местах максимальной неоднородности магнитного поля - на границах доменов. Такую структуру можно изучать под микроскопом. Был предложен также метод, основанный на прохождении поляризованного света сквозь прозрачный ферромагнитный материал. Первоначальная теория магнетизма Вейса в своих основных чертах сохранила свое значение до настоящего времени, получив, однако, обновленную интерпретацию на основе представления о нескомпенсированных электронных спинах как факторе, определяющем атомный магнетизм. Гипотеза о существовании собственного момента у электрона была выдвинута в 1926 С.Гаудсмитом и Дж.Уленбеком, и в настоящее время в качестве "элементарных магнитов" рассматриваются именно электроны как носители спина. Для пояснения этой концепции рассмотрим (рис. 8) свободный атом железа - типичного ферромагнитного материала. Две его оболочки (K и L), ближайшие к ядру, заполнены электронами, причем на первой из них размещены два, а на второй - восемь электронов. В K-оболочке спин одного из электронов положителен, а другого - отрицателен. В L-оболочке (точнее, в двух ее подоболочках) у четырех из восьми электронов положительные, а у других четырех - отрицательные спины. В обоих случаях спины электронов в пределах одной оболочки полностью компенсируются, так что полный магнитный момент равен нулю. В M-оболочке ситуация иная, поскольку из шести электронов, находящихся в третьей подоболочке, пять электронов имеют спины, направленные в одну сторону, и лишь шестой - в другую. В результате остаются четыре нескомпенсированных спина, чем и обусловлены магнитные свойства атома железа. (Во внешней N-оболочке всего два валентных электрона, которые не дают вклада в магнетизм атома железа.) Сходным образом объясняется магнетизм и других ферромагнетиков, например никеля и кобальта. Поскольку соседние атомы в образце железа сильно взаимодействуют друг с другом, причем их электроны частично коллективизируются, такое объяснение следует рассматривать лишь как наглядную, но весьма упрощенную схему реальной ситуации.



Теорию атомного магнетизма, основанную на учете спина электрона, подкрепляют два интересных гиромагнитных эксперимента, один из которых был проведен А. Эйнштейном и В.де Гаазом, а другой - С.Барнеттом. В первом из этих экспериментов цилиндрик из ферромагнитного материала подвешивался так, как показано на рис. 9. Если по проводу обмотки пропустить ток, то цилиндрик поворачивается вокруг своей оси. При изменении направления тока (а следовательно, и магнитного поля) он поворачивается в обратном направлении. В обоих случаях вращение цилиндрика обусловлено упорядочением электронных спинов. В эксперименте Барнетта, наоборот, так же подвешенный цилиндрик, резко приведенный в состояние вращения, в отсутствие магнитного поля намагничивается. Этот эффект объясняется тем, что при вращении магнетика создается гироскопический момент, стремящийся повернуть спиновые моменты по направлению собственной оси вращения.



За более полным объяснением природы и происхождения короткодействующих сил, упорядочивающих соседние атомные магнитики и противодействующих разупорядочивающему влиянию теплового движения, следует обратиться к квантовой механике. Квантово-механическое объяснение природы этих сил было предложено в 1928 В.Гейзенбергом, который постулировал существование обменных взаимодействий между соседними атомами. Позднее Г.Бете и Дж.Слэтер показали, что обменные силы существенно возрастают с уменьшением расстояния между атомами, но по достижении некоторого минимального межатомного расстояния падают до нуля.
МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА
Одно из первых обширных и систематических исследований магнитных свойств вещества было предпринято П.Кюри. Он установил, что по своим магнитным свойствам все вещества можно разделить на три класса. К первому относятся вещества с резко выраженными магнитными свойствами, подобными свойствам железа. Такие вещества называются ферромагнитными; их магнитное поле заметно на значительных расстояниях (см. выше). Во второй класс попадают вещества, называемые парамагнитными; магнитные свойства их в общем аналогичны свойствам ферромагнитных материалов, но гораздо слабее. Например, сила притяжения к полюсам мощного электромагнита может вырвать из ваших рук железный молоток, а чтобы обнаружить притяжение парамагнитного вещества к тому же магниту, нужны, как правило, очень чувствительные аналитические весы. К последнему, третьему классу относятся так называемые диамагнитные вещества. Они отталкиваются электромагнитом, т.е. сила, действующая на диамагнетики, направлена противоположно той, что действует на ферро- и парамагнетики.
Измерение магнитных свойств. При изучении магнитных свойств наиболее важное значение имеют измерения двух типов. Первый из них -измерения силы, действующей на образец вблизи магнита; так определяется намагниченность образца. Ко второму относятся измерения "резонансных" частот, связанных с намагничением вещества. Атомы представляют собой крошечные "гироскопы" и в магнитном поле прецессируют (как обычный волчок под влиянием вращающего момента, создаваемого силой тяжести) с частотой, которая может быть измерена. Кроме того, на свободные заряженные частицы, движущиеся под прямым углом к линиям магнитной индукции, действует сила, как и на электронный ток в проводнике. Она заставляет частицу двигаться по круговой орбите, радиус которой дается выражением R = mv/eB, где m - масса частицы, v - ее скорость, e - ее заряд, а B - магнитная индукция поля. Частота такого кругового движения равна


