План урока. План урока. Повторение пройденного материала Повторение пройденного материала (проверка домашнего задания) (проверка домашнего задания) 1. тестирование; 1. тестирование; 2. работа с графиками; 2. работа с графиками; 3. работа со схемами; 3. работа со схемами; 4. работа в малых группах. 4. работа в малых группах. Изучение нового материала. Изучение нового материала. Рассказ учителя с элементами беседы. Рассказ учителя с элементами беседы. Доклады учащихся. Доклады учащихся. Закрепление изученного материала Закрепление изученного материала учебник §10, вопросы 2,3,4,6. учебник §10, вопросы 2,3,4,6. Подведение итогов Подведение итогов




Изучение нового материала. Изучение нового материала. Местообитание – это территория или акватория, занимаемая популяцией, с комплексом присущих ей экологических факторов. Местообитание – это территория или акватория, занимаемая популяцией, с комплексом присущих ей экологических факторов. Стации – местообитание наземных животных. Стации – местообитание наземных животных. Экологическая ниша – совокупность всех факторов среды, в пределах которых возможно существование вида. Экологическая ниша – совокупность всех факторов среды, в пределах которых возможно существование вида. Фундаментальная экологическая ниша – ниша определяемая только физиологическими особенностями организма. Фундаментальная экологическая ниша – ниша определяемая только физиологическими особенностями организма. Реализованная ниша – ниша в пределах которой вид встречается реально в природе. Реализованная ниша – ниша в пределах которой вид встречается реально в природе. Реализованная ниша – это та часть фундаментальной ниши, которую данный вид или популяция в состоянии «отстоять» в конкурентной борьбе. Реализованная ниша – это та часть фундаментальной ниши, которую данный вид или популяция в состоянии «отстоять» в конкурентной борьбе.




Изучение нового материала Межвидовая конкуренция – это взаимодействие между популяциями, которое вредно сказывается на их росте и выживании. Межвидовая конкуренция – это взаимодействие между популяциями, которое вредно сказывается на их росте и выживании. Процесс разделения популяциями видов пространства и ресурсов называется дифференциацией экологических ниш. Результат Процесс разделения популяциями видов пространства и ресурсов называется дифференциацией экологических ниш. Результат дифференциации ниш снижает конкуренцию. дифференциации ниш снижает конкуренцию. Межвидовая Конкуренция за экологические ниши Конкуренция за ресурсы.










Изучение нового материала. Вопрос: В чём проявляется следствие межвидовой конкуренции? Вопрос: В чём проявляется следствие межвидовой конкуренции? Ответ: У особей одного вида уменьшается плодовитость, выживаемость и скорость роста в присутствие другого Ответ: У особей одного вида уменьшается плодовитость, выживаемость и скорость роста в присутствие другого Работа по таблице. Работа по таблице. Результаты конкуренции между видами жуков мучных хрущаков в стаканчиках с мукой. Вывод: Результат конкуренции между двумя видами жуков – мучных хрущаков- зависит от условий среды. Режим содержания (t*C,влажность) Результаты выживания Первый вид Второй вид 34 *С, 70% 34 *С, 70% *С, 30% 34*С, 30% *С, 70% 29*С, 70% *С, 30% 29*С, 30% *С, 70% 24*С, 70% *С, 30% 24*С, 30%


Изучение нового материала. Вопрос. Каковы пути выхода из межвидовой конкуренции? Вопрос. Каковы пути выхода из межвидовой конкуренции? (у птиц) (у птиц) Вывод. Перечисленные пути выхода из межвидовой конкуренции дают возможность сосуществования экологически близким популяциям в одном сообществе. Пути выхода Различия в способах добывания корма Различия в размерах организмов Различия во времени активности Пространственное раз деления пищевых «сфер влияния» Разделение мест гнездования










Изучение нового материала Вопрос: В чём опасность внутривидовой конкуренции? Вопрос: В чём опасность внутривидовой конкуренции? Ответ: Уменьшается потребность ресурсов в расчёт на одну особь; в результате – понижается скорость индивидуального роста, развития количества запасаемых веществ, что в конечном итоге снижает выживаемость и уменьшает плодовитость. Ответ: Уменьшается потребность ресурсов в расчёт на одну особь; в результате – понижается скорость индивидуального роста, развития количества запасаемых веществ, что в конечном итоге снижает выживаемость и уменьшает плодовитость.


