INEGALITATI LOGARITMICE ÎN UTILIZARE

Sechin Mihail Alexandrovici

Mica Academie de Științe pentru Studenții din Republica Kazahstan „Iskatel”

MBOU „Școala Gimnazială Nr. 1 Sovetskaya”, clasa a XI-a, oraș. districtul Sovetsky Sovetsky

Gunko Lyudmila Dmitrievna, profesor al instituției de învățământ bugetar municipal „Școala secundară Sovetskaya nr. 1”

districtul Sovetsky

Scopul lucrării: studiul mecanismului de rezolvare a inegalităților logaritmice C3 folosind metode nestandardizate, identificând fapte interesante despre logaritm.

Subiect de studiu:

3) Învață să rezolvi inegalitățile logaritmice specifice C3 folosind metode non-standard.

Rezultate:

Conţinut

Introducere…………………………………………………………………………………………….4

Capitolul 1. Istoricul problemei………………………………………………………….5

Capitolul 2. Colecția de inegalități logaritmice ………………………… 7

2.1. Tranzițiile echivalente și metoda generalizată a intervalelor…………… 7

2.2. Metoda raționalizării………………………………………………………………… 15

2.3. Înlocuirea non-standard .................................................................. ............ ..... 22

2.4. Sarcini cu capcane……………………………………………………27

Concluzie……………………………………………………………………………… 30

Literatură……………………………………………………………………. 31

Introducere

Sunt în clasa a XI-a și intenționez să intru într-o universitate unde materia de bază este matematica. De aceea lucrez mult cu problemele din partea C. În sarcina C3, trebuie să rezolv o inegalitate non-standard sau un sistem de inegalități, de obicei legat de logaritmi. Când mă pregăteam pentru examen, m-am confruntat cu problema deficitului de metode și tehnici de rezolvare a inegalităților logaritmice de examen oferite în C3. Metodele care sunt studiate în programa școlară pe această temă nu oferă o bază pentru rezolvarea sarcinilor C3. Profesorul de matematică mi-a sugerat să lucrez independent la temele C3, sub îndrumarea ei. În plus, m-a interesat întrebarea: întâlnim logaritmi în viața noastră?

Având în vedere acest lucru, a fost aleasă tema:

„Inegalități logaritmice în examenul de stat unificat”

Scopul lucrării: studiul mecanismului de rezolvare a problemelor C3 folosind metode non-standard, identificând fapte interesante despre logaritm.

Subiect de studiu:

1) Găsiți informațiile necesare despre metodele nestandard de rezolvare a inegalităților logaritmice.

2) Găsiți informații suplimentare despre logaritmi.

3) Învață să rezolvi probleme specifice C3 folosind metode non-standard.

Rezultate:

Semnificația practică constă în extinderea aparatului de rezolvare a problemelor C3. Acest material poate fi folosit în unele lecții, pentru cluburi și la cursuri opționale de matematică.

Produsul proiectului va fi colecția „C3 Logarithmic Inequalities with Solutions”.

Capitolul 1. Context

De-a lungul secolului al XVI-lea, numărul de calcule aproximative a crescut rapid, în primul rând în astronomie. Îmbunătățirea instrumentelor, studierea mișcărilor planetare și alte lucrări au necesitat calcule colosale, uneori multianuale. Astronomia era în pericol real de a se îneca în calcule neîmplinite. Au apărut dificultăți în alte domenii, de exemplu, în domeniul asigurărilor, au fost necesare tabele de dobândă compusă pentru diferite rate ale dobânzii. Principala dificultate a fost înmulțirea și împărțirea numerelor cu mai multe cifre, în special a cantităților trigonometrice.

Descoperirea logaritmilor s-a bazat pe proprietățile progresiilor care erau bine cunoscute până la sfârșitul secolului al XVI-lea. Arhimede a vorbit despre legătura dintre termenii progresiei geometrice q, q2, q3, ... și progresia aritmetică a exponenților lor 1, 2, 3,... din Psalm. O altă condiție prealabilă a fost extinderea conceptului de grad la exponenți negativi și fracționari. Mulți autori au subliniat că înmulțirea, împărțirea, exponențiarea și extragerea rădăcinilor în progresie geometrică corespund în aritmetică - în aceeași ordine - adunarea, scăderea, înmulțirea și împărțirea.

Aici a fost ideea logaritmului ca exponent.

În istoria dezvoltării doctrinei logaritmilor au trecut mai multe etape.