где f измеряется в герцах, e - в кулонах, m - в килограммах, B - в теслах. Эта частота характеризует движение заряженных частиц в веществе, находящемся в магнитном поле. Оба типа движений (прецессию и движение по круговым орбитам) можно возбудить переменными полями с резонансными частотами, равными "естественным" частотам, характерным для данного материала. В первом случае резонанс называется магнитным, а во втором - циклотронным (ввиду сходства с циклическим движением субатомной частицы в циклотроне). Говоря о магнитных свойствах атомов, необходимо особо остановиться на их моменте импульса. Магнитное поле действует на вращающийся атомный диполь, стремясь повернуть его и установить параллельно полю. Вместо этого атом начинает прецессировать вокруг направления поля (рис. 10) с частотой, зависящей от дипольного момента и напряженности приложенного поля.



Прецессия атомов не поддается непосредственному наблюдению, поскольку все атомы образца прецессируют в разной фазе. Если же приложить небольшое переменное поле, направленное перпендикулярно постоянному упорядочивающему полю, то между прецессирующими атомами устанавливается определенное фазовое соотношение и их суммарный магнитный момент начинает прецессировать с частотой, равной частоте прецессии отдельных магнитных моментов. Важное значение имеет угловая скорость прецессии. Как правило, это величина порядка 1010 Гц/Тл для намагниченности, связанной с электронами, и порядка 107 Гц/Тл для намагниченности, связанной с положительными зарядами в ядрах атомов. Принципиальная схема установки для наблюдения ядерного магнитного резонанса (ЯМР) представлена на рис. 11. В однородное постоянное поле между полюсами вводится изучаемое вещество. Если затем с помощью небольшой катушки, охватывающей пробирку, возбудить радиочастотное поле, то можно добиться резонанса на определенной частоте, равной частоте прецессии всех ядерных "гироскопов" образца. Измерения сходны с настройкой радиоприемника на частоту определенной станции.



Методы магнитного резонанса позволяют исследовать не только магнитные свойства конкретных атомов и ядер, но и свойства их окружения. Дело в том, что магнитные поля в твердых телах и молекулах неоднородны, поскольку искажены атомными зарядами, и детали хода экспериментальной резонансной кривой определяются локальным полем в области расположения прецессирующего ядра. Это и дает возможность изучать особенности структуры конкретного образца резонансными методами.
Расчет магнитных свойств. Магнитная индукция поля Земли составляет 0,5*10 -4 Тл, тогда как поле между полюсами сильного электромагнита - порядка 2 Тл и более. Магнитное поле, создаваемое какой-либо конфигурацией токов, можно вычислить, пользуясь формулой Био - Савара - Лапласа для магнитной индукции поля, создаваемого элементом тока. Расчет поля, создаваемого контурами разной формы и цилиндрическими катушками, во многих случаях весьма сложен. Ниже приводятся формулы для ряда простых случаев. Магнитная индукция (в теслах) поля, создаваемого длинным прямым проводом с током I (ампер), на расстоянии r (метров) от провода равна


Индукция в центре кругового витка радиуса R с током I равна (в тех же единицах):

Плотно намотанная катушка провода без железного сердечника называется соленоидом. Магнитная индукция, создаваемая длинным соленоидом c числом витков N в точке, достаточно удаленной от его концов, равна

Здесь величина NI/L есть число ампер (ампер-витков) на единицу длины соленоида. Во всех случаях магнитное поле тока направлено перпендикулярно этому току, а сила, действующая на ток в магнитном поле, перпендикулярна и току, и магнитному полю. Поле намагниченного железного стержня сходно с внешним полем длинного соленоида с числом ампер-витков на единицу длины, соответствующим току в атомах на поверхности намагниченного стержня, поскольку токи внутри стержня взаимно компенсируются (рис. 12). По имени Ампера такой поверхностный ток называется амперовским. Напряженность магнитного поля Ha, создаваемая амперовским током, равна магнитному моменту единицы объема стержня M.



