Стоячей называется волна, возникающая при наложении (суперпозиции) двух встречных плоских волн одинаковой амплитуды и поляризации. Стоячие волны возникают, например, при наложении двух бегущих волн, одна из которых отразилась от границы раздела двух сред.

Найдем уравнение стоячей волны. Для этого предположим, что плоская бегущая волна = сДх, t) с амплитудой А и частотой со, распространяющаяся в положительном направлении оси х, складывается со встречной волной?, 2 = О той же амплитуды и частоты. Уравнения этих волн запишем в тригонометрической форме следующим образом:

где Cj и %2 смещения точек среды, вызванные волнами, распространяющимися в положительном и отрицательном направлениях оси Ох соответственно. Согласно принципу суперпозиции волн в произвольной точке среды с координатой х в момент времени 1 смещение с, составит % + или % = A cos(co/ - кх) + + A cos(co t + кх).

Используя известное из тригонометрии соотношение , получим:

В этом выражении имеются два тригонометрических члена. Первый (cos(Atjc)) - это функция только координаты и может рассматриваться как амплитуда стоячей волны, изменяющаяся от точки к точке, т.е.

Так как амплитуда колебаний - величина существенно положительная, в последнем выражении поставлен знак модуля. Второй множитель в (2.183) - (cos(k>0) зависит только от времени и описывает гармоническое колебательное движение точки с фиксированной координатой х. Таким образом, все точки среды совершают гармонические колебания с различными (зависящими от координаты) амплитудами. Как видно из формулы (2.184), амплитуда стоячей волны в зависимости от координаты х изменяется от нуля до 2А. Точки, в которых амплитуды колебаний максимальны (24), называются пучностями стоячей волны. Точки, в которых амплитуды колебаний равны нулю, называются узлами стоячей волны (рис 2.25).

Найдем координаты узлов стоячей волны. Для этого запишем очевидное равенство |24cos(&x)| = 0, отсюда cos кх = 0. Для того чтобы последнее равенство имело место, необходимо выполнение условия

, где п = 0, 1, 2,.... Заменив к его выражением через длину волны, получим Отсюда находим координаты

Рис. 2.25. Стоячие волны «мгновенные фотографии» в разные моменты времени I, отстоящие на четверть периода Т колебаний:

Светлые кружки

изображают частицы среды, колеблющиеся в поперечной стоячей волне. Разной длины стрелки - направление и величину (длина стрелки) их скорости

Соответственно можно определить и координаты пучностей стоячей волны. Для этого следует принять 12A cos (foe) I = 24. Откуда следует, что координаты точек, колеблющихся с максимальной амплитудой, должны удовлетворить условию Заменив к

на , получим выражение для координат пучностей:

Расстояния между соседними узлами или соседними пучностями (они одинаковы) называют длиной стоячей волны. Как видно из выражений (2.185) и (2.186), это расстояние равно , т.е.

Пучности и узлы сдвинуты по оси х друг относительно друга на четверть длины волны.

На рисунке 2.25, а за х = 0 выбрана точка пучности при п = 0 (2.186). За t = 0 принят момент, когда колебания всех точек среды проходят через точку равновесия, где смещения всех точек % в стоячей волне равны нулю, график волны - прямая линия. Однако в этот момент каждая точка (кроме точек, расположенных в узлах, где смещение и скорость всегда равны нулю) обладает определенной скоростью, показанной на рисунке стрелками разной длины и пунктирной огибающей. При t - Т/4 (рис. 2.25, б) смещения достигнут максимума, волна изображается непрерывной синусоидой, но скорость каждой точки среды станет равной нулю. Момент времени t= Т/ 2 (рис. 2.25, в) снова соответствует прохождению равновесия, но скорости всех точек направлены в противоположную сторону. И так далее (рис. 2.25, гид, где повторяется случай, показанный на рис. 2.25, а).

Рис. 2.26. Отражение волны от границы раздела разных сред: а - более плотной;

6 - менее плотной

Сравним бегущую и стоячую волны. В плоской бегущей волне колебания всех точек среды, имеющих разные координаты х, происходят с одинаковой амплитудой, но фазы колебаний различны и повторяются через Ах = X или At - Т. В стоячей волне все точки (от узла до узла) совершают колебания в одной фазе, но амплитуды их колебаний различны. Точки среды, разделенные узлом, совершают колебания в противофазе. Таким образом, стоячие волны энергию вдоль направления х не переносят.