Etapa 1

Logaritmii au fost inventați nu mai târziu de 1594 independent de baronul scoțian Napier (1550-1617) și zece ani mai târziu de mecanicul elvețian Bürgi (1552-1632). Ambele au vrut să ofere un mijloc nou, convenabil de calcule aritmetice, deși au abordat această problemă în moduri diferite. Napier a exprimat cinematic funcția logaritmică și astfel a intrat într-un nou domeniu al teoriei funcțiilor. Bürgi a rămas pe baza luării în considerare a progresiilor discrete. Cu toate acestea, definiția logaritmului pentru ambele nu este similară cu cea modernă. Termenul „logaritm” (logaritm) îi aparține lui Napier. A apărut dintr-o combinație de cuvinte grecești: logos - „relație” și ariqmo - „număr”, care însemna „număr de relații”. Inițial, Napier a folosit un alt termen: numeri artificiales - „numere artificiale”, spre deosebire de numeri naturalts - „numere naturale”.

În 1615, într-o conversație cu Henry Briggs (1561-1631), profesor de matematică la Gresh College din Londra, Napier a sugerat să se ia zero ca logaritm al lui unu și 100 ca logaritm al lui zece sau, ceea ce înseamnă același lucru. lucru, doar 1. Așa au fost tipărite logaritmii zecimal și Primele tabele logaritmice. Mai târziu, tabelele lui Briggs au fost completate de librarul și pasionatul de matematică olandez Adrian Flaccus (1600-1667). Napier și Briggs, deși au ajuns la logaritmi mai devreme decât toți ceilalți, și-au publicat tabelele mai târziu decât ceilalți - în 1620. Semnele log și Log au fost introduse în 1624 de I. Kepler. Termenul de „logaritm natural” a fost introdus de Mengoli în 1659 și urmat de N. Mercator în 1668, iar profesorul londonez John Speidel a publicat tabele de logaritmi naturali ai numerelor de la 1 la 1000 sub denumirea de „Noi logaritmi”.

Primele tabele logaritmice au fost publicate în limba rusă în 1703. Dar în toate tabelele logaritmice au existat erori de calcul. Primele tabele fără erori au fost publicate în 1857 la Berlin, prelucrate de matematicianul german K. Bremiker (1804-1877).

Etapa 2

Dezvoltarea ulterioară a teoriei logaritmilor este asociată cu o aplicare mai largă a geometriei analitice și calculului infinitezimal. Până atunci, legătura dintre cuadratura unei hiperbole echilaterale și logaritmul natural fusese stabilită. Teoria logaritmilor din această perioadă este asociată cu numele unui număr de matematicieni.

Matematicianul, astronomul și inginerul german Nikolaus Mercator într-un eseu

„Logarithmotechnics” (1668) oferă o serie care oferă expansiunea lui ln(x+1) în

puteri ale lui x:

Această expresie corespunde exact trenului său de gândire, deși, desigur, nu a folosit semnele d, ..., ci o simbolistică mai greoaie. Odată cu descoperirea seriei logaritmice, tehnica de calcul a logaritmilor s-a schimbat: au început să fie determinate folosind serii infinite. În prelegerile sale „Matematica elementară dintr-un punct de vedere superior”, susținute în 1907-1908, F. Klein a propus utilizarea formulei ca punct de plecare pentru construirea teoriei logaritmilor.

Etapa 3

Definirea unei funcții logaritmice ca funcție inversă

exponențial, logaritmul ca exponent al unei baze date

nu a fost formulată imediat. Eseu de Leonhard Euler (1707-1783)

„O introducere în analiza infinitezimale” (1748) a servit la continuarea

dezvoltarea teoriei funcţiilor logaritmice. Prin urmare,

Au trecut 134 de ani de când logaritmii au fost introduși pentru prima dată

(contând din 1614), înainte ca matematicienii să ajungă la definiție

conceptul de logaritm, care stă acum la baza cursului școlar.

Capitolul 2. Colecția inegalităților logaritmice

2.1. Tranziții echivalente și metoda generalizată a intervalelor.

Tranziții echivalente

, dacă a > 1

, dacă 0 < а < 1

Metoda intervalului generalizat

Această metodă este cea mai universală pentru rezolvarea inegalităților de aproape orice tip. Diagrama soluției arată astfel:

1. Aduceți inegalitatea într-o formă în care se află funcția din partea stângă
, iar în dreapta 0.

2. Găsiți domeniul funcției
.

3. Aflați zerourile funcției
, adică rezolvați ecuația
(și rezolvarea unei ecuații este de obicei mai ușoară decât rezolvarea unei inegalități).