Если в соленоид вставлен железный стержень, то кроме того, что ток соленоида создает магнитное поле H, упорядочение атомных диполей в намагниченном материале стержня создает намагниченность M. В этом случае полный магнитный поток определяется суммой реального и амперовского токов, так что B = m0(H + Ha), или B = m0(H + M). Отношение M/H называется магнитной восприимчивостью и обозначается греческой буквой c; c - безразмерная величина, характеризующая способность материала намагничиваться в магнитном поле.
Величина B/H, характеризующая магнитные свойства
материала, называется магнитной проницаемостью и обозначается через ma, причем ma = m0m, где ma - абсолютная, а m - относительная проницаемости, m = 1 + c. В ферромагнитных веществах величина c может иметь очень большие значения -до 10 4-10 6. Величина c у парамагнитных материалов немного больше нуля, а у диамагнитных - немного меньше. Лишь в вакууме и в очень слабых полях величины c и m постоянны и не зависят от внешнего поля. Зависимость индукции B от H обычно нелинейна, а ее графики, т.н. кривые намагничивания, для разных материалов и даже при разных температурах могут существенно различаться (примеры таких кривых приведены на рис. 2 и 3). Магнитные свойства вещества весьма сложны, и для их глубокого понимания необходим тщательный анализ строения атомов, их взаимодействий в молекулах, их столкновений в газах и их взаимного влияния в твердых телах и жидкостях; магнитные свойства жидкостей пока наименее изучены. - поля с напряжённостью Н?0,5=1,0 МЭ (граница условна). Нижнее значение С. м. п. соответствует макс. значению стационарного поля =500 кЭ, к рое может быть доступно средствам совр. техники, верхнее полю 1 МЭ, даже кратковрем. воздействие к рого… … Физическая энциклопедия

Раздел физики, изучающий структуру и свойства твердых тел. Научные данные о микроструктуре твердых веществ и о физических и химических свойствах составляющих их атомов необходимы для разработки новых материалов и технических устройств. Физика… … Энциклопедия Кольера

Раздел физики, охватывающий знания о статическом электричестве, электрических токах и магнитных явлениях. ЭЛЕКТРОСТАТИКА В электростатике рассматриваются явления, связанные с покоящимися электрическими зарядами. Наличие сил, действующих между… … Энциклопедия Кольера

- (от древнегреч. physis природа). Древние называли физикой любое исследование окружающего мира и явлений природы. Такое понимание термина физика сохранилось до конца 17 в. Позднее появился ряд специальных дисциплин: химия, исследующая свойства… … Энциклопедия Кольера

Термин момент применительно к атомам и атомным ядрам может означать следующее: 1) спиновый момент, или спин, 2) магнитный дипольный момент, 3) электрический квадрупольный момент, 4) прочие электрические и магнитные моменты. Различные типы… … Энциклопедия Кольера

Электрический аналог ферромагнетизма. Подобно тому как в ферромагнитных веществах при помещении их в магнитное поле проявляется остаточная магнитная поляризация (момент), в сегнетоэлектрических диэлектриках, помещенных в электрическое поле,… … Энциклопедия Кольера

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this. OK

МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА

Наименование параметра Значение
Тема статьи: МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА
Рубрика (тематическая категория) Механика

Магнитное поле создается не только электрическими токами, но и постоянными магнитами.

Намагничивание вещества. Постоянные магниты бывают изготовлены лишь из сравнительно немногих веществ, но всœе вещества, помещенные в магнитное поле, намагничеваются т. е. сами становятся источниками магнитного поля. В результате этого вектор магнитной индукции при наличии вещества отличается от вектора магнитной индукции в вакууме.