В качестве модели стоячей волны можно рассмотреть поперечные колебания мягкого жгута, закрепленного с одного конца. Моделью плотной границы на этом конце жгута (рис. 2.26, а справа) является фиксация узла стоячей волны. Моделью подвижной (менее плотной) границы является тонкий невесомый шнурок, соединяющий конец жгута с закреплением (рис. 2.26, б также справа). Анализ условий отражения волны в этих двух случаях показывает, что при отражении от более плотной среды (см. рис. 2.26, а) волна «теряет» половину длины волны, т.е. при таком отражении происходит изменение фазы колебаний на л. Отражение от менее плотной среды не сопровождается изменением фазы, поэтому у границ раздела двух сред (на рис. 2.26, б в месте соединения жгута со шнурком) всегда будет пучность.

§4 Интерференция волн.

Принцип суперпозиции. Понятие о когерентности волн

Если в среде распространяется несколько волн одновременно, то колебания частиц среды равны геометрической сумме колебаний, которые совершали бы частицы при распространении каждой из волн в отдельности. Следовательно, волны просто накладываются, не возмущая друг друга - принцип суперпозиции (наложения) волн.

Две волны называются когерентными, если разность их фаз не зависит от времени


-
условие когерентности.

Источники когерентных волн называются когерентными источниками.

т.к. для когерентных источников разность начальных фаз , то амплитуда А рез в различных точках зависит от величины , называемой разностью хода. Если

то наблюдается максимум.

При

наблюдается минимум.

При наложении волн от когерентных источников наблюдаются минимумы и максимумы, результирующей амплитуды, т.е. взаимное усиление в одних точках пространства и ослабление в других в зависимости от соотношения между фазами этих, волн - суть явления интерференции.

§5 Стоячие волны

Частным случаем интерференции являются стоячие волны - волны, образующиеся при наложении двух бегущих волн, распространяющихся навстречу друг другу волн с одинаковыми амплитудами н частотами.

Для вывода уравнения стоячей волны примем: 1) волны распространяются в среде без затухания; 2) А 1 = А 2 =А - имеют равные амплитуды; 3) ω 1 = ω 2 = ω - равные частоты; 4)φ 10 = φ 20 = 0.

Уравнение бегущей волны, распространяющейся вдоль положительного направления оси х (т.е. уравнение падающей волны):

(1)

Уравнение бегущей волны, распространяющейся в отрицательном направлении оси х (т.е. уравнение отраженной волны):

(2)

Сложив (1) и (2) получим уравнение стоячей волны:


Особенностью стоячей волны является то, что амплитуда зависит от координаты х . При перемещении от одной точки к другой амплитуда меняется по закону:

Амплитуда стоячей волны.

Те точки среды, в которых амплитуда стоячей волны максимальна и равна 2А , называются пучностями. Координаты пучностей можно найти из условия, что

отсюда

Расстояние между двумя соседними пучностями равно .

Точки, в которых амплитуда стоячей волны минимальна и равна 0 , называются узлами. Координата узлов можно найти из условия

отсюда

Расстояние между двумя соседними узлами равно .

В отличие от бегущей волна, все точки которой колеблются с одинаковой амплитудой, но с разными фазами, зависящими от координаты х точки (), точки стоячей волны между двумя узлами колеблется с разными амплитудами, но с одинаковыми фазами(). При переходе через узел множитель меняет свой знак, поэтому фаза колебаний по разные стороны от узла отличается на π, т.е. точки лежащие по разные стороны от узла колеблются в противофазе.

Стоячая волна получается в результате интерференции падающей и отраженной волн. На характере отражения сказывается граница раздела двух сред, от которой происходит отражение. Если волна отражается от среды менее плотной (рис. а), то фаза волны на границе раздела не меняется и на границе раздела двух сред будет пучность. Если волна отражается от более плотной среды, то её фаза изменяет-ся на противоположную, т.е. отражение от более плотной среды происходит с потерей половины длины волны (λ/2). Бегущая волна переносит энергию колебательного движения в направлении распространения волны. Стоячая волна энергию не переносит, т.к. падаюшая и отраженная волны одинаковой амплитуды несут одинаковую энергию в противоположных направлениях. Поэтому полная энергия результирующей стоячей волны, заключенной между узлами остается постоянной. Лишь в пределах расстояний равных λ/2 происходит превращение кинетической энергии в потенциальную.

Стоячие волны

Волны, образующиеся при наложении двух бегущих волн, распростра­няющихся навстречу друг другу с одинаковыми частотами и амплитудами.

Уравнение стоячей волны

Складываем волны

(учли, что k = 2π/λ)-уравнение стоячей волны.

Пучности стоячей волны

Точки, в которых амплитуда максимальна (A ст = 2Аcos(2πx/λ)) . Это точки среды, для которых

2πx/λ= (m=0,1,2,….)

Координаты пучностей

(m = 0,1, 2,:..).

Узлы стоячей волны

Точки, в которых амплитуда колебаний равна нулю (A ст = 0). Это точки среды, для которых

(m = 0,1, 2,:..).

Координаты узлов

(m = 0,1, 2,...).

Расстояния пучность-пучность и узел-узел равны λ/2, а расстояние пучность-узел равно λ/4.

Образование стоячих волн наблюдают при

интерференции бегущей и отраженной волн. Например, если конец веревки закрепить неподвижно, то отраженная в месте закрепления веревки волна будет интерферировать с бегущей волной и образует стоячую волну. На границе, где происходит отражение волны, в данном случае получается узел. Будет ли на границе отражения узел или пучность, зависит от соотношения плотностей сред. Если среда, от которой происходит отражение, менее плотная, то в месте отражения получается пучность, если более плотная - узел. Образование узла связано с тем, что волна, отражаясь от более плотной среды, меняет фазу на противоположную и у границы происходит сложение колебаний противоположных направлений, в результате чего получается узел. Если волна отражается от менее плотной среды, то изменения фазы не происходит, и у границы колебания складываются с одинаковыми фазами - получается пучность.

Уравнение стоячей волны и его анализ

Частным случаем интерференции волн, являются стоячие волны.

Стоячей волной называется волна, образующаяся в результате наложения двух бегущих синусоидальных волн, которые распространяются навстречу друг другу и имеют одинаковые частоты и амплитуды, а в случае поперечных волн еще и одинаковую поляризацию.

Поперечная стоячая волна образуется, например, на натянутой упругой нити, один конец которой закреплен, а другой приводится в колебательное движение.

При наложении двух когерентных бегущих плоских волн вида

И где α-разность фаз волн в точках плоскости x=0, образуется плоская синусоидальная стоячая волна, описываемая уравнением

Амплитуда стоячей волны в отличие от амплитуды бегущих волн является периодической функцией координаты x.

Аст.=2А

Точки,в которых амплитуда стоячей волны равна 0, называются узлами, а точки где амплитуда двойная –пучности.

Положение узлов и пучностей находится из условий

k*x+α/2=(2m+1)π/2 (узлы)

k*x+α/2=m*n (пучности) ,где m=0,1,2…

Расстояния между двумя соседними узлами и между двумя соседними пучностями одинаковы и равны половине длины волны λ бегущих волн.

В бегущей волне фаза колебаний зависит от координаты x рассматриваемой точки. В стоячей волне все точки между двумя узлами колеблются с различными амплитудами, но с одинаковыми фазами (синфазно), так как аргумент синуса в уравнении стоячей волны не зависит от координаты x. При переходе через узел фаза колебаний изменяется скачком на π,так как при этом cos(k*x+α/2) изменяет свой знак на противоположный.

Стоячие волны образуются в результате интерференции двух встречных плоских волн одинаковой частоты ω и амплитуды А.

Представим себе, что в точке S (рис.7.4) находится вибратор, от которого вдоль луча SO распространяется плоская волна. Достигнув преграды в точке О, волна отразится и пойдёт в обратном направлении, т.е. вдоль луча распространяются две бегущие плоские волны: прямая и обратная. Эти две волны когерентны, так как рождены одним и тем же источником и, накладываясь друг на друга, будут интерферировать между собой.

Возникающее в результате интерференции колебательное состояние среды и называется стоячей волной.

Запишем уравнение прямой и обратной бегущей волны:

прямая - ; обратная -

где S 1 и S 2 – смещение произвольной точки на луче SO. С учётом формулы для синуса суммы результирующее смещение равно

Таким образом, уравнение стоячей волны имеет вид

(7.17)

Множитель cosωt показывает, что все точки среды на луче SО совершают простые гармонические колебания с частотой . Выражение называется амплитудой стоячей волны. Как видно, амплитуда определяется положением точки на луче SO (х).

Максимальное значение амплитуды будут иметь точки, для которых

Или (n = 0, 1, 2,….)

откуда , или (7.18)

пучностями стоячей волны .

Минимальное значение , равное нулю, будут иметь те точки для которых

Или (n = 0, 1, 2,….)

откуда или (7.19)

Точки, имеющие такие координаты, называют узлами стоячей волны . Сопоставляя выражения (7.18) и (7.19), видим, что расстояние между соседними пучностями и соседними узлами равно λ/2.

На рисунке сплошной линией изображено смещение колеблющихся точек среды в некоторый момент времени, пунктирной кривой – положение этих же точек через Т/2. Каждая точка совершает колебания с амплитудой, определяемой её расстоянием от вибратора (х).

В отличие от бегущей волны в стоячей волне не происходит переноса энергии. Энергия просто переходит из потенциальной (при максимальном смещении точек среды от положения равновесия) в кинетическую (при прохождении точками положения равновесия)в пределах между узлами, остающимися неподвижными.

Все точки стоячей волны в пределах между узлами колеблются в одинаковой фазе, а по разные стороны от узла – в противофазе.

Стоячие волны возникают, например, в закреплённой с обоих концов натянутой струне при возбуждении в ней поперечных колебаний. Причём в местах закреплений располагаются узлы стоячей волны.

Если стоячая волна устанавливается в воздушном столбе, открытом с одного конца (звуковая волна), то на открытом конце образуется пучность, а на противоположном – узел.

Рассмотрим более подробно отражение волн.В частности, отражение волн от среды с большим волновым сопротивлением. По существу, вторая средаявляется преградой. Например, воздух и стена здания.

Запишем уравнения падающей и отраженной волн в виде

s 1 = А cos ( w t - kx) , s 2 = А cos ( w t + kx + j 0 ) .

(7.47)

В отраженной волне y 2 записана начальная фаза j 0 , равная разности фаз рассматриваемых колебаний, которая может принимать 0 или p , т.к. при отражении фаза результирующейволны может изменяться.

Падающая и отраженная волны отличаются направлением скорости распространения, поэтому перед волновым числом в уравнении (7.47) взят знак “+” При отражении от преграды происходит сложение волн (наблюдается явление интерференции) и возникает стоячая волна, уравнение которой имеет вид

Из уравнения (7.48) заключаем, что в каждой точке стоячей волны наблюдается колебание такой же частоты и периода, но амплитуда волны зависит от координаты х.

Проведем анализ уравнения (7.49).

1. Условие максимума

Фаза амплитуды стоячей волны равна целому числу p , т.е.

Где m =0, 1, 2, ...или .

Найдем координату максимума(пучности ):

(7.50)

Для простоты полагаем значение начальной фазы равной нулю. При таких условиях амплитуда стоячей волны максимальна: , т.к.cos (m p ) =1.

2. Условие минимума

Фаза амплитуды стоячей волны равна нечетному числу p /2:

или .

С учетом того, что j 0 /2=0,для координаты минимума (узел) имеем

;

(7.51)

Свойства стоячих волн

1. Расстояние между узлом и пучностью равно l /4:x пуч - х узел = l /4.

2. Расстояние между соседними узлами или пучностями -l /2, т.е. длина стоячей волны l ст = l /2.

Читателю предлагается самостоятельно проверить результаты выводов по пп.1 и2.

3. В бегущей волне фаза колебаний зависит от координаты Х, рассматриваемой колеблющейся частицы среды. В стоячей же волне все частицы среды между двумя узламисовершают колебания с различными амплитудами, но с одинаковыми фазами (сифазны), потому что аргумент cos (w t + j 0 /2) в уравнении стоячей волны (7.48) не зависит от координаты Х. При переходе через узел фаза колебаний (j = w t + j 0 /2) изменяется скачком на p , т.к.при этом в амплитуде стоячей волны сомножитель cos (kx + j 0 /2) изменяет свой знак на противоположный.

4. Если волна отражается от среды с большим волновым сопротивлением (неверно говорить “при отражении от более плотной среды”, как это пишут иногда) фаза изменяется на противоположную. При этом происходит потеря половины длины волны, потому что на расстоянии, равном половине длины волны, фаза изменяется на ± p . Поэтому после подстановки в уравнение стоячей волны (7.48), например, при значении j = - p будем иметь

s =2 А sin (kx) sin(w t).

Можно найти координаты узлов и пучностей. Предоставляем проделать это читателю самостоятельно.

Поскольку механические волны являются следствием возникновения деформаций в среде, вызванных источником упругих волн, то относительная деформация среды изменяется по закону

e = = - 2Aksin(kx+ j /2) с os( w t+ j /2),

(7.52)

где s - смещение волны; e - относительная деформация среды.

При этом скорость колебания частиц среды в стоячей волне

v = = - 2A w cos(kx+ j /2)sin( w t+ j /2).

(7.53)

Следовательно, в стоячей волне e опережаетскорость по фазе на p /2. Поэтому, когда скорость достигает максимума, относительная деформация e обращается в нуль, и наоборот, когда скорость обращается в нуль, относительная деформация e достигаетмаксимума.

Причем амплитуда скорости v a = ½ 2 A w cos ( kx + j 0 /2) ½

и амплитуда относительной деформации смещения e a = ½ 2 Aksin ( kx + j 0 /2) ½

зависят от координаты х по-разному, т.е. в пучностях стоячей волны размещаются пучности скорости и узлы деформаций среды, а в узлах стоячей волны - узлы скорости и пучности деформаций.

В упругой стоячей волне энергия периодически переходит из потенциальной, которая локализована вблизи пучностей деформации, в кинетическую энергию, локализованную вблизи пучностейскорости и, наоборот.

Таким образом, энергия периодически перемещается от пучностей к узлам и, наоборот от узлов к пучностям. Но в самих узлах и пучностях плотность потока энергии равна нулю. Поэтому среднее за период значение плотности потока энергии равно нулю в любой точке стоячей волны, т.к. две бегущие навстречу друг другу волны, образуют стоячую волну и переносят за период равную энергию в противоположных направлениях.

Собственные (резонансные) частоты стоячих волн

На практике в случае свободных колебаний некоторыхфизических систем, например, струн, столбов газа и др. устанавливаются стоячие волны, частоты которых удовлетворяют определенным условиям, т.е. могут принимать только определенные дискретные значения, называемые собственными частотами данной колебательной системы.

Например, в точках закрепления струн или стержней размещаются узлы смещения (пучности деформаций), а на свободных концах стержней - пучности смещения (узлы деформации). При колебаниях воздушного столба в цилиндрической трубке у закрытого конца трубки размещается пучность давления, а у открытого - узел давления.

В качестве примера рассмотрим возникновение стоячих волн при изменении натяжения колеблющейся струны (параметрический резонанс).

Частоты стоячих волн называют собственными или резонансными , т.к. такие колебания сопровождаются резонансными явлениями.

В отличие от пружинного, математического, или физического маятников, которые при колебаниях имеют одну собственную резонансную частоту (одна степень свободы), натянутая струна имеет много резонансных частот. Эти частоты в свою очередь кратны низшей частоте. Более продолжительное время сохраняются те волны, которым соответствуют резонансные частоты. В точках закрепления струны возникают узлы(рис. 7.12).

Рис. 7.12

Для нахождения резонансных частот воспользуемся тем, что длина стоячей волны связана с длиной самой струны:

гдеm = 1, 2, 3, ... и определяет число гармоник.

Например, основной тон (мода) - первая гармоника соответствует пучности, а длина струны ,(m =1; l 1 - длина волны первой гармоники).Для второй гармоники - 2 = l 2 ( m =2; l 2 - длина волны второй гармоники), для третьей - 3 = 2 l 3 /3 (m =3; l 3 - длина волны третьей гармоники) и т.д.

Частоты колебания стоячей волны можно найти по формуле

Замечание: Стоячая волна может существовать только при строго определенных частотах колебаний.

Действительно по условию при отсутствии колебаний на правом конце закрепленной струны, где координата х =, а амплитуда обращается в нуль и фаза равна j = p ,

А ст =2 А ½ cos(kx- p /2) ½

Общий вывод: Полученный результат является необычным для классической физики, потому что k и w могут принимать строго определенные значения:

, .

Наблюдаемое аномальное явление весьма существенно повлияло на разгадку квантовых явлений.

Согласно выводам квантовой теории следует, что все микрообъекты обладают корпускулярными и волновыми свойствами.