4. Desenați domeniul de definiție și zerourile funcției pe dreapta numerică.

5. Determinați semnele funcției
pe intervalele obţinute.

6. Selectați intervale în care funcția preia valorile necesare și notați răspunsul.

Exemplul 1.

Soluţie:

Să aplicăm metoda intervalului

Unde

Pentru aceste valori, toate expresiile sub semnele logaritmice sunt pozitive.

Răspuns:

Exemplul 2.

Soluţie:

1 cale . ADL este determinată de inegalitate X> 3. Luarea de logaritmi pentru astfel de X la baza 10, obținem

Ultima inegalitate ar putea fi rezolvată prin aplicarea regulilor de expansiune, i.e. comparând factorii cu zero. Cu toate acestea, în acest caz este ușor de determinat intervalele de semn constant ale funcției

prin urmare, se poate aplica metoda intervalului.

Funcţie f(X) = 2X(X- 3.5)lgǀ X- 3ǀ este continuă la X> 3 și dispare în puncte X 1 = 0, X 2 = 3,5, X 3 = 2, X 4 = 4. Astfel, determinăm intervalele de semn constant ale funcției f(X):

Răspuns:

a 2-a metoda . Să aplicăm direct ideile metodei intervalului la inegalitatea originală.

Pentru a face acest lucru, amintiți-vă că expresiile A b- A c și ( A - 1)(b- 1) au un singur semn. Apoi inegalitatea noastră la X> 3 este echivalent cu inegalitatea

sau

Ultima inegalitate este rezolvată folosind metoda intervalului

Răspuns:

Exemplul 3.

Soluţie:

Să aplicăm metoda intervalului

Răspuns:

Exemplul 4.

Soluţie:

Din 2 X 2 - 3X+ 3 > 0 pentru toate reale X, Acea

Pentru a rezolva a doua inegalitate folosim metoda intervalului

În prima inegalitate facem înlocuirea

apoi ajungem la inegalitatea 2y 2 - y - 1 < 0 и, применив метод интервалов, получаем, что решениями будут те y, care satisfac inegalitatea -0,5< y < 1.

De unde, pentru că

obținem inegalitatea

care se realizează când X, pentru care 2 X 2 - 3X - 5 < 0. Вновь применим метод интервалов

Acum, ținând cont de soluția celei de-a doua inegalități a sistemului, obținem în sfârșit

Răspuns:

Exemplul 5.

Soluţie:

Inegalitatea este echivalentă cu o colecție de sisteme

sau

Să folosim metoda intervalului sau

Răspuns:

Exemplul 6.

Soluţie:

Inegalitatea este egală cu sistemul

Lăsa

Apoi y > 0,

și prima inegalitate

sistemul ia forma

sau, desfășurarea

trinom pătratic factorizat,

Aplicând metoda intervalului la ultima inegalitate,

vedem că soluțiile sale satisfac condiția y> 0 va fi tot y > 4.

Astfel, inegalitatea originală este echivalentă cu sistemul:

Deci, soluțiile la inegalitate sunt toate

2.2. Metoda raționalizării.

Anterior, inegalitatea nu era rezolvată prin metoda raționalizării, nu era cunoscută. Aceasta este „o nouă metodă modernă eficientă pentru rezolvarea inegalităților exponențiale și logaritmice” (citat din cartea lui S.I. Kolesnikova)
Și chiar dacă profesorul l-a cunoscut, a existat o teamă - expertul Unified State Exam îl cunoaște și de ce nu-l dau la școală? Au fost situații când profesorul i-a spus elevului: „De unde l-ai luat – 2”.
Acum metoda este promovată peste tot. Și pentru experți există linii directoare asociate cu această metodă, iar în „Edițiile cele mai complete de opțiuni standard...” din Soluția C3 se folosește această metodă.
METODA MINUNATĂ!

„Masa magică”


În alte surse

Dacă a >1 și b >1, apoi log a b >0 și (a -1)(b -1)>0;

Dacă a >1 și 0

daca 0<A<1 и b >1, apoi log a b<0 и (a -1)(b -1)<0;

daca 0<A<1 и 00 și (a -1)(b -1)>0.

Raționamentul efectuat este simplu, dar simplifică semnificativ soluția inegalităților logaritmice.

Exemplul 4.

log x (x 2 -3)<0

Soluţie:

Exemplul 5.

log 2 x (2x 2 -4x +6)≤log 2 x (x 2 +x )

Soluţie:

Răspuns. (0; 0,5)U.