Гипотеза Ампера. Причина, вследствие которой тела обладают магнитными свойствами, была установлена французским ученым Ампером. Сначала, под непосредственным впечатлением от наблюдения за поворачивающейся вблизи проводника с током магнитной стрелкой в опытах Эрстеда Лмиер предположил, что магнетизм Земли вызван токами, проходящими внутри земного шара. Главный шаг был сделан: магнитные свойства тела можно объяснить циркулирующими внутри него токами. Далее Ампер пришел к общему заключению: магнитные свойства любого тела определяются замкнутыми электрическими токами внутри него. Этот решающий шаг от возможности объяснения магнитных свойств тела токами к категорическому утверждению, что магнитные взаимодействия - это взаимодействия токов, - свидетельство большой научной смелости Ампера.

Согласно гипотезе Ампера внутри молекул и атомов циркулируют элементарные электрические токи. (Теперь мы хорошо знаем, что эти токи образуются вследствие движения электронов в атомах.) В случае если плоскости, в которых циркулируют эти токи, расположены беспорядочно по отношению друг к другу из-за теплового движения молекул (рис. 1.28, а), то их действия взаимно компенсируются, и никаких магнитных свойств тело не обнаруживает. В намагниченном состоянии элементарные токи в телœе ориентированы так, что их действия складываются (рис. 1.28, б). Гипотеза Ампера объясняет, почему магнитная стрелка и рамка (контур) с током в магнитном поле ведут себя одинаково (см. § 2). Стрелку можно рассматривать как совокупность маленьких контуров с током, ориентированных одинаково. Наиболее сильные магнитные поля создают вещества, называемые ферромагнетиками. Магнитные поля создаются ферромагнетиками не только вследствие обращения электронов вокруг ядер, но и вследствие их собственного вращения.

Собственный вращательный момент (момент импульса) электрона принято называть спином. Электроны всœегда как бы вращаются вокруг своей оси и, обладая зарядом, создают магнитное поле наряду с полем, появляющимся за счёт их орбитального движения вокруг ядер.
Размещено на реф.рф
В ферромагнетиках существуют области с параллельными ориентациями спинов, называемые доменами; размеры доменов порядка 0,5 мкм. Параллельная ориентация спинов обеспечивает минимум потенциальной энергии. В случае если ферромагнетик не намагничен, то ориентация доменов хаотична, и суммарное магнитное поле, создаваемое доменами, равно нулю. При включении внешнего магнитного поля домены ориентируются вдоль линий магнитной индукции этого поля, и индукция магнитного поля в ферромагнетиках увеличивается, становясь в тысячи и даже миллионы раз больше индукции внешнего поля.

Температура Кюри. При температурах, больших некоторой определœенной для данного ферромагнетика, его ферромагнитные свойства исчезают. Эту температуру называют температурой Кюри по имени открывшего данное явление французского ученого. В случае если достаточно сильно нагреть намагниченный гвоздь, то он потеряет способность притягивать к себе желœезные предметы. Температура Кюри для желœеза 753 °С, для никеля 365 °С, а для кобальта 1000 °С. Существуют ферромагнитные сплавы, у которых температура Кюри меньше 100 °С. Первые детальные исследования магнитных свойств ферромагнетиков были выполнены выдающимся русским физиком А. Г. Столетовым (1839-1896).

Ферромагнетики и их применение. Хотя ферромагнитных тел в природе не так уж много, именно их магнитные свойства получили наибольшее практическое применение. Желœезный или стальной сердечник в катушке во много раз усиливает создаваемое ею магнитное поле, не увеличивая силу тока в катушке. Это экономит электроэнергию. Сердечники трансформаторов, генераторов, электродвигателœей и т. д. изготовляют из ферромагнетиков. При выключении внешнего магнитного поля ферромагнетик остается намагниченным, т. е. создает магнитное поле в окружающем пространстве. Это объясняется тем, что домены не возвращаются в прежнее положение и их ориентация частично сохраняется. Благодаря этому существуют постоянные магниты. Постоянные магниты находят широкое применение в электроизмерительных приборах, громкоговорителях и телœефонах, звукозаписывающих аппаратах, магнитных компасах и т. д. Большое применение получили ферриты ферромагнитные материалы, не проводящие электрического тока. Οʜᴎ представляют из себяхимические соединœения оксидов желœеза с оксидами других веществ. Один из известных ферромагнитных материалов - магнитный желœезняк - является ферритом.