Изучение нового материала Механизмы выхода из внутрипопуляционной Механизмы выхода из внутрипопуляционной конкуренции у животных конкуренции у животных Пути выхода Различие экологических связей на разных этапах развития организмов Различие экологических особенностей полов у разнополых организмов Территориальность и иерархия как поведенческие механизмы выхода Заселение новых территорий.


Закрепление изученного материала. Учебник, § 10, вопросы 2,3,4,6. Учебник, § 10, вопросы 2,3,4,6. Выводы: Конкуренция приводит к естественному отбору в направлении увеличения экологических различий между конкурирующими видами и образованию ими разных экологических ниш. Выводы: Конкуренция приводит к естественному отбору в направлении увеличения экологических различий между конкурирующими видами и образованию ими разных экологических ниш.



Презентация по теме "Классификация и морфология бактерий" по дисциплине Основы микробиологии и иммунологии, специальность 34.02.01. Сестринское дело подготовлена для проведения теоритических занятий. Охватывает один из основных разделов дисциплины. Разделы презентации: размер бактерий, форма бактерий, строение бактериальной клетки, классификация бактерий по Берджи, физиология бактерий.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Раздел 2: Бактериология Тема 2.1: « Классификация бактерий. Морфология бактерий ».

Классификация микроорганизмов Неклеточные формы Клеточные формы Прокариоты Эукариоты Вирусы могут существовать в двух формах: внеклеточной (вириона) и внутриклеточной (вируса). Размер: от 15–18 до 300–400 нм. Бактерии – одноклеточные микроорганизмы растительного происхождения, лишенные хлорофилла и не имеющие ядра. Размер: от 0,3–0,5 до 5-10 мкм. Простейшие являются одноклеточными животными организмами. Размер: от 2 до 50 мкм Грибы – одноклеточные и многоклеточные микроорганизмы растительного происхождения, лишенные хлорофилла, но имеющие черты животной клетки. Размер: от 0,2 до 100 мкм

Основные понятия: Классификация - распределение (объединение) организмов в соответствии с их общими свойствами (сходными генотипическими и фенотипическими признаками) по различным таксонам. Систематика- распределение микроорганизмов в соответствии с их происхождением и биологическим сходством. Таксономия - наука о методах и принципах распределения (классификации) организмов в соответствии с их иерархией. Наиболее часто используют следующие таксономические единицы (таксоны)- штамм, вид, род. Последующие более крупные таксоны - семейство, порядок, класс.

1.Морфологические- форма, величина, особенности взаиморасположения, структура. 2. Тинкториальные - отношение к различным красителям (характер окрашивания), прежде всего к окраске по Граму. По этому признаку все микроорганизмы делят на грамположительные и грамотрицательные. 3. Культуральные- характер роста микроорганизма на питательных средах.

4. Биохимические - способность образовывать в процессе жизнедеятельности различные биохимические продукты за счет активности различных ферментных систем и особенностей обмена веществ. 5.Антигенные- зависят преимущественно от химического состава и строения клеточной стенки, наличия жгутиков, капсулы, распознаются по способности макроорганизма (хозяина) вырабатывать антитела и другие формы иммунного ответа, выявляются в иммунологических реакциях. 6. Физиологические - способы углеводного (аутотрофы, гетеротрофы), азотного (аминоавтотрофы, аминогетеротрофы) и других видов питания, тип дыхания (аэробы, микроаэрофилы, факультативные анаэробы, строгие анаэробы).

7. Подвижность и типы движения. 8. Способность к спорообразованию, характер спор. 9. Чувствительность к бактериофагам, фаготипирование. 10. Химический состав клеточных стенок - основные сахара и аминокислоты, липидный и жирнокислотный состав. 11. Чувствительность к антибиотикам и другим лекарственным препаратам. 12. Г енотипические.

Размеры БАКТЕРИЙ Размеры бактериальных клеток колеблются в пределах от 1 до 10-15 мкм

По форме выделяют следующие основные группы микроорганизмов. Шаровидные или кокки. Палочковидные. Извитые. Нитевидные.