Exemplul 6.

Pentru a rezolva această inegalitate, în locul numitorului, scriem (x-1-1)(x-1), iar în loc de numărător, scriem produsul (x-1)(x-3-9 + x).


Răspuns : (3;6)

Exemplul 7.

Exemplul 8.

2.3. Înlocuire non-standard.

Exemplul 1.

Exemplul 2.

Exemplul 3.

Exemplul 4.

Exemplul 5.

Exemplul 6.

Exemplul 7.

log 4 (3 x -1)log 0,25

Să facem înlocuirea y=3 x -1; atunci această inegalitate va lua forma

Log 4 log 0,25
.

Deoarece log 0,25 = -log 4 = -(log 4 y -log 4 16)=2-log 4 y , apoi rescriem ultima inegalitate ca 2log 4 y -log 4 2 y ≤.

Să facem înlocuirea t =log 4 y și să obținem inegalitatea t 2 -2t +≥0, a cărei soluție este intervalele - .

Astfel, pentru a găsi valorile lui y avem o mulțime de două inegalități simple
Soluția acestei mulțimi este intervalele 0<у≤2 и 8≤у<+.

Prin urmare, inegalitatea originală este echivalentă cu mulțimea a două inegalități exponențiale,
adică agregate

Soluția primei inegalități a acestei mulțimi este intervalul 0<х≤1, решением второго – промежуток 2≤х<+. Astfel, inegalitatea originală este satisfăcută pentru toate valorile lui x din intervalele 0<х≤1 и 2≤х<+.

Exemplul 8.

Soluţie:

Inegalitatea este egală cu sistemul

Soluția pentru a doua inegalitate care definește ODZ va fi setul celor X,

pentru care X > 0.

Pentru a rezolva prima inegalitate facem substituția

Apoi obținem inegalitatea

sau

Mulțimea soluțiilor ultimei inegalități se găsește prin metodă

intervale: -1< t < 2. Откуда, возвращаясь к переменной X, primim

sau

Multe dintre ele X, care satisfac ultima inegalitate

aparține ODZ ( X> 0), prin urmare, este o soluție a sistemului,

și de aici inegalitatea inițială.

Răspuns:

2.4. Sarcini cu capcane.

Exemplul 1.

.

Soluţie. ODZ a inegalității este tot x care satisface condiția 0 . Prin urmare, toți x sunt din intervalul 0

Exemplul 2.

log 2 (2 x +1-x 2)>log 2 (2 x-1 +1-x)+1.. ? Ideea este că al doilea număr este în mod evident mai mare decât

Concluzie

Nu a fost ușor să găsești metode specifice de rezolvare a problemelor C3 dintr-o mare abundență de diferite surse educaționale. Pe parcursul lucrărilor efectuate, am putut studia metode non-standard pentru rezolvarea inegalităților logaritmice complexe. Acestea sunt: ​​tranzițiile echivalente și metoda generalizată a intervalelor, metoda raționalizării , substituție non-standard , sarcini cu capcane pe ODZ. Aceste metode nu sunt incluse în programa școlară.

Folosind diferite metode, am rezolvat 27 de inegalități propuse la Examenul Unificat de Stat în partea C și anume C3. Aceste inegalități cu soluții prin metode au stat la baza colecției „C3 Inegalități logaritmice cu soluții”, care a devenit un produs de proiect al activității mele. S-a confirmat ipoteza pe care am pus-o la începutul proiectului: problemele C3 pot fi rezolvate eficient dacă cunoașteți aceste metode.

În plus, am descoperit fapte interesante despre logaritmi. A fost interesant pentru mine să fac asta. Produsele proiectului meu vor fi utile atât pentru elevi, cât și pentru profesori.

Concluzii:

Astfel, scopul proiectului a fost atins și problema a fost rezolvată. Și am primit cea mai completă și variată experiență a activităților de proiect în toate etapele de lucru. În timp ce lucram la proiect, impactul meu principal de dezvoltare a fost asupra competenței mentale, activităților legate de operații mentale logice, dezvoltarea competenței creative, inițiativa personală, responsabilitate, perseverență și activitate.

O garanție a succesului la crearea unui proiect de cercetare pt Am dobândit: experiență școlară semnificativă, capacitatea de a obține informații din diverse surse, de a le verifica fiabilitatea și de a le clasifica după importanță.

Pe lângă cunoștințele directe în materie de matematică, mi-am extins abilitățile practice în domeniul informaticii, am acumulat noi cunoștințe și experiență în domeniul psihologiei, am stabilit contacte cu colegii de clasă și am învățat să cooperez cu adulții. În cadrul activităților proiectului s-au dezvoltat abilități educaționale generale organizatorice, intelectuale și comunicative.

Literatură

1. Koryanov A. G., Prokofiev A. A. Sisteme de inegalități cu o variabilă (sarcini standard C3).

2. Malkova A. G. Pregătirea pentru examenul unificat de stat la matematică.

3. Samarova S. S. Rezolvarea inegalităților logaritmice.

4. Matematică. Culegere de lucrări de formare editată de A.L. Semenov și I.V. Iascenko. -M.: MTsNMO, 2009. - 72 p.-

La hotărâre inegalități logaritmice luăm ca bază proprietățile funcțiilor logaritmice. Și anume că funcția la=log un x la A> 1 va fi în creștere monoton, iar la 0< A< 1 - монотонно убывающей.

Să analizăm transformare necesare pentru rezolvarea inegalităţilor

log 1/5 (x - l) > - 2.

Inițial, trebuie să egalezi bazele logaritmilor, în acest caz, arată partea dreaptă sub forma unui logaritm cu necesarul bază. Să ne transformăm -2=-2 log 1/5 1/5= log 1/5 1/5 -2 = log 1/5 25, atunci indicăm inegalitatea aleasă sub forma:

log 1/5 (x- l) > log 1/5 25.

Funcţie la= log 1/5 X va fi monoton în scădere. Se dovedește că o valoare mai mare a acestei funcții corespunde unei valori mai mici a argumentului. Și în consecință avem, X—1 < 25. К указанному неравенству требуется добавить еще неравенство X- 1 > 0, corespunzător faptului că sub semn logaritm poate fi doar o valoare pozitivă. Rezultă că această inegalitate este identică cu sistemul a două inegalități liniare. Avand in vedere ca baza logaritmului este mai mica decat unu, intr-un sistem identic semnul inegalitatii este inversat:

După ce am rezolvat, vedem că:

1 < х < 26.

Este de mare importanță să nu uităm condiția x- 1 > 0, altfel concluzia nu va fi corectă: x< 26. Тогда бы в эти «решения» входило бы и значение х = 0, при котором левая часть первоначального неравенства не существует.

Dintre întreaga varietate de inegalități logaritmice, inegalitățile cu bază variabilă sunt studiate separat. Ele sunt rezolvate folosind o formulă specială, care din anumite motive este rareori predată la școală:

log k (x) f (x) ∨ log k (x) g (x) ⇒ (f (x) − g (x)) (k (x) − 1) ∨ 0

În loc de caseta de selectare „∨”, puteți pune orice semn de inegalitate: mai mult sau mai puțin. Principalul lucru este că în ambele inegalități semnele sunt aceleași.

Astfel scăpăm de logaritmi și reducem problema la o inegalitate rațională. Acesta din urmă este mult mai ușor de rezolvat, dar atunci când se aruncă logaritmi, pot apărea rădăcini suplimentare. Pentru a le tăia, este suficient să găsiți intervalul de valori acceptabile. Dacă ați uitat ODZ al unui logaritm, vă recomand cu tărie să îl repetați - vedeți „Ce este un logaritm”.

Tot ceea ce are legătură cu intervalul de valori acceptabile trebuie scris și rezolvat separat:

f(x) > 0; g(x) > 0; k(x) > 0; k(x) ≠ 1.

Aceste patru inegalități constituie un sistem și trebuie satisfăcute simultan. Când a fost găsit intervalul de valori acceptabile, tot ce rămâne este să îl intersectăm cu soluția inegalității raționale - și răspunsul este gata.

Sarcină. Rezolvați inegalitatea:

Mai întâi, să scriem ODZ al logaritmului:

Primele două inegalități sunt satisfăcute automat, dar ultima va trebui scrisă. Deoarece pătratul unui număr este zero dacă și numai dacă numărul însuși este zero, avem:

x 2 + 1 ≠ 1;
x2 ≠ 0;
x ≠ 0.

Rezultă că ODZ a logaritmului este toate numerele cu excepția zero: x ∈ (−∞ 0)∪(0; +∞). Acum rezolvăm inegalitatea principală:

Facem tranziția de la inegalitatea logaritmică la una rațională. Inegalitatea originală are un semn „mai puțin decât”, ceea ce înseamnă că inegalitatea rezultată trebuie să aibă și un semn „mai puțin decât”. Avem:

(10 − (x 2 + 1)) · (x 2 + 1 − 1)< 0;
(9 − x 2) x 2< 0;
(3 − x) · (3 + x) · x 2< 0.

Zerourile acestei expresii sunt: ​​x = 3; x = −3; x = 0. Mai mult, x = 0 este o rădăcină a celei de-a doua multiplicități, ceea ce înseamnă că la trecerea prin aceasta, semnul funcției nu se schimbă. Avem:

Se obține x ∈ (−∞ −3)∪(3; +∞). Acest set este complet conținut în ODZ al logaritmului, ceea ce înseamnă că acesta este răspunsul.

Conversia inegalităților logaritmice

Adesea inegalitatea originală este diferită de cea de mai sus. Acest lucru poate fi corectat cu ușurință folosind regulile standard pentru lucrul cu logaritmi - vezi „Proprietățile de bază ale logaritmilor”. Și anume:

  1. Orice număr poate fi reprezentat ca un logaritm cu o bază dată;
  2. Suma și diferența logaritmilor cu aceleași baze pot fi înlocuite cu un logaritm.

Separat, aș dori să vă reamintesc intervalul de valori acceptabile. Deoarece pot exista mai mulți logaritmi în inegalitatea inițială, este necesar să se găsească VA a fiecăruia dintre ei. Astfel, schema generală de rezolvare a inegalităților logaritmice este următoarea:

  1. Aflați VA fiecărui logaritm inclus în inegalitate;
  2. Reduceți inegalitatea la una standard folosind formulele de adunare și scădere a logaritmilor;
  3. Rezolvați inegalitatea rezultată folosind schema dată mai sus.

Sarcină. Rezolvați inegalitatea:

Să găsim domeniul de definiție (DO) al primului logaritm:

Rezolvăm folosind metoda intervalului. Aflarea zerourilor numărătorului:

3x − 2 = 0;
x = 2/3.

Apoi - zerourile numitorului:

x − 1 = 0;
x = 1.

Marcam zerouri și semne pe săgeata de coordonate:

Se obține x ∈ (−∞ 2/3)∪(1; +∞). Al doilea logaritm va avea același VA. Dacă nu crezi, poți să verifici. Acum transformăm al doilea logaritm astfel încât baza să fie două:

După cum puteți vedea, treisurile de la bază și din fața logaritmului au fost reduse. Avem doi logaritmi cu aceeași bază. Să le adunăm:

log 2 (x − 1) 2< 2;
log 2 (x − 1) 2< log 2 2 2 .

Am obținut inegalitatea logaritmică standard. Scăpăm de logaritmi folosind formula. Deoarece inegalitatea originală conține un semn „mai puțin decât”, expresia rațională rezultată trebuie, de asemenea, să fie mai mică decât zero. Avem:

(f (x) − g (x)) (k (x) − 1)< 0;
((x − 1) 2 − 2 2)(2 − 1)< 0;
x 2 − 2x + 1 − 4< 0;
x 2 − 2x − 3< 0;
(x − 3)(x + 1)< 0;
x ∈ (−1; 3).

Avem două seturi:

  1. ODZ: x ∈ (−∞ 2/3)∪(1; +∞);
  2. Răspunsul candidatului: x ∈ (−1; 3).

Rămâne să intersectăm aceste mulțimi - obținem răspunsul real:

Suntem interesați de intersecția mulțimilor, așa că selectăm intervale care sunt umbrite pe ambele săgeți. Se obține x ∈ (−1; 2/3)∪(1; 3) - toate punctele sunt perforate.

Obiectivele lecției:

Didactic:

  • Nivelul 1 – învață cum să rezolvi cele mai simple inegalități logaritmice, folosind definiția unui logaritm și proprietățile logaritmilor;
  • Nivelul 2 – rezolvați inegalitățile logaritmice, alegând propria metodă de rezolvare;
  • Nivelul 3 – să fie capabil să aplice cunoștințele și abilitățile în situații non-standard.

Educational: dezvolta memoria, atentia, gandirea logica, abilitatile de comparare, sa poata generaliza si sa traga concluzii

Educational: cultivați acuratețea, responsabilitatea pentru sarcina îndeplinită și asistența reciprocă.

Metode de predare: verbal , vizual , practic , căutare parțială , autoguvernare , Control.

Forme de organizare a activității cognitive a elevilor: frontal , individual , lucra in perechi.

Echipament: un set de sarcini de testare, note de referință, foi goale pentru soluții.