Магнитная запись информации. Из ферромагнегикои изготовляют магнитные ленты и тонкие магнитные пленки. Магнитные ленты широко используют для звукозаписи в магнитофонах и для видеозаписи в видеомагнитофонах.

Магнитная лента представляет собой гибкую основу из полихлорвинила или других веществ. На нее наносится рабочий слой в виде магнитного лака, состоящего из очень мелких игольчатых частиц желœеза или другого ферромагнетика и связующих веществ. Запись звука производят на ленту с помощью электромагнита͵ магнитное поле которого изменяется в такт со звуковыми колебаниями. При движении ленты вблизи магнитной головки различные участки пленки намагничиваются. Схема магнитной индукционной головки показана на рисунке 1.29, а, где 1 - сердечник электромагнита; 2 - магнитная лента; 3 - рабочий зазор; 4 - обмотка электромагнита.

При воспроизведении звука наблюдается обратный процесс: намагниченная лента возбуждает в магнитной головке электрические сигналы, которые после усиления поступают на динамик магнитофона. Тонкие магнитные пленки состоят из слоя ферромагнитного материала толщиной от 0,03 до 10 мкм.

Их применяют в запоминающих устройствах электронно-вычислительных машин (ЭВМ). Магнитные пленки предназначены для записи, хранения и воспроизведения информации. Их наносят на тонкий алюминиевый диск или барабан. Информацию записывают и воспроизводят примерно аналогично тому, как и в обычном магнитофоне. Запись информации в ЭВМ можно производить и на магнитные ленты. Развитие технологии магнитной записи привело к появлению магнитных микроголовок, которые используются в ЭВМ, позволяющих создавать немыслимую ранее плотность магнитной записи. На ферромагнитном жестком диске диаметром меньше 8 см хранится до нескольких терабайт (10 12 байт) информации. Считывание и запись информации на таком диске осуществляется с помощью микроголовки, расположенной на поворотном рычаге (рис. 1.29, б). Сам диск вращается с огромной скоростью, и головка плавает над ним в потоке воздуха, что предотвращает возможность механического повреждения диска. Все вещества, помещенные в магнитное поле, создают собственное поле. Наиболее сильные поля создают ферромагнетики. Из них делают постоянные магниты, так как поле ферромагнетика не исчезает после выключения намагничивающего поля. Ферромагнетики широко применяются на практике.

Магнитные поля создаются либо постоянными магнитами, либо токами. В 1820 ᴦ. А. Ампер выдвинул смелую гипотезу, согласно которой магнитные свойства вещества (в том числе и постоянных магнитов) возникают за счёт молекулярных токов, циркулирующих в молекулах вещества. Дальнейшее развитие науки подтвердило эту идею Ампера. При этом теорию магнитных свойств вещества удалось построить лишь после того, как было изучено строение атома. У большинства веществ внутри атомов магнитные поля отдельных электронов, а также магнитные поля отдельных атомов и молекул полностью или почти полностью скомпенсированы. По этой причине их магнитные свойства очень слабы они называются немагнитными. При этом существует ряд веществ, к примеру желœезо, кобальт, никель и некоторые редкоземельные элементы (лантаноиды), а также некоторые сплавы, которые обладают сильными магнитными свойствами. Эти вещества назвали ферромагнетиками. (Слово ʼʼферромагнетикʼʼ образовано от латинского слова ferrum - желœезо). Ферромагнетики очень сильно влияют на магнитное поле. В случае если в катушку с током внести ферромагнитный сердечник, то магнитное поле усиливается в сотни и даже тысячи раз. Этим широко пользуются в технике: сердечники электромагнитов, релœе и многие другие устройства изготовляются из ферромагнетиков, а чаще всœего - из специальных сортов стали. Ферромагнетики подразделяются на два класса: магнитомягкие и магнитотвердые материалы. Современная теория ферромагнетизма была создана примерно 50 лет тому назад. Большой вклад в создание этой теории внесли отечественные ученые Я. И. Френкель, Л. Д. Ландау, Е. М. Лившиц. Для каждого ферромагнетика характерна определœенная температура, выше которой у него пропадают способности к сильному намагничиванию и его магнитные свойства оказываются такими же, как у немагнитных веществ. Эта температура принято называть точкой Кюри в честь Пьера Кюри, который в 1895 ᴦ. открыл это явление. Точка Кюри у желœеза равна 770 °С, у никеля 358 °С, у редкоземельного элемента гадолиния 16 °С, у сплава пермаллой около 400 °С, у сплава пермендюр около 900 °С и т. д. Ферромагнитные свойства не наблюдаются ни у жидкостей, ни у газов. Οʜᴎ характерны только для некоторых кристаллов при температурах ниже точки Кюри.

