Если современный танк обстрелять бронебойной «болванкой» времен Второй мировой, то, скорее всего, на месте попадания останется лишь вмятина - сквозное пробитие практически исключено. Применяемая сегодня «слоеная» композитная броня уверенно держит такой удар. Но ее все еще можно проткнуть «шилом». Или «ломом», как сами танкисты называют бронебойные оперенные подкалиберные снаряды (БОПС).

Шило вместо кувалды

Из названия ясно, что подкалиберный боеприпас представляет собой снаряд калибром заметно меньше калибра орудия. Конструктивно это «катушка» с диаметром, равным диаметру ствола, в центре которой - тот самый вольфрамовый или урановый «лом», что и бьет по броне противника. При выходе из канала ствола катушка, обеспечившая сердечнику достаточную кинетическую энергию и разогнавшая его до нужной скорости, разделяется на части под действием набегающих потоков воздуха, а в цель летит тонкий и прочный оперенный штырь. При столкновении за счет меньшего удельного сопротивления он гораздо эффективнее пробивает броню, чем толстая монолитная болванка.

Заброневое воздействие такого «лома» колоссально. За счет сравнительно небольшой массы - 3,5-4 килограмма - сердечник подкалиберного снаряда сразу после выстрела разгоняется до значительной скорости - около 1500 метров в секунду. При ударе о броневой лист он пробивает небольшое отверстие. Кинетическая энергия снаряда частично идет на разрушение брони, а частично превращается в тепловую. Раскаленные осколки сердечника и брони выходят в заброневое пространство и распространяются веером, поражая экипаж и внутренние механизмы машины. При этом возникают многочисленные очаги возгорания.

Точным попаданием БОПС можно вывести из строя важные узлы и агрегаты, уничтожить или серьезно ранить членов экипажа, заклинить башню, пробить топливные баки, подорвать боеукладку, разрушить ходовую часть. Конструктивно современные подкалиберные очень разные. Тела снарядов бывают как монолитными, так и составными - сердечник или несколько сердечников в оболочке, а также продольно и поперечно многослойными, с различными типами оперения.

У ведущих устройств (тех самых «катушек») разная аэродинамика, они изготавливаются из стали, легких сплавов, а также композиционных материалов - например, из углекомпозитов или арамидных композитов. В головных частях БОПС могут устанавливаться баллистические наконечники и демпферы. Словом, на любой вкус - под любую пушку, под определенные условия танкового боя и конкретную цель. Основные преимущества таких боеприпасов - высокая бронепробиваемость, высокая подлетная скорость, малая чувствительность к воздействию динамической защиты, низкая уязвимость к комплексам активной защиты, которые просто не успевают среагировать на быструю и малозаметную «стрелу».

«Манго» и «Свинец»

Под 125-миллиметровые гладкоствольные пушки отечественных танков еще в советское время разработали широкую номенклатуру оперенных «бронебойников». Ими занялись после появления у потенциального противника танков M1 Abrams и Leopard-2. Армии как воздух были необходимы снаряды, способные поражать новые типы усиленной брони и преодолевать динамическую защиту.

Один из самых распространенных БОПС в арсенале российских танков Т-72, Т-80 и Т-90 - принятый на вооружение в 1986 году снаряд повышенного могущества ЗБМ-44 «Манго». У боеприпаса достаточно сложная конструкция. В головной части стреловидного тела установлен баллистический наконечник, под которым располагается бронебойный колпачок. За ним - бронебойный демпфер, тоже играющий важную роль в пробитии. Сразу после демпфера - два сердечника из вольфрамового сплава, удерживаемые внутри рубашкой из легкосплавного металла. При столкновении снаряда с преградой рубашка плавится и высвобождает сердечники, «вгрызающиеся» в броню. В хвостовой части снаряда - стабилизатор в виде оперения с пятью лопастями, в основании стабилизатора - трассер. Весит этот «лом» всего около пяти килограммов, но способен пробить почти полметра танковой брони на дальности до двух километров.

Более новый ЗБМ-48 «Свинец» приняли на вооружение в 1991-м. Стандартные российские танковые автоматы заряжания ограничены по длине снарядов, поэтому «Свинец» - самый массивный отечественный танковый боеприпас данного класса. Длина активной части снаряда - 63,5 сантиметра. Сердечник изготовляется из уранового сплава, и у него высокое удлинение, что повышает пробиваемость, а также снижает воздействие динамической защиты. Ведь чем больше длина снаряда, тем меньшая его часть за определенный момент времени взаимодействует с пассивной и активной преградами. Подкалиберные стабилизаторы повышают точность снаряда, также используется новое композитное ведущее устройство-«катушка». БОПС «Свинец» - наиболее мощный серийный снаряд для 125-миллиметровых танковых орудий, способный составить конкуренцию ведущим западным образцам. Средняя бронепробиваемость по гомогенной стальной плите с двух километров - 650 миллиметров.

Это не единственная подобная разработка отечественного ОПК - СМИ сообщали, что специально для новейшего танка Т-14 «Армата» созданы и испытаны БОПС «Вакуум-1″ длиной 900 миллиметров. Их бронепробиваемость вплотную приблизилась к метру.

Стоит отметить, что вероятный противник тоже не стоит на месте. Еще в 2016-м компания Orbital ATK запустила полномасштабное производство продвинутого бронебойного оперенного подкалиберного снаряда с трассером М829А4 пятого поколения для танка М1. По словам разработчиков, боеприпас пробивает 770 миллиметров брони.

Процесс расчета бронепробиваемости очень сложен, неоднозначен и зависит от многих факторов. Среди них толщина брони, пробиваемость снаряда, пробиваемость орудия, угол наклона бронированного листа и т.п.

Рассчитать вероятность пробития брони, а тем более точное количество наносимого урона, самостоятельно практически невозможно. Также существуют вероятности промаха и рикошета, заложенные программно. Не забывайте учитывать, что многие значения в описаниях указаны не максимальные или минимальные, а средние.

Ниже приведены критерии по которым производится приблизительный расчет бронепробиваемости .

Рассчет бронепробиваемости

  1. Окружность прицела - это круговое отклонение на момент встречи снаряда с целью/препятствием. Иными словами, даже если цель перекрывает кружок, снаряд может попасть в ребро(место соединения листов брони) или пройти по касательной к броне.
  2. Рассчитывается уменьшение энергии снаряда в зависимости от дальности.
  3. Снаряд летит по баллистической траектории. Данное условие применимо для всех орудий. Но у противотанковых - дульная скорость достаточно высока,поэтому траектория близка к прямой. Траектория полета снаряда не прямая, и поэтому возможны отклонения. Прицел это учитывает, показывая рассчитанную область попадания.
  4. Снаряд попадает в цель. Сначала рассчитывается его положение в момент попадания - на возможность рикошета. Если рикошет присутствует, то берётся новая траектория и пересчитывается заново. Если нет - производится расчёт пробиваемости брони.
    В данной ситуации вероятность пробития определяется из расчитанной толщины брони (при этом учитывается угол и наклон) и бронепробиваемости снаряда, и составляет +-30% от штатной бронепробиваемости . Так же производится учет нормализации.
  5. Если снаряд пробил броню, то он снимает указанное в его параметрах число хит-поинтов танка(Актуально только для бронебойных, подкалиберных и куммулятивных снарядов). Причём существует возможность при попадании в некоторые модули(маска пушки, гусеница) могут полностью или частично поглощать урон снаряда, при этом получая критическое повреждение, в зависимости от области попадания снарядом. Абсорбции при пробитии брони бронебойным снарядом нет. В случаях с осколочно фугасными снарядами абсорбция есть(для них используются несколько другие алгоритмы). Урон фугасного снаряда при пробитии такой же, как и у бронебойного. При непробитии считается по формуле:
    Половина урона осклочно-фугасного снаряда - (толщина брони в мм * коэффициент абсорбции брони). Коэффициент абсорбции брони примерно равен 1.3, если установлен модуль "Противо-осколочный подбой", то 1.3*1.15
  6. Снаряд внутри танка "движется" по прямой, попадая и "пробивая" модули (оборудование и танкистов), у каждого из объектов - собственное число хит-поинтов. Наносимый урон (пропорциональный энергии из п.5) - делится на урон непосредственно танку - и критического урона модулям. Число снятых хит-поинтов - общее, поэтому чем больше единовременных критических повреждений, тем меньше хит-поинтов снимается с танка. И везде присутствует вероятность +- 30%. Для разных бронебойных снарядов - в формулах используются разные коэффициенты. Если калибр снаряда в 3 и более раза больше толщины брони в точки попадания, то рикошет исключается специальным правилом.
  7. При прохождении сквозь модули и нанесения им критического урона - снаряд тратит энергию, и в процессе - полностью её теряет. Сквозные пробития танка, в игре не предусмотрены. Но есть получение критического урона модулю цепной реакцией вызванной повреждённым модулем (бензобак, мотор)в случае если он загорается и начинает наносить урон другим модулям, либо взрывается (боеукладка), полностью снимая хит-поинты танка. Некоторые места в танке пересчитываются отдельно. Например гусеница и маска пушки получают только критическое повреждение, без снятия хит-поинтов у танка, если бронебойный снаряд не прошёл дальше. Или же оптика и люк механикам-водителя - в некоторых танках являются "слабыми местами".

Бронепробиваемость танка зависит и от его уровня. Чем выше уровень танка тем сложнее его пробить. Топовые танки обладают максимальной защитой и минимальной бронепробиваемостью.

Стрельба и бронепробиваемость - важнейшие элементы игровой механики. В этой статье содержится информация о таких игровых параметрах, как точность, бронепробиваемость и урон.

Точность

Точность - параметр орудия, характеризующий его способность посылать снаряды точно в цель.

В игре есть два аспекта относящихся к точности:

Разброс снарядов при стрельбе на 100 метров. Измеряется в метрах. Разброс зависит от умения наводчика. Необученный наводчик (50% основного умения) стреляет на 25% менее точно, нежели обученный на 100%. Время сведения - время прицеливания, измеряемое в секундах. Это условный параметр, который введён для балансных нужд. То есть навести само орудие на цель не достаточно, важно дождаться момента, когда прицельный круг закончит уменьшаться. В противном случае вероятность промаха резко возрастает. При движении танка и повороте башни и ствола, а также после выстрела прицел «расходится», то есть круг прицеливания резко увеличивается и необходимо дожидаться сведения заново. Время сведения - это время, за которое круг сведения уменьшается в ~2.5 раза, если быть точным, то в е раз (e - математическая константа, основание натурального логарифма ~2,71).

Так же важно понимать, что в игре (без установки посторонних модификаций) отображается круг сведения, а не круг разброса - эти два круга имеют совершенно разные диаметры и за очень редкими исключениями не совпадают друг с другом. На самом деле круг разброса меньше круга сведения (в разы) и задача круга сведения в игре, это не отображение разброса снарядов, а визуализация состояния орудия и его наводчика, целое, поврежденное, свелся наводчик или сводится, здоров он или контужен и т.д.

Как увеличить точность орудия

  • Установить оборудование Улучшенная вентиляция
  • Боевое братство (приблизительно +2.5% к меткости).
  • Использовать снаряжение, дающее на один бой +10% ко всем параметрам экипажа, в том числе около 5% к меткости - Доппаек , Шоколад , Ящик Колы , Крепкий кофе , Пудинг с чаем , Улучшенный рацион , Онигири .

Как ускорить сведение прицела

  • Установить орудие с наибольшей скоростью сведения.
  • Прокачать основную специальность наводчика до 100%.
  • Установить оборудование Усиленные приводы наводки (+10% к скорости сведения).
  • Установить оборудование Стабилизатор вертикальной наводки (-20% к разбросу при движении танка и повороте башни).
  • Установить оборудование Улучшенная вентиляция (приблизительно +2,5% к скорости сведения)
  • Прокачать наводчику умение Плавный поворот башни (-7,5% к разбросу при повороте башни).
  • Прокачать механику-водителю умение Плавный ход (-4% к разбросу при движении танка).
  • Прокачать всем членам экипажа навык Боевое братство (приблизительно +2,5% к скорости сведения).
  • Использовать снаряжение, дающее на один бой +10% ко всем параметрам экипажа, в том числе около 5% к скорости сведения Доппаек , Шоколад , Ящик Колы , Крепкий кофе , Пудинг с чаем , Улучшенный рацион , Онигири .

Авто-наведение

При нажатии правой кнопки мыши с прицелом, наведённым на противника, включается автонаведение. Оно фиксирует ствол танка на центре машины противника. Это позволяет не целиться на глаз, но в то же время имеет ряд существенных недостатков. Дело в том, что автонаводка всегда целится в центр силуэта вражеского танка, игнорируя препятствия на пути стрельбы, а также вектор и скорость движения противника. В случаях, когда в прицеле видна лишь часть машины противника или когда цель движется и необходимо упреждение, автонаводка не только не принесёт пользы, но более того - гарантирует промах. Автонаводка не позволяет выцеливать слабые места танка противника, поэтому относительно малополезна на высоких уровнях боев с точными орудиями и крупными хорошо бронированными танками.

Автонаводка обычно используется в ближнем бою во время активных манёвров и при стрельбе на дальние дистанции по неподвижному противнику.

Снятие автонаведения производится клавишей E (по умолчанию) или повторным нажатием правой кнопки мыши.

Подробный разбор механики стрельбы

Бронепробиваемость

Бронепробиваемость - параметр орудия, характеризующий его способность пробивать броню танков противника. Измеряется в миллиметрах и имеет разброс в ±25% относительно среднего значения. Важно помнить, что указанная в ТТХ бронепробиваемость указана для бронелиста, расположенного под углом 90 градусов к направлению движения снаряда. То есть наклон брони не учитывается, в то время как большинство танков обладают наклонной бронёй, пробить которую гораздо тяжелее. Так же указанное в ТТХ бронепробитие указывается на дистанции в 100 м, а с увеличением расстояния оно падает (актуально для подкалиберных и бронебойных снарядов и неприменимо для фугасных/HESH и кумулятивных).

Броня

Каждый танк имеет бронирование. Однако толщина брони не везде одинакова. Спереди она максимально толстая. Сзади - наоборот, тоньше всего. Крыша и днище танка также бронированы очень слабо. Броня указывается в таком формате: толщина лобовой брони/толщина бортовой брони/толщина кормовой брони . И если броня, например, равна 38/28/28, то орудие с пробивной способностью в 30 мм в общем случае сможет пробить корму и бок, но лоб - нет. Из-за 25 % разброса, реальная пробиваемость этого орудия от выстрела к выстрелу будет колебаться от 22,5 до 37,5 мм.

Следует помнить, что при указании брони не учитывается её наклон. Например, броня Т-54 равна 120 мм, угол наклона 60°, а нормализация снаряда 4-5°. При таком наклоне приведённая толщина брони будет равна около 210 мм. Однако даже самая толстая броня имеет свои уязвимые места. Таковыми является различные люки, пулемётные гнёзда, рубки, места стыков и т. д.

Непробитие и рикошет

У каждого снаряда свой порог пробития. И если он меньше, чем броня вражеского танка, то снаряд её не пробьёт. Для этого необходимо целиться в наиболее уязвимые места танка: корму, бока и различные выступы и щели. Если и это не помогает, можно использовать фугасные снаряды.

При стрельбе в танк, стоящий под углом, велика вероятность рикошета. Граница между пробитием и рикошетом лежит на угле в 70°. При превышении калибра снаряда над толщиной брони более 3 раз, рикошет не происходит, а при двойном превышении - нормализация снаряда увеличивается пропорционально превышению калибра орудия над толщиной брони - и снаряд пытается пробить броню под любым углом. Так, например, при стрельбе из 100мм орудия с бронепробитием 170, по бронелисту толщиной в 30мм под углом 89.99 градусов, нормализация вырастет до 23.33 градусов, и приведенная броня будет 30/cos(89.99-23.33)= 75.75мм брони.

Подробный разбор механики бронепробиваемости

Внимание! В обновлении 0.8.6 установлены новые правила пробития для кумулятивных снарядов:

Кумулятивный снаряд теперь может рикошетить при попадании снаряда в броню под углом 85 градусов и более. При рикошете пробиваемость танков в World of Tanks отрикошетившего кумулятивного снаряда не падает.

После первого пробития брони снаряд начинает терять бронепробиваемость со следующей скоростью: 5 % оставшейся после пробития бронепробиваемости - за 10 cм проходимого снарядом пространства (50 % - за 1 метр свободного пространства от экрана до брони).

Также в обновлении 0.8.6 нормализация подкалиберных снарядов снижена до 2°.

С обновления 0.9.3 рикошет в другой танк стал возможен. После второго рикошета снаряд исчезает. Узнать боевые характеристики любой техники, например, урон, броня, и выявить на основании этого зоны пробития, можно в разделе "Танковедение" в приложении World of Tanks Assistant.

Урон

Урон - параметр орудия, характеризующий его способность наносить ущерб танкам противника. Измеряется в единицах. Важно помнить, что урон, указанный в ТТХ орудия является средним и на деле варьируется в пределах 25%, как в меньшую, так и в большую сторону.

Расположение слабых точек

Расположение различных модулей в игре не указывается, но оно целиком и полностью соответствует реальным прототипам. А потому если в жизни боеуклад был в левом углу задней части танка, то и в игре он будет там. Но все же наиболее слабые места танков находятся примерно в одном месте:

  • Двигатель и топливный бак, как правило, расположены в кормовой (задней) части танка.
  • Боеукладка расположена в центре корпуса или же в кормовой (задней) части башни.
  • Чтобы сбить гусеницу танка, необходимо стрелять в передний или последний каток.
  • Орудие и триплексы видны невооруженным глазом.
  • Командир, как правило, находится в башне и может быть выведен из строя попаданием по командирской башенке.
  • Мехвод сидит в передней части корпуса машины.
  • Заряжающий и наводчик расположены в передней или центральной части башни.

Урон по модулям

Стрельба по модулям имеет свои особенности. Часто при попадании в модули, урон идёт по ним, но не по самому танку. У каждого модуля есть свои очки прочности (единицы здоровья). Если их полностью снять (критическое повреждение), то модуль перестает работать и на его восстановление потребуется некоторое время. Единицы здоровья модуля восстанавливаются не полностью, а только до 50%. Он остается поврежденным, и может хуже работать. Соответственно в последующем сломать этот же модуль будет проще. Если в процессе ремонта модулю наносится новое повреждение, очки здоровья снимаются, ремонт продолжается до 50%. То есть, если танку со снятой гусеницей продолжать попадать по этой же гусенице, то она будет чиниться постоянно (или пока танк не уничтожат).

Ремкомплект восстанавливает очки здоровья поврежденного модуля до 100%.

Двигатель При повреждении модуля или после восстановления максимальная скорость движения снижена. При критическом повреждении движение невозможно. Каждое повреждение двигателя способно вызвать пожар с вероятностью, указанной в описании двигателя (10-40%). Шанс на повреждение: 45% Гусеница При повреждении модуля увеличивается шанс разрыва. При критическом повреждении движение невозможно. Боеукладка При повреждении модуля увеличивается время перезарядки. При критическом повреждении танк уничтожается. При этом количество снарядов в боеукладке не влияет на шанс ее взрыва. Не взрывается лишь пустая боеукладка. Шанс на повреждение: 27% Бак При повреждении модуля штрафов не налагается. При критическом повреждении на танке начинается пожар. Шанс на повреждение: 45% Триплекс При повреждении модуля или после восстановления штрафов не налагается. При критическом повреждении дальность видимости снижается на 50%. Шанс на повреждение: 45% Радиостанция При повреждении модуля радиус связи снижается вдвое. Шанс на повреждение: 45% Орудие При повреждении модуля или после восстановления точность стрельбы снижается. При критическом повреждении стрельба из орудия и изменение его склонения невозможны. Шанс на повреждение: 33 % Механизм поворота башни При повреждении модуля или после восстановления скорость вращения башни снижается. При критическом повреждении вращение башни невозможно. Шанс на повреждение: 45%

Урон по экипажу

В отличие от модулей танка, у экипажа нет очков здоровья. Танкист может быть или здоров, или контужен. Выбитого танкиста можно вернуть в строй путем использования аптечки. Контузия всех членов экипажа приравнивается к уничтожению танка. При выводе из строя одного из членов экипажа все эффекты от дополнительных навыков и умений, изученных им, исчезают. Например, при контузии командира перестает работать лампочка «Шестого чувства». Кроме того, в случаях если:

Командир контужен - видимость снижается вдвое, перестает действовать командирский бонус. Мехвод контужен - скорость движения и поворотов снижается вдвое. Наводчик контужен - разброс увеличивается вдвое, скорость поворота башни уменьшается вдвое. Заряжающий контужен - скорость перезарядки снижается вдвое. Радист контужен - радиус связи снижается вдвое. Шанс на контузию члена экипажа: 33%

Подробный разбор механики повреждения модулей

Основы танкования

Процесс расчёта значения бронепробиваемости очень сложен и зависит от многих факторов. Среди них - толщина брони, угол наклона бронированного листа, бронепробиваемость орудия и многие другие.

Факторы, которые учитываются при приблизительном расчёте бронепробиваемости:

  1. Снаряд может попасть в любое место круга сведения.
  2. Бронепробиваемость бронебойных и подкалиберных снарядов уменьшается с увеличением расстояния до цели.
  3. Снаряд летит по баллистической траектории. Это условие действует для всех орудий. Но у ПТ-САУ дульная скорость достаточно высока, поэтому траектория снаряда близка к прямой, однако таковой не является, из-за чего возможно отклонение снаряда. Прицел это учитывает, показывая рассчитанную область попадания.
  4. Снаряд попадает в цель:
    • Расчёт бронепробиваемости снаряда в зависимости от среднего значения, указанного в тактико-технических характеристиках (ТТХ) орудия (±25% от среднего значения бронепробиваемости).
    • Проверка на рикошет. Бронебойные и подкалиберные снаряды рикошетят, если угол встречи с бронёй танка равен 70 градусам или превышает эту величину. Рикошета не происходит, если калибр орудия больше толщины брони более чем в 3 раза. В этом случае снаряд пытается пробить броню независимо от угла встречи с ней. При попадании во внешние модули (в ходовую часть, приборы наблюдения и т. д.) рикошета также не происходит.
    • Расчёт нормализации.
    • Расчёт итоговой бронепробиваемости.
  5. Кумулятивные снаряды - это премиум снаряды, которые есть на всех классах техники. Довольно часто используются на короткоствольных орудиях с низкой начальной скоростью полёта снаряда. Урон, наносимый танку, обычно равен урону бронебойных снарядов, но пробиваемость заметно выше из-за отличающейся от других типов снарядов механики пробития брони. Для преодоления брони не используется кинетическая энергия снаряда - пробитие брони происходит за счёт превращения металлической оболочки кумулятивной воронки в жидкость под высоким давлением. Под её воздействием монолитная броня ведёт себя так же, как жидкость, потому и происходит пробитие.
    • Кумулятивные снаряды не нормализуются и рикошетят (85 градусов).
    • На этот тип снарядов не распространяется правило трёх калибров, так как при столкновении сразу формируется кумулятивная струя.
    • Бронепробиваемость снарядов не падает с расстоянием.
    • Кумулятивная струя легко рассеивается, потому, если снаряд срабатывает не на основной броне, а на элементе ходовой или броневом экране, удалённом от брони, бронепробиваемость струи падает тем больше, чем большее расстояние отделяет точку срабатывания от основной брони.
    • У кумулятивных снарядов относительно низкая скорость полёта.
  6. Если снаряд пробил броню, то он в среднем снимает указанное в его параметрах число очков прочности танка (актуально для всех типов снарядов). При попадании в некоторые модули (орудие, гусеница) они могут полностью или частично поглощать бронепробиваемость снаряда, при этом получая критическое повреждение в зависимости от области попадания.
  7. Снаряд внутри танка движется по прямой, попадая в модули и пробивая их (как оборудование, так и членов экипажа).
    • У каждого из объектов есть собственное число очков прочности - HP (от англ. hit points - очки прочности).
    • HP танка снимаются только один раз - при факте пробития снарядом основной брони танка.
    • Количество снятых HP зависит только от значения урона, которое выпало для снаряда (±25% от его среднего значения урона). При этом берётся наибольший урон, который выпал, если было пробито несколько листов основной брони.
    • Снаряд старается пробить любую толщину бронелиста с учётом приведённой брони.
  8. Снаряд проходит сквозь модули и наносит им урон (или не наносит, если модуль «увернулся» от снаряда).
    • По мере прохождения снаряда через внутренние модули танка снаряд теряет свою бронепробиваемость, оставшуюся у него после пробития предыдущей брони на его пути.
    • Сквозные пробития танка в игре не предусмотрены: если остаточное значение бронепробиваемости снаряда велико, то внутри танка данный снаряд пройдёт дистанцию, равную 10 его калибрам (например, если калибр снаряда менее 50 мм, то внутри танка он проходит расстояние в 0,5 метра).
    • Внутренние модули также могут быть повреждены пожаром от другого загоревшегося модуля (бензобака либо мотора) в результате его критического повреждения.
    • Критическое повреждение модуля боеукладки вызывает её мгновенную детонацию и, как результат, моментальное уничтожение танка.

Пример на практике

Рассмотрим упрощённый пример стрельбы из орудия 105 mm Gun T5E1 с бронепробиваемостью 198/245/53 по танку ARL 44 , который имеет бронирование корпуса 120/50/50 мм и бронирование башни 100/60/60 мм.


  1. Толщина приведённой брони любого танка в общем случае составит величину, выраженную формулой:
    Х * (1/cos(Y))= Z ,
    где:
    Х - толщина листа в точке попадания,
    Y - угол к нормали, под которым происходит соприкосновение снаряда и брони,
    Z - толщина брони в миллиметрах.
  2. Рассчитаем:
    • Стреляем из 105-мм орудия. Табличная бронепробиваемость снаряда - около 198 мм.
    • Фактическая колеблющаяся бронепробиваемость - 149–248 мм на дистанции 100 метров.
    • Стреляем в лоб корпуса ARL 44 (120 мм).
    • Лоб корпуса расположенн под углом примерно 55 градусов.

Для такой ситуации выстрела толщина приведённого бронирования составит примерно:

120*(1/cos (55)) = 209,213 (мм) .

А это больше табличной бронепробиваемости данного орудия (см. выше). Поэтому в большинстве случаев либо такой бронелист не будет пробиваться, либо снаряды будут рикошетить от брони (если угол встречи с ней равен или превышает 70 градусов).

Толщина брони при проверке на рикошет имеет значение только для правила трёх калибров.

(УЯ) однородной стальной преграды (броневой гомогенной катаной стали). В более широком плане является составным элементом пробивающей способности поражающего элемента (поскольку последний может применяться для пробивания не только брони, но и других преград различной толщины, консистенции и плотности).

С точки зрения эффективности поражающего действия толщина пробития брони не имеет практического значения без сохранения снарядом, кумулятивной струей, ударным ядром остаточного заброневого (запреградного) действия. После пробития брони в заброневое пространство по разным способам оценки бронепробиваемости (разных стран и различных временных периодов), должны выйти целые корпуса снарядов, бронебойные сердечники, ударные ядра, либо разрушенные фрагменты этих снарядов, сердечников, или фрагменты кумулятивной струи или ударного ядра.

Оценка бронепробиваемости

Бронепробиваемость снарядов в разных странах оценивается по достаточно различающимся методикам. В общем случае оценка бронепробиваемости может описываться максимальной толщиной пробития гомогенной брони расположенной под углом 90 градусов к вектору скорости подлёта снаряда. Также в качестве оценки используется предельная скорость (либо дистанция) пробития брони данной толщины или данной бронепреграды конкретным боеприпасом.

В СССР/РФ при оценке бронепробиваемости боеприпаса и связанной с ней стойкости испытуемой брони сухопутной техники и ВМФ используют понятия «Предела Тыльной Прочности» (ПТП) и «Предела сквозного пробития» (ПСП).

b ПТП есть минимальная толщина брони, тыльная поверхность которой остается ненарушенной (по оговоренному критерию) при ведении огня из выбранной артиллерийской системы определённым боеприпасом с заданной дистанции стрельбы.

b ПСП есть максимальная толщина брони, которую может пробить артиллерийская система при стрельбе конкретным типом снаряда с заданной дистанции стрельбы.

Реальные же показатели бронепробиваемости могут находиться между значениями ПТП и ПСП. Оценка бронепробиваемости существенным образом меняется при попадании снаряда в броню установленную под углом к линии подлёта снаряда. В общем случае бронепробиваемость при уменьшении угла наклона брони к горизонту может уменьшиться многократно, и при некотором угле (своём для каждого типа снаряда и типа брони) снаряд начинает рикошетировать от брони, не «закусывая» её, то есть не начиная внедрения в броню. Ещё сильнее искажается оценка бронепробиваемости при попадании снарядов не в гомогенную катаную броню, а в современную броневую защиту бронетанковой техники, которая в настоящее время практически повсеместно выполняется не однородной (гомогенной), а гетерогенной (комбинированной) - многослойной со вставками различных армирующих элементов и материалов (керамики, пластических масс, композитов, разнородных металлов в том числе и лёгких).

Бронепробиваемость тесно связана с понятием «толщина бронезащиты» или «стойкости к воздействию снаряда (того или иного вида воздействия)» или «бронестойкости». Бронестойкость (толщина брони, стойкость к воздействию) обычно указывается как некая средняя. Если величина бронестойкости (например ВЛД) брони какого-либо современного бронетанкового средства с многослойной броней по ТТХ этого средства равно 700 мм, это может означать, что воздействие кумулятивных боеприпасов с бронепробиваемостью в 700 мм, такая броня выдержит, а вот воздействия кинетического снаряда БОПС с бронепробиваемостью всего в 620 мм не выдержит. Для точной оценки бронестойкости бронетанкового средства необходимо указывать по крайней мере две величины бронестойкости, для БОПСа и для кумулятивных боеприпасов.

Бронепробиваемость при откольном действии

В некоторых случаях при применении обычных кинетических снарядов (БОПС) или специальных осколочно-фугасных снарядов с пластическим ВВ (а по механизму воздействия бризантных с эффектом Гопкинсона) имеет место не сквозное пробитие, а заброневое (запреградное) «откольное» действие, при котором осколки брони отлетающие при несквозном повреждении брони с её тыльной стороны имеют энергию достаточную для поражения экипажа или материальной части бронированного средства. Откол материала происходит вследствие прохождения по материалу преграды (брони) ударной волны, возбуждаемой динамическим воздействием кинетических боеприпасов (БОПС), или ударной волны детонации пластического ВВ и механического напряжения материала в том месте, где его уже не удерживают следующие слои материала (с тыльной стороны) до его механического разрушения, с приданием отколовшейся части материала некоторого импульса за счёт упругих взаимодействий с массивом отделяющегося материала преграды.

Бронепробиваемость кумулятивных боеприпасов

По бронепробиваемости валовые кумулятивные боеприпасы примерно равноценны современным кинетическим боеприпасам, но принципиально могут иметь значительные преимущества по бронепробиваемости перед кинетическими снарядами, пока не будут существенно (более чем до 4000 м/c) увеличены начальные скорости последних или удлинение сердечников БОПС. Для калиберных кумулятивных боеприпасов можно употреблять понятие «коэффициента бронепробиваемости», выражающегося в отношении бронепробиваемости к калибру боеприпасов. Коэффициент бронепробиваемости у современных кумулятивных боеприпасов может достигать 6-7,5. Перспективные кумулятивные боеприпасы, снаряженные специальными мощными ВВ, снабженные облицовкой из материалов типа обеднённого урана , тантала , и пр. могут иметь коэффициент бронепробиваемости до 10 и более. Кумулятивные боеприпасы имеют и недостатки по бронепробиваемости, например недостаточное заброневое действие при работе на пределах бронепробиваемости. Недостатком кумулятивных боеприпасов являются и хорошо разработанные способы защиты от них, например,возможность разрушения или расфокусировки кумулятивной струи, достигаемые различными, часто достаточно простыми способами защиты от кумулятивных снарядов стороной.

Согласно гидродинамической теории М. А. Лаврентьева, пробивное действие кумулятивного заряда с конической воронкой [ ] :

b=L(Pc/Pп)^(0,5)

где b-глубина проникновения струи в преграду, L - длина струи, равная длине образующей конуса кумулятивной выемки, Рс - плотность материала струи, Рп - плотность преграды. Длина струи L: L=R/sin(α) , где R-радиус заряда, α-угол между осью заряда и образующей конуса. Однако в современных боеприпасах применяются различные меры для осевого растяжения струи (воронка с переменным углом конусности, с перменной толщиной стенок) и бронепробиваемость современных боеприпасов может превышать 9 диаметров заряда.

Расчёты бронепробиваемости

Бронепробиваемость кинетических боеприпасов, как правило калиберных, может быть вычислена по эмпирическим формулам Сиаччи и Круппов, Гавра, Томпсона, Дэвиса, Кирилова и др., используемым с XIX века.

Для вычисления теоретической бронепробиваемости кумулятивных боеприпасов применяются формулы гидродинамических течений и упрощенные формулы, например Макмиллана, Тейлора-Лавреньтьева, Покровского и т. д. Теоретически рассчитанная бронепробиваемость, далеко не во всех случаях сходится с реальной бронепробиваемостью.

Хорошую сходимость с табличными и экспериментальными данными показывает формула Якоба де Марра (де Марре) [ ] : b = (V / K) 1 , 43 ⋅ (q 0 , 71 / d 1 , 07) ⋅ (cos ⁡ A) 1 , 4 {\displaystyle b=(V/K)^{1,43}\cdot (q^{0,71}/d^{1,07})\cdot (\cos A)^{1,4}} , где b - толщина брони, дм, V, м/с - скорость встречи снаряда с броней, К - коэффициент стойкости брони, имеет величину от 1900 до 2400, но обычно 2200, q, кг-масса снаряда, d - калибр снаряда, дм, А - угол в градусах между продольной осью снаряда и нормалью к броне в момент встречи (дм - дециметры).

Данная формула является не физической, то есть, выведенной из математической модели физического процесса, каковая в данном случае может быть составлена лишь с применением аппарата высшей математики - а эмпирической, то есть, основана на экспериментальных данных, полученных во второй половине XIX века при обстреле на полигоне листов сравнительно толстой железной и сталежелезной корабельной брони низкоскоростными крупнокалиберными снарядами, что резко сужает её область применения. Тем не менее, формула Якоба де Марра применима для тупоголовых бронебойных снарядов (не учитывает заострения головной части) и иногда дает неплохую сходимость для современных БОПС [ ] .

Бронепробиваемость стрелкового оружия

Бронепробиваемость пуль стрелкового оружия определяется, как по максимальной толщине пробития броневой стали так и по способности сквозного пробития защитной одежды различных классов защиты (структурной защиты) с сохранением запреградного действия достаточного для гарантированного вывода противника из строя. В различных странах необходимая остаточная энергия пули или осколков пули после пробития защитной одежды оценивается от 80 Дж и выше [ ] . В общем случае известно, что используемые в бронебойных пулях разного рода сердечники после пробития преграды имеют достаточное убойное действие только при калибре сердечника не менее 6-7 мм, и его остаточной скорости не менее 200 м/с. Например бронебойные пистолетные пули с диаметром сердечника менее 6 мм, имеют весьма низкое убойное действие после пробития преграды сердечником.

Бронепробиваемость пуль стрелкового оружия: b = (C q d 2 a − 1) ⋅ ln ⁡ (1 + B v 2) {\displaystyle b=(Cqd^{2}a^{-1})\cdot \ln(1+Bv^{2})} , где b - глубина проникновения пули в преграду, q - масса пули, а - коэффициент формы головной части, d -диаметр пули, v - скорость пули в точке встречи с преградой, В и С - коэффициенты для различных материалов. Коэффициент а=1,91-0,35*h/d, где h - высота головной части пули, для пули обр.1908 а=1, пули патрона обр.1943 а=1,3, пули патрона ТТ а=1,7 Коэффициент В=5,5*10^-7для брони (мягкой и твёрдой), Коэффициент С=2450 для мягкой брони с НВ=255 и 2960 для твёрдой с НВ=444. Формула приближенная, не учитывает деформацию ГЧ, поэтому для брони следует подставлять в неё параметры бронебойного сердечника, а не собственно пули

Пробиваемость

Задачи пробивания преград в военной технике не ограничиваются пробиванием металлической брони, но также заключаются в пробивании различными типами снарядов (например бетонобойными) преград из иных конструкционных и строительных материалов. Например обычными преградами являются грунты (обычные и мерзлые), пески с различным содержанием воды, суглинки, известняки, граниты, дерево, кирпичная кладка, бетон, железобетон. Для расчётов пробиваемости (глубины проникания в преграду снаряда) в нашей стране используют несколько эмпирических формул глубины внедрения снарядов в преграду например формулу Забудского, Формулу АНИИ, или устаревшую Березанскую формулу.

История

Необходимость оценки бронепробиваемости впервые возникла в эпоху возникновения морских броненосцев . Уже в середине 1860-х годов на Западе появляются первые исследования по оценке бронепробиваемости сначала круглых стальных ядер дульнозарядных артиллерийских орудий, а затем и стальных бронебойных продолговатых снарядов нарезных артиллерийских орудий. К этому же времени развивается отдельный раздел баллистики, изучающей бронепробиваемость снарядов, и появляются первые эмпирические формулы расчётов бронепробиваемости.

Между тем, различие методик испытаний, принятых в различных странах, привело к тому, что к 1930-м годам XX века накопились значительные расхождения по оценке бронепробиваемости (и соответственно бронестойкости) брони.

Например, в Великобритании считалось, что все фрагменты (осколки) бронебойного снаряда (в то время бронепробиваемость кумулятивных снарядов ещё не оценивалась) после пробития брони должны проникать в заброневое (запреградное) пространство. В СССР придерживались такого же правила.

Между тем, в Германии и США считалось, что броня пробита, если не менее 70-80 % фрагментов снаряда проникнут в заброневое пространство [ ] . Разумеется, об этом следует помнить, сравнивая данные о бронепробиваемости, полученные из различных источников.

В конечном счёте стало принято считать [где? ] , что броня пробита, если более половины фрагментов снаряда окажутся в заброневом пространстве [ ] . Остаточная энергия фрагментов снаряда оказавшаяся за броней не учитывалась, и, таким образом, запреградное действие этих фрагментов также оставалось невыясненным, колеблясь от случая к случаю.

Наряду с различными методиками оценки бронепробиваемости снарядов, с самого начала наблюдалось и два противоположных подхода к её достижению: либо за счёт применения сравнительно лёгких высокоскоростных снарядов, пробивающих броню, либо за счёт тяжёлых малоскоростных, её скорее проламывающих. Проявившись ещё в эпоху первых броненосцев, эти две линии в той или иной степени существовали в течение всей эволюции кинетических средств поражения бронированной техники.

Так, в годы перед Второй мировой войной в Германии, Франции и Чехословакии главным направлением развития были малокалиберные танковые и противотанковые орудия с высокой начальной скоростью снаряда и форсированной баллистикой, каковое направление было в целом сохранено и в годы самой войны. В СССР же, напротив, ставка была с самого начала сделана на разумное увеличение калибра, что позволило достичь той же бронепробиваемости при более простой и технологичной конструкции снаряда, ценой некоторого увеличения массово-габаритных характеристик самой артсистемы. В результате, несмотря на общее техническое отставание, советская промышленность в годы войны сумела обеспечить армию достаточным количеством средств борьбы с бронетехникой противника, имеющих адекватные решению поставленных перед ними задач тактико-технические характеристики. Лишь в послевоенные годы технологический прорыв, обеспеченный в том числе и изучением последних немецких разработок, позволил перейти на более эффективные средства достижения высокой бронепробиваемости, чем простое увеличение калибра и иных количественных параметров.