Tip de lecție:învăţarea de materiale noi.

În timpul orelor

1. Moment organizatoric. Se anunță tema și scopurile lecției, planul lecției: fiecărui elev i se dă o fișă de evaluare, pe care elevul o completează în timpul lecției; pentru fiecare pereche de elevi - materialele tipărite cu sarcini trebuie efectuate în perechi; foi goale de soluție; foi suport: definirea logaritmului; graficul unei funcții logaritmice, proprietățile acesteia; proprietățile logaritmilor; algoritm de rezolvare a inegalităților logaritmice.

Toate deciziile după autoevaluare sunt transmise profesorului.

Fișa de punctaj a elevului

2. Actualizarea cunoștințelor.

Instrucțiunile profesorului. Amintiți-vă definiția logaritmului, graficul funcției logaritmice și proprietățile acesteia. Pentru a face acest lucru, citiți textul de la pp. 88–90, 98–101 din manualul „Algebra și începuturile analizei 10–11”, editat de Sh.A Alimov, Yu.M Kolyagin și alții.

Elevilor li se dau foi pe care sunt scrise: definiția unui logaritm; prezintă un grafic al unei funcții logaritmice și proprietățile acesteia; proprietățile logaritmilor; algoritm pentru rezolvarea inegalităților logaritmice, un exemplu de rezolvare a unei inegalități logaritmice care se reduce la una pătratică.

3. Studierea materialelor noi.

Rezolvarea inegalităților logaritmice se bazează pe monotonitatea funcției logaritmice.

Algoritm pentru rezolvarea inegalităților logaritmice:

A) Aflați domeniul de definire al inegalității (expresia sublogaritmică este mai mare decât zero).
B) Reprezentați (dacă este posibil) părțile stânga și dreaptă ale inegalității ca logaritmi la aceeași bază.
C) Determinați dacă funcția logaritmică este crescătoare sau descrescătoare: dacă t>1, atunci crește; daca 0 1, apoi în scădere.
D) Treceți la o inegalitate mai simplă (expresii sublogaritmice), ținând cont că semnul inegalității va rămâne același dacă funcția crește și se va modifica dacă scade.

Elementul de învățare #1.

Scop: consolidarea soluției la cele mai simple inegalități logaritmice

Forma de organizare a activităţii cognitive a elevilor: munca individuală.

Sarcini pentru muncă independentă timp de 10 minute. Pentru fiecare inegalitate există mai multe răspunsuri posibile trebuie să îl alegeți pe cel corect și să îl verificați folosind cheia;


CHEIE: 13321, număr maxim de puncte – 6 puncte.

Elementul de învățare #2.

Scop: consolidarea soluției inegalităților logaritmice folosind proprietățile logaritmilor.

Instrucțiunile profesorului. Amintiți-vă proprietățile de bază ale logaritmilor. Pentru a face acest lucru, citiți textul manualului de la pp. 92, 103–104.

Sarcini pentru muncă independentă timp de 10 minute.

CHEIE: 2113, număr maxim de puncte – 8 puncte.

Elementul de învățare #3.

Scop: studierea soluției inegalităților logaritmice prin metoda reducerii la pătratice.

Instrucțiunile profesorului: metoda de reducere a unei inegalități la un pătratic este de a transforma inegalitatea într-o astfel de formă încât o anumită funcție logaritmică să fie notată printr-o nouă variabilă, obținându-se astfel o inegalitate pătratică în raport cu această variabilă.

Să folosim metoda intervalului.

Ai trecut de primul nivel de stăpânire a materialului. Acum va trebui să alegeți independent o metodă de rezolvare a ecuațiilor logaritmice, folosind toate cunoștințele și capacitățile dumneavoastră.

Elementul de învățare #4.

Scop: consolidarea soluției la inegalitățile logaritmice prin alegerea independentă a unei metode de soluție rațională.

Sarcini pentru muncă independentă timp de 10 minute

Elementul de învățare #5.

Instrucțiunile profesorului. Bine făcut! Ai stăpânit rezolvarea ecuațiilor de al doilea nivel de complexitate. Scopul muncii dvs. ulterioare este să vă aplicați cunoștințele și abilitățile în situații mai complexe și non-standard.

Sarcini pentru soluție independentă:

Instrucțiunile profesorului. Este grozav dacă ai finalizat întreaga sarcină. Bine făcut!