Магни́тное по́ле - силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения , магнитная составляющая электромагнитного поля . Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты). Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля. Основной силовой характеристикой магнитного поля является вектор магнитной индукции (вектор индукции магнитного поля) . С математической точки зрения - векторное поле, определяющее и конкретизирующее физическое понятие магнитного поля. Нередко вектор магнитной индукции принято называть для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина). Ещё одной фундаментальной характеристикой магнитного поля (альтернативной магнитной индукции и тесно с ней взаимосвязанной, практически равной ей по физическому значению) является векторный потенциал . Нередко в литературе в качестве основной характеристики магнитного поля в вакууме (то есть в отсутствие магнитной среды) выбирают не вектор магнитной индукции а вектор напряжённости магнитного поля , что формально можно сделать, так как в вакууме эти два вектора совпадают ; однако в магнитной среде вектор не несет уже того же физического смысла , являясь важной, но всё же вспомогательной величиной. По этой причине при формальной эквивалентности обоих подходов для вакуума, с систематической точки зрения следует считать основной характеристикой магнитного поля именно Магнитное поле можно назвать особым видом материи, посредством которого осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом. Магнитные поля являются необходимым (в контексте специальной теории относительности) следствием существования электрических полей. Вместе, магнитное и электрическое поля образуют электромагнитное поле, проявлениями которого являются, в частности, свет и всœе другие электромагнитные волны. С точки зрения квантовой теории поля магнитное взаимодействие - как частный случай электромагнитного взаимодействия переносится фундаментальным безмассовым бозоном - фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля), часто (к примеру, во всœех случаях статических полей) - виртуальным.

МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА - понятие и виды. Классификация и особенности категории "МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА" 2017, 2018.

Магнентики - вещества, обладающие магнитными свойствами. Магнетиками являются все вещества, поскольку согласно гипотезе Ампера , магнитные свойства создаются элементарными токами (движением электрона в атоме).

Электрон, вращающийся по замкнутой орбите, представляет собой ток, направление которого противоположно движению электрона. Тогда это движение создает магнитное поле, магнитный момент которого p m = IS направлен по правилу правой руки перпендикулярно плоскости орбиты.

Кроме того, независимо от орбитального движения, электроны обладают собственным магнитным моментом (спином ). Таким образом, магнетизм атомов обусловлен двумя причинами: движением электронов по орбитам и собственным магнитным моментом.

При внесении магнетика во внешнее магнитное поле с индукцией В 0 он намагничивается, то есть создает собственное магнитное поле с индукцией В", которое складывется с внешним:

В = В 0 + В"

Индукция собственного магнитного поля зависит как от внешнего поля, так и от магнитной восприимчивости χ вещества:

В" = χ В 0

Тогда В = В 0 + χ В 0 = В 0 (1 + χ)

Но магнитная индукция внутри магнетика зависит от магнитной проницаемости вещевтва:

В = μ В 0

Отсюда μ = 1 + χ.

Магнитная восприимчивость χ - физическая величина, характеризующая связь между магнитным моментом (намагниченностью) вещества и магнитным полем в этом веществе

Магнитная проницаемость μ - коэффициент (зависящий от свойств среды), характеризующий связь между магнитной индукцией и напряжённостью магнитного поля в веществе

В отличие от диэлектрической проницаемости вещества, которая всегда больше единицы, магнитная проницаемость может быть как больше, так и меньше единицы. Различают диамагнетики (μ < 1) , парамагнетики (μ > 1) и ферромагнетики (μ >> 1) .

Диамагнетики

Диамагнетиками называются вещества, которые намагничиваются во внешнем магнитном поле в направлении, противоположном направлению вектора магнитной индукции поля.

К диамагнетикам относятся вещества, магнитные моменты атомов, молекул или ионов которых в отсутствие внешнего магнитного поля равны нулю. Диамагнетиками являются инертные газы, молекулярный водород и азот, цинк, медь, золото, висмут, парафин и многие другие органические и неорганические соединения.