Кокковидные бактерии (кокки) по характеру взаиморасположения после деления подразделяются на: 1. Микрококки. Клетки расположены в одиночку. Входят в состав нормальной микрофлоры, находятся во внешней среде. Заболеваний у людей не вызывают. 2. Диплококки. Деление этих микроорганизмов происходит в одной плоскости, образуются пары клеток. Среди диплококков много патогенных микроорганизмов- гонококк, менингококк, пневмококк. 3. Стрептококки. Деление осуществляется в одной плоскости, размножающиеся клетки сохраняют связь (не расходятся), образуя цепочки. Много патогенных микроорганизмов- возбудители ангин, скарлатины, гнойных воспалительных процессов.

4. Тетракокки. Деление в двух взаимоперпендикулярных плоскостях с образованием тетрад (т.е. по четыре клетки). Медицинского значения не имеют. 5. Сарцины. Деление в трех взаимоперпендикулярных плоскостях, образуя тюки (пакеты) из 8, 16 и большего количества клеток. Часто обнаруживают в воздухе. 6. Стафилококки (от лат.- гроздь винограда). Делятся беспорядочно в различных плоскостях, образуя скопления, напоминающие грозди винограда. Вызывают многочисленные болезни, прежде всего гнойно - воспалительные (фурункулёз)

Палочковидные формы 1 . Бактерии - палочки, не образующие спор. 2. Бациллы - аэробные спорообразующие микробы. Диаметр споры обычно не превышает размера (“ширины”) клетки (эндоспоры). 3. Клостридии - анаэробные спорообразующие микробы. Диаметр споры больше поперечника (диаметра) вегетативной клетки, в связи с чем клетка напоминает веретено или теннисную ракетку.

Извитые формы 1. Вибрионы и кампилобактерии - имеют один изгиб, могут быть в форме запятой, короткого завитка. (холерный вибрион) 2. Спириллы - имеют 2- 3 завитка. 3. Спирохеты - имеют различное число завитков, Из большого числа спирохет наибольшее медицинское значение имеют представители трех родов- Borrelia , Treponema , Leptospira .

Строение бактериальной клетки.

Обязательные органоиды: ядерный аппарат - нуклеоид - , цитоплазма, цитоплазматическая мембрана. 1.В центре бактериальной клетки находится нуклеоид - ядерное образование, представленное чаще всего одной хромосомой кольцевидной формы. Состоит из двухцепочечной нити ДНК. Нуклеоид не отделен от цитоплазмы ядерной мембраной. 2. Цитоплазма - сложная коллоидная система, содержащая различные включения метаболического происхождения (зерна волютина, гликогена, гранулезы и др.), рибосомы и другие элементы белоксинтезирующей системы, плазмиды (вненуклеоидное ДНК), мезосомы (образуются в результате инвагинации цитоплазматической мембраны в цитоплазму, участвуют в энергетическом обмене, спорообразовании, формировании межклеточной перегородки при делении).

3. Цитоплазматическая мембрана ограничивает с наружной стороны цитоплазму, имеет трехслойное строение и выполняет ряд важнейших функций- барьерную (создает и поддерживает осмотическое давление), энергетическую (содержит многие ферментные системы- дыхательные, окислительно - восстановительные, осуществляет перенос электронов), транспортную (перенос различных веществ в клетку и из клетки). 4. Клеточная стенка - присуща большинству бактерий (кроме микоплазм и некоторых других не имеющих истинной клеточной стенки микроорганизмов).. В составе – два основных слоя, из которых наружный- более пластичный, внутренний- ригидный.

Строение клеточной стенки грам (+) микроорганизмов (слева) грам (-) микроорганизмов (справа)

Классификация микроорганизмов по Берджи

К поверхностным структурам бактерий (необязательным, как и клеточная стенка), относятся капсула, жгутики, микроворсинки. Капсула или слизистый слой окружает оболочку ряда бактерий. Выделяют микрокапсулу, выявляемую при электронной микроскопии в виде слоя микрофибрилл, и макрокапсулу, обнаруживаемую при световой микроскопии. Капсула является защитной структурой.

Жгутики. Подвижные бактерии могут быть скользящие (передвигаются по твердой поверхности в результате волнообразных сокращений) или плавающие, передвигающиеся за счет нитевидных спирально изогнутых белковых образований - жгутиков.

По расположению и количеству жгутиков выделяют ряд форм бактерий. А. Монотрихи - имеют один полярный жгутик. (холерный вибрион, синегнойная палочка). В. Лофотрихи - имеют полярно расположенный пучок жгутиков. С. Амфитрихи - имеют жгутики по диаметрально противоположным полюсам. D . Перитрихи - имеют жгутики по всему периметру бактериальной клетки. (Е. coli , сальмонеллы брюшного тифа, паратифов А и В).

Фимбрии или реснички – короткие нити, в большом количестве окружающую бактериальную клетку, с помощью которых бактерии прокрепляются к субстратам (например, к поверхности слизистых оболочек).

Спорообразование - способ сохранения определенных видов бактерий в неблагоприятных условиях среды. Эндоспоры образуются в цитоплазме, представляют собой клетки с низкой метаболической активностью и высокой устойчивостью (резистентностью) к высушиванию, действию химических факторов, высокой температуры и других неблагоплиятных факторов окружающей среды. Бактерии образуют только одну спору

Выживание бактерий при высушивании Холерный вибрион до 2 дней Чумная палочка до 8 дней Палочка дифтерии до 30 дней Палочка тифа до 70 дней Туберкулезная палочка до 90 дней Палочка стафилококка до 90 дней

Споры могут располагаться: в центре клетки - центрально (возбудитель сибирской язвы) 2 .ближе к концу - субтерминально, (возбудителяь газовой гангрены) 3.на самом конце - терминально, (возбудительи столбняка и ботулизма)

БАЦИЛЛЫ – споры НЕ превышают диаметр клетки Bacillus anthracis - возбудителя сибирской язвы

КЛОСТРИИИ - споры больше диаметра клетки Clistridium , Cl . b otulinum – клостридия ботулизма Clostridium tetani – клостридия столбняка

РИККЕТСИОЗЫ Род Rickettsia , виды делят на две группы: 1) группу тифов: а) R. provacheka – возбудитель эпидемического (вшивого) сыпного тифа; б) R. typhi – возбудитель эндемического (крысино-блошиного) тифа; 2) группу клещевых риккетсиозов: а) R. rickettsi – возбудитель лихорадки скалистых гор; б) R. conori – возбудитель геморрагической лихорадки

Сыпной тиф Сыпной тиф - вызываемое риккетсиями Провачека общее острое инфекционное заболевание, передающееся от больного человека здоровому через вшей; оно характеризуется преимущественным поражением сосудистой и нервной систем, типичной температурной кривой и сыпью на коже. Сыпной тиф является одной из разновидностей обширной группы риккетсиозных заболеваний человека, к числу которых, в частности, относятся: - эндемический (крысиный) сыпной тиф, -клещевой сыпной тиф.

Микоплазмы Микоплазмы – это бактерии, которые относятся к кла ссу Mollicutes (мягкокожие). Самые мелкие грам « - « бактерии (0,3-0,9 мкм). Главная черта– отсутствие клеточной стенки. Клетки окружены только ЦПМ, поэтому они имеют разнообразную форму: кокки, палочки, колбовидные, грушевидные или нитевидные. Снаружи ЦПМ – капсулоподобный слой, в цитоплазме – нуклеоид, рибосомы, мезосомы. Спор не образуют. Вызывают заболевание у человека по типу острой респираторной инфекции (Mycoplasma pneumonia); поражают органы дыхания, мочеполовую и ЦНС.

№ Формы и виды бактерий Особенности расположения и строения бактериальной клетки Заболевания, вызываемые данным видом бактерий 1 Шаровидные (кокки) 2 Палочковидные (палочки) 3 Извитые формы Заполнить таблицу: «Основные формы бактерий».

Спасибо за внимание! 


Слайд 2

Энергия в бактериальной клетке накапливается в форме молекул АТФ. У хемоорганотрофных бактерий реакции, связанные с получением энергии в форме АТФ, - это реакции окисления-восстановления, сопряженные с реакциями фосфорилирования.

Слайд 3

При использовании в качестве источника углерода и энергии глюкозы или других гексоз начальные этапы окисления глюкозы являются общими, как при оксидативном,так и при бродильномметаболизмах. К ним относятся пути превращения глюкозы в пируват (при использовании в качестве источника энергии отличных от глюкозы гексоз, или дисахаридов, они врезультате химических превраще­ний вступают вцепь реакций, превращающих глюкозу в пируват).

Слайд 4

Пути расщепления глюкозы.

Расщепление глюкозы до пировиноградной кислоты, одному из важнейших промежуточных продуктов обмена веществ, у бактерий происходит 3 путями

Слайд 5

Пути расщепления глюкозы

1) через образование фруктозо-1,6-дифосфата (ФДФ-путем, или гликолитическим распадом, или, по имени изучавших его ис­следователей, путем Эмбдена-Мейергофа- Парнаса); 2) через пентозофосфатный путь (ПФ-путь); 3) через путь Энтнера-Дудорова, или КДФГ-путь (путь 2-кето-3-дезокси-6-фосфоглюконовая кислоты).

Слайд 6

Глюкоза в бактериальной клетке сначала фосфорилируется при участии АТФ и фермента гексокиназы до метаболически активной формы глюкозо-6-фосфата (Г-6-Ф), которая служит исходным соединением для любого из трех указанных выше путей.

Слайд 7

ФДФ-путь.

Г-6-Ф изомеризуется до фруктозо-6-фосфата, который под действием фосфофруктокиназы превращается во фруктозо-1,6-дифосфат, который в дальнейшем через образование З-фосфоглицеринового альдегида окисляется до пировиноградной кислоты. Баланс окисления глюкозы по ФДФ-пути слагается из образования 2 молекул пирувата, 2 молекул АТФ и 2 молекул восстановленного НАД.

Слайд 8

ПФ-путь.

Вэтом случае глюкозо-6-фосфат через реакции дегидрирования и декарбоксилирования превращается в рибулезо-5-фосфат (Ри-5-Ф), который находится в равновесии с рибозо-5-фосфатом и ксилулозо-5-фосфатом. Ри-5-Ф расщепляется до З-фосфоглицеринового альдегида, промежуточного продукта превращения глюкозы в пируват.

Слайд 9

Образовавшиеся пентозофосфаты превращаются в результате транскетолазных и трансальдолазных реакций во фруктозо-6-фосфат, замыкая реакции в цикл, и в 3-фосфоглицериновый альдегид, промежуточный продукт превращения глюкозы в пируват по ФДФ-пути. При одном обороте цикла образуется 1 молекула З-фосфоглицеринового альдегида, 3 молекулы С02 и 2 молекулы восстановленного НАДФ.

Слайд 11

Процесс начинается с дегидрирования глюкозо-6-фосфата до 6-фосфоглюконовой кислоты. От нее под действием дегидрогеназы отщепляется вода и образуется 2-кето-3-дезокси-6-фосфоглюконовая кислота (КДФГ), которая расщепляется альдолазой на пируват и 3-фосфоглицериновый альдегид. Последний окисляется до пировиноградной кислоты так же, как и по ФДФ-пути.

Слайд 12

На каждую молекулу глюкозы образуется 1 молекула АТФ, 1 молекула восстановленного НАД и 1 молекула восстановленного НАДФ, которая эквивалента 1 молекуле АТФ и 1 молекуле восстановленного НАД.

Слайд 13

Окислительный метаболизм у бактерий (дыхание)

  • Слайд 14

    Окислительный метаболизм

    Бактерии, обладающие окислительным метаболизмом, энергию получают путем дыхания. Дыхание- процесс получения энергии в реакциях окисления-восстановления, сопряженных с реакциями окислительного фосфорилирования, при котором донорами электронов могут быть органические (у органотрофов) и неорганические (у литотрофов) соединения, а акцептором - только неорганические соединения.

    Слайд 15

    В зависимости от акцепторов протонов и электронов среди бактерий различают аэробы, факультативные анаэробы и облигатные анаэробы. Для аэробов акцептором является кислород. Факультативные анаэробы в кислородных условиях используют процесс дыхания, в бескислородных – брожение. Для облигатных анаэробов характерно только брожение, в кислородных условиях наступает гибель микроорганизмов из-за образования перекисей, идет отравление клетки.

    Слайд 16

    Облигатные аэробы (бруцеллы, легионеллы, псевдомонады, микобактерии, возбудитель сибирской язвы) растут и размножаются только в присутствии кислорода. Используют кислород для получения энергии путем кислородного дыхания. Они подразделяются на: 1) строгие аэробы (менингококки, бордетеллы), которые растут при парциальном давлении атмосферы воздуха; 2) микроаэрофилы(листерии) растут при пониженном парциальном давлении атмосферного возхдуха.

    Слайд 17

    Облигатные анаэробы (бифидобактерии, лактобактерии, клостридии)не используют кислород для получения энергии. Тип метаболизма у них бродильный. Они подразделяются на: 1) строгие анаэробы – микроорганизмы для которых молекулярный кислород токсичен; он либо убивает микроорганизмы, либо ограничивает их рост. Энергию строгие анаэробы получают маслянокислым брожением; 2) аэротолерантные микроорганизмы (молочнокислые бактерии) используют кислород для получения энергии, но могут существовать в его атмосфере. Энергию получают гетероферментативным молочнокислым брожением

    Слайд 18

    Факультативные анаэробы (пневмококки, энтерококки, энтеробактерии, коринебактерии, франциселлы)способны расти и размножаться как в присутствии кислорода, так и в отсутствии его. Они обладают смешанным типом метаболизма. Процесс получения энергии у них может происходить кислородным дыханием в присутствии кислорода, а в его отсутствии переключаться на брожение. Различное физиологическое отношение микроорганизмов к кислороду связано с наличием у них ферментных систем, позволяющих существовать в атмосфере кислорода.

    Слайд 19

    В окислительных процессах, протекающих в атмосфере кислорода образуются токсические продукты: перекись водорода Н2О2 и закисный радикал кислорода О2-. Для нейтрализации токсичных форм кислорода, микроорганизмы, способные существовать в его атмосфере, имеют защитные механизмы.

    Слайд 20

    У бактерий, обладающих окислительным метаболизмом, акцептором электронов (или водорода (Н+)) является молекулярный кислород. В этом случае пируват полностью окисляется в цикле трикарбоновых кислот до С2.

    Слайд 21

    Цикл трикарбоновых кислот (цикл Кребса)

  • Слайд 22

    Цикл трикарбоновых кислот выполняет функции как поставщика предшественников для биосинтетических процессов, так и атомов водорода, который в форме восстановленного НАД переносится на молекулярный кислород через серию переносчиков, обладающих сложной структурно оформленной мультиферментной системой - дыхательной цепью. Дыхательная цепь у бактерий локализована в ЦПМ и во внутриклеточных мембранных структурах.

    Слайд 23

    Типичная цепь выглядит следующим образом: ЦТК → НАД(Н2)→флавопротеид→хинон → →цитохромы: в→с→а→О2

    Слайд 24

    Среди бактериальных цитохромов различают цитохромы в, с, а и а3. Конечным этапом переноса электронов (протонов) по дыхательной цепи является восстановление цитохромов а - а3 (цитохромоксидазы). Цитохромоксидаза является конечной оксидазой, передающей электроны на кислород. Образующиеся при окислении ФАД или хинонов протоны связываются ионами О2- с образованием воды.

    Слайд 25

    Образование АТФ вдыхательной цепи связывают с хемоосмотическим процессом. Особая ориентация переносчиков в ЦПМ приводит к тому, что передача водорода происходит с внутренней на внешнюю поверхность мембраны, в результате чего создается градиент атомов водорода, проявляющийся в наличии мембранного потенциала. Энергия мембранного потенциала используется для синтеза локалиизованной в мембране АТФазой АТФ.

    Слайд 26

    У некоторых бактерий цитохромы отсутствуют, и при контакте с кислородом происходит непосредственный перенос водорода на кислород с помощью флавопротеидов, конечным продуктом при этом оказывается перекись водорода - Н2О2.

    Слайд 27

    Помимо углеводов прокариоты способны использовать другие органические соединения, в частности белки, в качестве источника энергии, окисляя их полностью до СО2 и Н2О.

    Слайд 28

    Аминокислоты могут использоваться в конструктивном метаболизме, а могут у аммонифицирующих бактерий служить основным материалом в энергетических процессах при окислительном дезаминировании, в результате которого происходит выделение аммиака и превращение аминокислоты в кетокислоту, которая через цикл трикарбоновых кислот вступает в конструктивный метаболизм: 2R–CHNH2 –СООН + О2 →2R– СО –COOH + +2NH3

    Посмотреть все слайды