Nota pentru întreaga lecție depinde de numărul de puncte obținute pentru toate elementele educaționale:

  • dacă N ≥ 20, atunci obțineți un rating „5”,
  • pentru 16 ≤ N ≤ 19 – scor „4”,
  • pentru 8 ≤ N ≤ 15 – scor „3”,
  • la N< 8 выполнить работу над ошибками к следующему уроку (решения можно взять у учителя).

Trimiteți lucrările de evaluare profesorului.

5. Tema pentru acasă: dacă ați obținut mai mult de 15 puncte, lucrați la greșelile dvs. (soluțiile pot fi obținute de la profesor), dacă ați obținut mai mult de 15 puncte, finalizați o sarcină creativă pe tema „Inegalități logaritmice”.

Când am studiat funcția logaritmică, am luat în considerare în principal inegalitățile formei
log un x< b и log а х ≥ b. Рассмотрим решение более сложных логарифмических неравенств. Обычным способом решения таких неравенств является переход от данного неравенства к более простому неравенству или системе неравенств, которая имеет то же самое множество решений.

Rezolvați logul inegalității (x + 1) ≤ 2 (1).

Soluţie.

1) Partea dreaptă a inegalității luate în considerare are sens pentru toate valorile lui x, iar partea stângă are sens pentru x + 1 > 0, adică. pentru x > -1.

2) Intervalul x > -1 se numește domeniul de definire al inegalității (1). O funcție logaritmică cu baza 10 este în creștere, prin urmare, cu condiția x + 1 > 0, inegalitatea (1) este satisfăcută dacă x + 1 ≤ 100 (deoarece 2 = log 100). Astfel, inegalitatea (1) și sistemul de inegalități

(x > -1, (2)
(x + 1 ≤ 100,

sunt echivalente, cu alte cuvinte, mulțimea soluțiilor inegalității (1) și sistemul de inegalități (2) sunt aceleași.

3) Rezolvând sistemul (2), găsim -1< х ≤ 99.

Răspuns. -1< х ≤ 99.

Rezolvați inegalitatea log 2 (x – 3) + log 2 (x – 2) ≤ 1 (3).

Soluţie.

1) Domeniul de definire a funcției logaritmice luate în considerare este setul de valori pozitive ale argumentului, prin urmare partea stângă a inegalității are sens pentru x – 3 > 0 și x – 2 > 0.

În consecință, domeniul de definire al acestei inegalități este intervalul x > 3.

2) După proprietățile logaritmului, inegalitatea (3) pentru x > 3 este echivalentă cu inegalitatea log 2 (x – 3)(x – 2) ≤ log 2 (4).

3) Funcția logaritmică cu baza 2 este în creștere. Prin urmare, pentru x > 3, inegalitatea (4) este satisfăcută dacă (x – 3)(x – 2) ≤ 2.

4) Astfel, inegalitatea originală (3) este echivalentă cu sistemul de inegalități

((x – 3)(x – 2) ≤ 2,
(x > 3.

Rezolvând prima inegalitate a acestui sistem, obținem x 2 – 5x + 4 ≤ 0, de unde 1 ≤ x ≤ 4. Combinând acest segment cu intervalul x > 3, obținem 3< х ≤ 4.

Răspuns. 3< х ≤ 4.

Rezolvați inegalitatea log 1/2 (x 2 + 2x – 8) ≥ -4. (5)

Soluţie.

1) Domeniul de definire al inegalității se găsește din condiția x 2 + 2x – 8 > 0.

2) Inegalitatea (5) poate fi scrisă ca:

log 1/2 (x 2 + 2x – 8) ≥ log 1/2 16.

3) Deoarece funcția logaritmică cu baza ½ este în scădere, atunci pentru tot x din întregul domeniu de definire al inegalității obținem:

x 2 + 2x – 8 ≤ 16.

Astfel, egalitatea inițială (5) este echivalentă cu sistemul de inegalități

(x 2 + 2x – 8 > 0 sau (x 2 + 2x – 8 > 0,
(x 2 + 2x – 8 ≤ 16, (x 2 + 2x – 24 ≤ 0.

Rezolvând prima inegalitate pătratică, obținem x< -4, х >2. Rezolvând a doua inegalitate pătratică, obținem -6 ≤ x ≤ 4. În consecință, ambele inegalități ale sistemului sunt satisfăcute simultan pentru -6 ≤ x< -4 и при 2 < х ≤ 4.

Răspuns. -6 ≤ x< -4; 2 < х ≤ 4.

site-ul web, atunci când copiați materialul integral sau parțial, este necesar un link către sursa originală.