В случае отсутствия магнитного поля диамагнетик немагнитен, поскольку в данном случае магнитные моменты электронов взаимно компенсируются, и суммарный магнитный момент атома равен нулю.

Т.к. диамагнитный эффект обусловлен действием внешнего магнитного поля на электроны атомов вещества, то диамагнетизм свойственен всем веществам.

Следует отметить, что магнитная проницаемость у диамагнетиков µ < 1 . Вот, например, у золота µ = 0,999961, у меди µ = 0,9999897 и т.д.

В магнитном поле диамагнетики располагаются перпендикулярно силовым линиям внешнего магнитного поля.

Парамагнетики

Парамагнетики вещества, намагничивающиеся во внешнем магнитном поле по направлению поля.

У парамагнитных веществ при отсутствии внешнего магнитного поля магнитные моменты электронов не компенсируют друг друга, и атомы (молекулы) парамагнетиков всегда обладают магнитным моментом. Однако вследствие теплового движения молекул их магнитные моменты ориентированы беспорядочно, поэтому парамагнитные вещества магнитными свойствами не обладают. При внесении парамагнетиков во внешнее магнитное поле устанавливается преимущественная ориентация магнитных моментов атомов по полю (полной ориентации препятствует тепловое движение атомов).

Таким образом, парамагнетик намагничивается, создавая собственное магнитное поле, совпадающее по направлению с внешним полем и усиливающее его.

При ослаблении внешнего магнитного поля до нуля ориентация магнитных моментов вследствие теплового движения нарушается и парамагнетик размагничивается.

Вот некоторые парамагнитные вещества: а люминий µ = 1,000023; в оздух µ = 1,00000038.

Во внешнем магнитном поле парамагнетики располагаются вдоль силовых линий.

Ферромагнетики

Ферромагнетиками называются твердые вещества, обладающие при не слишком высоких температурах самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий – магнитного поля, деформации, изменения температуры.

Ферромагнетики в отличие от слабомагнитных диа- и парамагнетиков являются сильномагнитными средами:

внутреннее магнитное поле в них может в сотни и тысячи раз превосходить внешнее поле.

Ферромагнитные материалы в большой или меньшей степени обладают магнитной анизотропией, т.е. свойством намагничиваться с различной степенью трудности в различных направлениях.

Магнитные свойства ферромагнитных материалов сохраняются до тех пор, пока их температура не достигнет значения, называемого точкой Кюри . При температурах выше точки Кюри ферромагнетик ведет себя во внешнем магнитном поле как парамагнитное вещество. Он не только теряет свои ферромагнитные свойства, но у него изменяется теплоемкость, электропроводимость и некоторые другие физические характеристики.

Точка Кюри для различных материалов различна:

Природа ферромагнетизма:

Согласно представлениям Вейсса (1865-1940), его описательной теории ферромагнетизма, ферромагнетики при температурах ниже точки Кюри обладают спонтанной намагниченностью независимо от наличия внешнего намагничивающего поля. Однако это вносило некое противоречие, т.к. многие ферромагнитные материалы при температурах ниже точки Кюри не намагничены.

Для устранения этого противоречия Вейсс ввел гипотезу, согласно которой ферромагнетик ниже точки Кюри разбивается на большое число малых микроскопических (порядка 10 -3 – 10 -2 см) областей – доменов , самопроизвольно намагниченных до насыщения.

При отсутствии внешнего магнитного поля магнитные моменты отдельных атомов ориентированы хаотически и компенсируют друг друга, поэтому результирующий магнитный момент ферромагнетика равен нулю, т.е. ферромагнетик не намагничен.

Внешнее магнитное поле ориентирует по полю магнитные моменты не отдельных атомов, как в парамагнетике, а целых областей спонтанной намагниченности. Поэтому с ростом H намагниченность J и магнитная индукция B уже в слабых полях растет довольно быстро.

Различные ферромагнитные материалы обладают неодинаковой способностью проводить магнитный поток. Основной характеристикой ферромагнитного материала является петля магнитного гистерезиса В(Н) . Эта зависимость определяет значение магнитной индукции, которая будет возбуждена в магнитопроводе из данного материала при воздействии некоторой напряженности поля.

Рассмотрим процесс перемагничивания ферромагнетика. Пусть первоначально он был полностью размагничен. Сначала индукция быстро возрастает за счет того, что магнитные диполи ориентируются по силовым линиям поля, добавляя свой магнитный поток к внешнему. Затем ее рост замедляется по мере того, как количество неориентированных диполей уменьшается и, наконец, когда практически все они ориентируются по внешнему полю рост индукции прекращается и наступает режим насыщения.

Гистерезисом называют отставание изменения индукции от напряженности магнитного поля .

Симметричная петля гистерезиса, полученная при максимальной напряженности поля H m , соответствующей насыщению ферромагнетика, называется предельным циклом .

Для предельного цикла устанавливают также значения индукции B r при H = 0, которое называется остаточной индукцией , и значение H c при B = 0, называемое коэрцитивной силой . Коэрцитивная (удерживающая) сила показывает, какую напряженность внешнего поля следует приложить к веществу, чтобы уменьшить остаточную индукцию до нуля.

Форма и характерные точки предельного цикла определяют свойства ферромагнетика. Вещества с большой остаточной индукцией, коэрцитивной силой и площадью петли гистерезиса называются магнитнотвердыми .

Они используются для изготовления постоянных магнитов. Вещества с малой остаточной индукцией и площадью петли гистерезиса (кривая 2 рис.8а) называются магнитномягкими и используются для изготовления магнитопроводов электротехнических устройств, в особенности работающих при периодически изменяющемся магнитном потоке.


Площадь петли гистерезиса характеризует работу, которую необходимо совершить для перемагничивания ферромагнетика. Если по условиям работы ферромагнетик должен перемагничиваться, то его следует делать из магнито-мягкого материала, площадь петли гистерезиса которого мала. Из мягких ферромагнетиков делают сердечники трансформаторов.

Из жестких ферромагнетиков (сталь и ее сплавы) делают постоянные магниты.

При взаимодействии с магнитным полем изменяются не только магнитные свойства веществ, но и другие — механические, теп-ловые, электрические, оптические и даже химические.

Все изменения свойств веще-ства в магнитном поле исполь-зуют на практике.

Одним из интересных примеров исполь-зования действия магнитного поля на веще-ство является «омагничивание» воды . Пройдя через магнитное поле, вода приобретает новые свойства. Такая вода не образовывает накипи в паровых котлах, что позволяет использовать ее без дополнительной хими-ческой обработки. Бетон, замешанный на «омагниченной» воде, прочнее, чем обыч-ный.

Явление усиления магнитного поля фер-ромагнетиками используется в различных электротехнических приборах : электромаг-нитных кранах, реле, электродвигателях, трансформаторах. Для этого используются специальные сорта электротехнической ста-ли (рис. 6.34).

Трудно представить себе современную радиоэлектронику без элементов из искус-ственных ферромагнетиков — ферритов . Из них изготавливают антенны, сердечники колебательных контуров и трансформаторов. Широко распространены ферритовые по-стоянные магниты.

Без магнитных материалов трудно пред-ставить современные методы записи инфор-мации . Типичным примером устройства для записи на магнитной пленке является маг-нитофон (рис. 6.35). В этом аппарате исполь-зуется специальная пленка, покрытая тон-ким слоем ферромагнитного материала. Переменный электрический ток от усилите-ля поступает в специальную записываю-щую головку — катушку с ферромагнит-ным сердечником, в котором есть узкая щель. При прохождении переменного тока по катушке в щели головки появляется пе-ременное магнитное поле, магнитная ин-дукция которого изменяется. Когда пленка проходит над головкой, на ней остается ряд намагниченных участков, соответствующих переменному току, который подается в го-ловку. Подобный физический процесс происходит при записи информации на дис-ке винчестера в современном компьютере (рис. 6.36).

При воспроизведении записанной инфор-мации пленка осуществляет движение над магнитной головкой, где благодаря элект-ромагнитной индукции возникает перемен-ный электрический ток, который после уси-ления электронным усилителем подается на громкоговоритель или другой анализирую-щий прибор. Материал с сайта

Рис. 6.36. Компьютерный винчестер

На этой странице материал по темам:

  • Магнитные свойства вещества кратко конспект

  • Доклад применение магнитных свойств в веществах

  • Использование магнитных свойств веществ

  • Природа магнитных свойств вещества шпаргалка

  • Сила ампера шпора

Вопросы по этому материалу: