ЛЕКЦИЯ 5 СОВРЕМЕННАЯ ФИЗИЧЕСКАЯ КАРТИНА МИРА

План лекции:

1. Ньютоновская концепция абсолютного пространства и времени. Законы движения

2. Законы сохранения

3. Начала термодинамики. Представления об энтропии

Вопросы пространства и времени всегда интересовали человеческое общество. Одна из концепций этих понятий идет от древних атоми­стов - Демокрита, Эпикура и др. Они ввели в научный оборот поня­тие пустого пространства и рассматривали его как однородное и бес­конечное.

В процессе создания общей картины мироздания Исаак Ньютон (1642-1726), конечно, также не мог обойти вопрос понятия простран­ства и времени.

По Ньютону, мир состоит из материи, пространства и времени. Эти три категории независимы друг от друга. Материя размещается в бес­конечном пространстве. Движение материи происходит в пространст­ве и времени. Ньютон разделял пространство на абсолютное и относи­тельное. Абсолютное пространство неподвижно, бесконечно. Относи­тельное - это часть абсолютного. Так же он классифицировал и время. Под абсолютным, истинным (математическим) временем он понимал время, которое течет всегда и везде равномерно, а относительное вре­мя, по Ньютону, есть мера продолжительности, которая существует в реальной жизни: секунда, минута, час, сутки, месяц, год. У Ньютона абсолютное время существует и длится равномерно само по себе, без­относительно к каким-либо событиям. Абсолютное пространство и аб­солютное время представляют собой вместилище всех материальных тел и пространств и не зависят ни от этих тел, ни от этих процессов, ни друг от друга.

Массу Ньютон определяет как количество материи и вводит поня­тие «пассивной силы» (силы инерции) и «активной силы», создающей движение тел.

Изучив и выявив закономерности движения, Ньютон таким обра­зом сформулировал его законы:

1-й закон. Всякому телу продолжать свое состояние покоя или равно­мерного прямолинейного движения, поскольку оно не принуждается приложенными силами изменять это состояние.

2-й закон. Изменению движения быть пропорциональным приложен­ной движущей силе и происходить по направлению той прямой, по ко­торой эта сила действует.

3-й закон. Действию всегда встречать равное противодействие, или воздействию двух тел друг на друга быть между собой равными и на­правленными в противоположные стороны.

В наше время знаменитые законы формулируются в более удобной форме:

1. Всякое материальное тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит его изменить это состояние. Стремление тела сохранить состояние покоя или равномерного прямолинейного движения называется инертностью. Поэтому первый закон называют также законом инерции.



2. Ускорение, приобретаемое телом, прямо пропорционально силе, действующей на тело, и обратно пропорционально массе тела.

3. Силы, с которыми действуют друг на друга взаимодействующие тела, равны по величине и противоположны по направлению.

Второй закон Ньютона нам известен в виде

F= т а, или а = F/m ,

где ускорение а, получаемое телом под действием силы F, обратно про­порционально массе тела т. Величина т называется инертной массой тела, она характеризует способность тела оказывать сопротивление действующей («активной») силе, то есть сохранять состояние покоя. Второй закон Ньютона справедлив только в инерциальных системах отсчета.

Первый закон можно получить из второго, так как в случае отсут­ствия воздействия на тело со стороны других сил ускорение также рав­но нулю. Однако первый закон рассматривается как самостоятельный закон, поскольку он утверждает существование инерциальных систем отсчета.

Инерциальные системы отсчета - это такие системы, в которых справедлив закон инерции: материальная точка, когда на нее не действуют никакие силы (или действуют силы, взаимно уравнове­шенные), находится в состоянии покоя или равномерного прямо­линейного движения .

Теоретически может существовать сколь угодно равноправных инерциальных систем отсчета, и во всех таких системах законы физи­ки одинаковы. Это утверждает принцип относительности Галилея (1636 г.).

Научное доказательство существования всемирного тяготения и ма­тематическое выражение описывающего его закона стало возможным только па основе открытых И. Ньютоном законов механики. Закон всемирного тяготения был сформулирован Ньютоном в труде «Мате­матические начала натуральной философии» (1687 г.).

Закон всемирного тяготения Ньютон формулирует в следующих тезисах: «тяготение существует для всех тел вообще и пропорциональ­но массе каждого из них», «тяготение к отдельным равным частицам тел обратно пропорционально квадратам расстояний мест к частицам». Этот закон известен в виде:

F =

где m 1 , m 2 - массы двух частиц, r - расстояние между ними, G - гра­витационная постоянная (в системе СИ G = 6,672 10 -11 м 2 /кг 2). Физический смысл гравитационной постоянной заключается в том, что она характеризует силу притяжения двух масс весом в 1 кг па расстоянии в 1 м.

Открыв закон всемирного тяготения, Ньютон смог дать ответ на вопрос, почему Луна обращается вокруг Земли и почему планеты дви­жутся вокруг Солнца. В каждом отдельном случае он мог рассчитать силу тяготения. Но как передается взаимодействие между массами, притягивающимися друг к другу, какова природа этой силы, Ньютон объяснить не мог.

В трудах Ньютона тяготение - это сила, которая действует на боль­ших расстояниях икак бы без какого-то материального посредника.

Это привело к понятию «дальнодействие». Природу «дальнодействия» Ньютон объяснить не мог. Он думал о каком-то материальном «агенте», с помощью которого осуществляется гравитационное взаи­модействие, но в решении этой проблемы он потерпел неудачу. Осно­вываясь на законе всемирного тяготения Ньютона, небесная механика допускает принципиальную возможность мгновенной передачи сигна­лов, что противоречит современной физике (общей теории относи­тельности). Поэтому буквальное понимание закона тяготения Ньюто­на с современной точки зрения недопустимо.

Ньютоновская механистическая парадигма в естествознании гос­подствовала более 200 лет, хотя и подвергалась критике по ряду пози­ций, в том числе и в понимании пространства и времени (Лейбниц, Гегель, Беркли и др.). В конце XIX и в начале XX в. возникли прин­ципиально новые научные представления об окружающей природе. Появились новые парадигмы: сначала релятивистская, а затем кванто­вая (см. ранее). В физическую картину мира полноправно вошла кон­цепция поля как материальной среды, связывающей частицы вещест­ва, все физические объекты материальногомира. В современной фи­зике известны четыре вида взаимодействия материальных объектов: электромагнитное, гравитационное, сильное и слабое (см. выше). Они ответственны за все процессы взаимодействия.

Раздел «Определения» заключается знаменитым «Поучением», в котором Ньютон излагает свои взгляды на пространство и время, относительное и абсолютное движение. Ньютон хорошо знает, что наблюдаемые в природе движения имеют относительный характер: «движение и покой, при обычном их рассмотрении, различаются лишь в отношении одного к другому, ибо не всегда находится в покое то, что таковым простому взгляду представляется», - говорит он в пояснении к «Определению III», и описание их требует задания системы отсчёта. Но Ньютон полагал, что можно говорить об абсолютном движении тел, заимствуя у Гассенди представления об абсолютном пространстве и времени. Вот как определяет он эти фундаментальные в его механике понятия:

«I /. Абсолютное, истинное математическое время само по себе и по самой своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью.

Относительное, кажущееся, или обыденное время есть или точная, или изменчивая, постигаемая чувствами, внешняя, совершаемая при посредстве какого-либо движения, мера продолжительности, употребляемая в обыденной жизни вместо истинного математического времени, как то: час, день, месяц, год.

II. Абсолютное пространство по самой своей сущности безотносительно к чему бы то ни было внешнему остаётся всегда одинаковым и неподвижным.

Относительное есть его мера или какая-либо ограниченная подвижная часть, которая определяется нашими чувствами по положению его относительно некоторых тел и которое в обыденной жизни принимается за пространство неподвижное: так, например, протяжение пространств подземного воздуха или надземного, определяемых по их положению относительно Земли. По виду и величине абсолютное и относительное пространства одинаковы, но численно не всегда остаются одинаковыми. Так, например, если рассматривать Землю подвижною, то пространство нашего воздуха, которое по отношению к Земле остаётся всегда одним и тем же, будет составлять то одну часть пространства абсолютного, то другую, смотря по тому, куда воздух перешёл, и, следовательно, абсолютно сказанное пространство беспрерывно меняется.

III. Место есть часть пространства, занимаемая телом, и по отношению к пространству бывает или абсолютным, или относительным. Я говорю «часть пространства», а не положение тела и не объемлющая его поверхность. Для равнообъёмных тел места равны, поверхности же от несходства формы тел могут быть и неравными. Положение, правильно выражаясь, не имеет величины, и оно само по себе не есть место, а принадлежащее месту свойство. Движение целого то же самое, что совокупность движений частей его, т. е. перемещение целого из его места то же самое, что совокупность перемещений его частей из их мест, поэтому место целого то же самое, что совокупность мест его частей, и, следовательно, оно целиком внутри всего тела.

IV. Абсолютное движение есть перемещение тела из одного абсолютного его места в другое, относительное-из относительного в относительное же».

Признавая объективное существование пространства и времени, Ньютон становится на материалистическую точку зрения. Но, отрывая абсолютное пространство и время от реальных вещей и процессов, Ньютон придает этим категориям метафизический характер. Абсолютное время характеризуется, по Ньютону, равномерностью течения; для относительного времени, постигаемого в процессах, например движениях светил, такой равномерности может и не быть. «Возможно, что не существует (в природе) такого равномерного движения, которым время могло бы измеряться с совершенной точностью». Абсолютное пространство Ньютона - это абсолютно неподвижное пространство. «Как неизменен порядок времени, так неизменен и порядок частей пространства. Если бы они переместились из мест своих, то они продвинулись бы (так сказать) в самих себя, ибо время и пространство составляют как бы вместилища самих себя и всего существующего. Во времени всё располагается в смысле порядка последовательности, в пространстве- в смысле порядка расположения. По самой своей сущности они суть места, приписывать же первичным местам движения нелепо. Вот эти-то места и суть места абсолютные, и только перемещения из этих мест составляют абсолютные движения».

На практике же мы имеем дело с относительными движениями, связывая системы отсчёта с теми или иными телами. «Может оказаться, что в действительности не существует покоящегося тела, к которому можно было бы относить места и движения прочих». Абсолютное же время и пространство непостижимы чувствами и теряют свой физический характер, превращаясь в чистые абстракции. Можно было бы обойтись при физических исследованиях и без этих абстракций, оперируя с теми пространственно-временными представлениями, к которым приводит изучение реальных процессов.

Однако Ньютон полагает, что существуют физические способы обнаружения абсолютных движений, т. е. перемещений тел в абсолютном пространстве. Обнаружить равномерное прямолинейное движение системы отсчёта невозможно по классическому принципу относительности Галилея, принимаемому и Ньютоном. Но можно обнаружить проявления абсолютного движения системы. Абсолютное движение отличается от относительного тем, что приложенные силы действительно изменяют абсолютное движение тела, в то время как относительное движение может изменяться и без действия сил на тело - достаточно только, чтобы силы действовали на окружающие тела. Если подвесить на верёвке сосуд с водой и, закрутив верёвку, предоставить ей возможность раскручиваться, то будут наблюдаться следующие явления: сосуд приходит в движение, вода же неподвижна, и её поверхность плоская. По мере раскручивания верёвки вода также начинает вращаться, и это скажется в повышении её уровня у стенок и понижении в центре - части воды удаляются от оси вращения. Таким образом, в начальный момент относительное движение сосуда и воды было наибольшим, однако никаких проявлений этого относительного движения воды не наблюдалось. Затем относительное движение сосуда и воды уменьшилось, вода пришла во вращение так же, как и сосуд, и это проявилось в удалении частиц воды от оси вращения. Вот это-то стремление вращающихся тел удалиться от оси вращения и даёт возможность распознать абсолютное вращение. «Таким способом, - говорит Ньютон, - могло бы быть определено количество и направление кругового движения внутри огромного пустого пространства, где не существовало бы никаких внешних доступных чувствам признаков, к которым можно было бы относить положения шаров. (Речь идёт у Ныотона о воображаемом опыте исследования вращательного движения шаров, связанных нитью, ось вращения которых проходит через центр тяжести шаров. По натяжению нити можно констатировать, вращаются шары или нет.) Если бы в этом пространстве, кроме того, находились ещё некоторые весьма удалённые тела, сохраняющие относительное друг к другу положение, подобно тому, как наши неподвижные звёзды, то по перемещению шаров относительно этих тел мы не могли бы определить, чему принадлежит это перемещение - телам или шарам. Но если бы мы, определив натяжение нити, нашли, что это натяжение как раз соответствует движению шаров, то мы заключили бы, что движение принадлежит шарам, а не внешним телам, и что эти тела находятся в покое».

Ньютон и полагает, что задачей механики является «нахождение… истинных движений но причинам, их производящим, по их проявлениям и по разностям кажущихся движений и, наоборот, нахождение по истинным или кажущимся движениям их причин и проявлений». Так вошла в физику ньютонианская концепция абсолютного пространства и времени.

Вопросы пространства и времени всегда интересовали человеческое общество. Одна из концепций этих понятий идет от древних атомистов – Демокрита, Эпикура и др. Они ввели в научный оборот понятие пустого пространства и рассматривали его как однородное и бесконечное.

В процессе создания общей картины мироздания Исаак Ньютон (1642–1726), конечно, также не мог обойти вопрос понятия пространства и времени.

По Ньютону, мир состоит из материи, пространства и времени. Эти три категории независимы друг от друга. Материя размещается в бесконечном пространстве. Движение материи происходит в пространстве и времени. Ньютон разделял пространство на абсолютное и относительное. Абсолютное пространство неподвижно, бесконечно. Относительное – это часть абсолютного. Так же он классифицировал и время. Подабсолютным, истинным (математическим) временем он понимал время, которое течет всегда и везде равномерно, а относительное время, по Ньютону, есть мера продолжительности, которая существует в реальной жизни: секунда, минута, час, сутки, месяц, год. У Ньютона абсолютное время существует и длится равномерно само по себе, безотносительно к каким-либо событиям. Абсолютное пространство и абсолютное время представляют собой вместилище всех материальных тел и пространств и не зависят ни от этих тел, ни от этих процессов, ни друг от друга.

Массу Ньютон определяет как количество материи и вводит понятие «пассивной силы» (силы инерции) и «активной силы», создающей движение тел.

Изучив и выявив закономерности движения, Ньютон таким образом сформулировал его законы:

1– й закон. Всякому телу продолжать свое состояние покоя или равномерного прямолинейного движения, поскольку оно не принуждается приложенными силами изменять это состояние.

2– й закон. Изменению движения быть пропорциональным приложенной движущей силе и происходить по направлению той прямой, по которой эта сила действует.

3– й закон. Действию всегда встречать равное противодействие, или воздействию двух тел друг на друга быть между собой равными и направленными в противоположные стороны.

В наше время знаменитые законы формулируются в более удобной форме:

1. Всякое материальное тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит его изменить это состояние. Стремление тела сохранить состояние покоя или равномерного прямолинейного движения называется инертностью. Поэтому первый закон называют также законом инерции.

2. Ускорение, приобретаемое телом, прямо пропорционально силе, действующей натело, и обратно пропорционально массе тела.

3. Силы, с которыми действуют друг на друга взаимодействующие тела, равны по величине и противоположны по направлению.

Второй закон Ньютона нам известен в виде

F = m × a, или a = F/m,

где ускорение а, получаемое телом поддействием силы F, обратно пропорционально массе тела m. Величина m называется инертной массой тела, она характеризует способность тела оказывать сопротивление действующей («активной») силе, то есть сохранять состояние покоя. Второй закон Ньютона справедлив только в инерциальных системах отсчета.

Первый закон можно получить из второго, так как в случае отсутствия воздействия на тело со стороны других сил ускорение также равно нулю. Однако первый закон рассматривается как самостоятельный закон, поскольку он утверждает существование инерциальных систем отсчета.

Инерииальные системы отсчета – это такие системы, в которых справедлив закон инерции: материальная точка, когда на нее не действуют никакие силы (или действуют силы, взаимно уравновешенные), находится в состоянии покоя или равномерного прямолинейного движения.

Теоретически может существовать сколь угодно равноправных инерциальных систем отсчета, и во всех таких системах законы физики одинаковы. Это утверждает принцип относительности Галилея (1636 г.).

Научное доказательство существования всемирного тяготения и математическое выражение описывающего его закона стало возможным только на основе открытых И. Ньютоном законов механики. Закон всемирного тяготения был сформулирован Ньютоном в труде «Математические начала натуральной философии» (1687 г.).

Закон всемирного тяготения Ньютон формулирует в следующих тезисах: «тяготение существует для всех тел вообще и пропорционально массе каждого из них», «тяготение к отдельным равным частицам тел обратно пропорционально квадратам расстояний мест к частицам». Этот закон известен в виде:

где m 1 , ш 2 – массы двух частиц, r – расстояние между ними, G – гравитационная постоянная (в системе СИ G = 6,672 · 10 -11 м 2 /кг 2). Физический смысл гравитационной постоянной заключается в том, что она характеризует силу притяжения двух масс весом в 1 кг на расстоянии в 1 м.

Открыв закон всемирного тяготения, Ньютон смог дать ответ на вопрос, почему Луна обращается вокруг Земли и почему планеты движутся вокруг Солнца. В каждом отдельном случае он мог рассчитать силу тяготения. Но как передается взаимодействие между массами, притягивающимися друг к другу, какова природа этой силы, Ньютон объяснить не мог.

В трудах Ньютона тяготение – это сила, которая действует на больших расстояниях и как бы без какого-то материального посредника.

Это привело к понятию «дальнодействие». Природу «дальнодействия» Ньютон объяснить не мог. Он думал о каком-то материальном «агенте», с помощью которого осуществляется гравитационное взаимодействие, но в решении этой проблемы он потерпел неудачу. Основываясь на законе всемирного тяготения Ньютона, небесная механика допускает принципиальную возможность мгновенной передачи сигналов, что противоречит современной физике (общей теории относительности). Поэтому буквальное понимание закона тяготения Ньютона с современной точки зрения недопустимо.

Ньютоновская механистическая парадигма в естествознании господствовала более 200 лет, хотя и подвергалась критике по ряду позиций, в том числе и в понимании пространства и времени (Лейбниц, Гегель, Беркли и др.). В конце XIX и в начале XX в. возникли принципиально новые научные представления об окружающей природе. Появились новые парадигмы: сначала релятивистская, а затем квантовая (см. ранее). В физическую картину мира полноправно вошла концепция поля как материальной среды, связывающей частицы вещества, все физические объекты материального мира. В современной физике известны четыре вида взаимодействия материальных объектов: электромагнитное, гравитационное, сильное и слабое (см. выше). Они ответственны за все процессы взаимодействия.

Законы сохранения

Рассмотрим наиболее общие законы сохранения, которым подчиняется весь материальный мир и которые вводят в физику ряд фундаментальных понятий: энергия, количество движения (импульс), момент импульса, заряд.

Закон сохранения импульса

Как известно, количеством движения, или импульсом, называют произведение скорости на массу движущегося тела: p = mv Эта физическая величина позволяет найти изменение движения тела за какой-нибудь определенный промежуток времени. Для решения этой задачи следовало бы применять второй закон Ньютона бесчисленное число раз, во все промежуточные моменты времени. Закон сохранения количества движения (импульса) можно получить, используя второй и третий законы Ньютона. Если рассматривать две (или более) материальные точки (тела), взаимодействующие между собой и образующие систему, изолированную от действия внешних сил, то за время движения импульсы каждой точки (тела) могут изменяться, но общий импульс системы должен оставаться неизменным:

m 1 v + m 1 v 2 = const.

Взаимодействующие тела обмениваются импульсами при сохранении общего импульса.

В общем случае получаем:

где P Σ – общий, суммарный импульс системы, m i v i – импульсы отдельных взаимодействующих частей системы. Сформулируем закон сохранения импульса:

Если сумма внешних сил равна нулю, импульс системы тел остается постоянным при любых происходящих в ней процессах.

Пример действия закона сохранения импульса можно рассмотреть на процессе взаимодействия лодки с человеком, которая уткнулась носом в берег, а человек в лодке быстро идет из кормы в нос со скоростью v 1 . В этом случае лодка отойдет от берега со скоростью v 2 :

Аналогичный пример можно привести со снарядом, который разорвался в воздухе на несколько частей. Векторная сумма импульсов всех осколков равна импульсу снаряда до разрыва.

Пространство и время как всеобщие и необходимые формы бытия материи являются фундаментальными категориями в современной физике и других науках.

В доньютоновский период развитие представлений о пространстве и времени носило преимущественно стихийный и противоречивый характер.

С появлением же Ньютона всё изменилось. А именно, появилась новая физическая гравитационная картина мира, в основе которой обосновался закон всемирного тяготения . Согласно этому закону сила тяготения универсальна и проявляется между любыми материальными телами независимо от их конкретных свойств. Она всегда пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.

Ньютон различает два типа понятий пространства и времени: абсолютные (истинные, математические) и относительные (кажущиеся, обыденные):

· Абсолютное, истинное, математическое время равномерно протекает без всякого отношения к чему-либо внешнему и иначе называется длительностью .

· Относительное (т.е., кажущееся, или обыденное) время - это постигаемая чувствами внешняя мера продолжительности, употребляемая в обыденной жизни (час, день, месяц, год)

· Абсолютное пространство по своей сущности, безотносительно к чему бы то ни было внешнему, остаётся всегда одинаковым и неподвижным.

· Относительное пространство есть мера, которая определяется нашими чувствами по положению его относительно некоторых тел и которое в обыденной жизни принимается за пространство неподвижное.

Из этих определений Ньютона следовало, что разграничение им понятий абсолютного и относительного пространства и времени связано со спецификой теоретического и эмпирического уровней их познания.

На теоретическом уровне классической механики представления об абсолютном пространстве и времени лежали в основе всей причинной структуре описания мира.

На уровне эмпирического познания материального мира понятия пространства и времени ограничены чувствами и свойствами познающей личности, а не объективными признаками реальности.

Итак, подведём итог: в основе картины мира, созданной Ньютоном, лежит закон всемирного тяготения , в основе которого, в свою очередь, лежит абсолютное пространство и время. И поэтому Ньютон говорит об этих понятиях как об истинных.

Ньютоновская концепция пространства и времени, на основе которой строилась физическая картина мира, оказалась господствующей вплоть до конца XIX в.

Концепция относительности пространства – времени в релятивистской физике.

Релятивистская физика – раздел физики, изучающий явления, происходящие при движениях со скоростями, сравнимыми со скоростью света.

До 20 века пространство считалось плоским, время понималось абсолютным. Но в начале 20 века данную теорию опровергли опытным путём. Название “теория относительности” возникло из наименования основного принципа (постулата), положенного Эйнштейном в основу всех теоретических построений новой теории пространства и времени.

Специальная теория относительности (СТО ): Если тела двигаются со скоростью, близкой к скорости света, то эти тела уменьшаются в объёме, а время замедляется.

Характеристиками пространства считалось однородность – одинаковость свойств во всех направлениях; изотропность – независимость свойств от направления и трёхмерность. Время также считалось однородным, т.е. любой процесс (в принципе) повторим через некоторый промежуток времени; но одномерным и идущим в одном направлении – от прошлого к будущему.

Постулат Эйнштейна: Если из мегамира убрать все объекты, то исчезнет и пространство. То есть всё определяется взаимосвязью материи, времени и пространства.

Из СТО следует, что объём тела и длительность происходящих в нём процессов являются не абсолютными, а относительными величинами.

В СТО свойства пространства и времени рассматриваются без учёта гравитационных полей, которые не являются инерцианальными (т.е. их движение не подчиняется законам инерции). Поэтому была создана общая теория относительности (ОТО), которая распространяет законы природы на все, в том числе на неинерцианальные системы. Эта теория связала тяготение с электромагнетизмом и механикой.

Общая теория относительности: Массы, создающие поле тяготения, искривляют пространство и меняют течение времени.

Чем сильнее поле, тем медленнее течёт время. Изменение гравитационного поля распределяется в вакууме со скоростью света.

Итак, теория относительности показала единство пространства и времени, выражающееся в совместном изменении их характеристик в зависимости от концентрации масс и их движения. Т.е. время и пространство – относительные величины. Они перестали рассматриваться независимо друг от друга, и возникло представление о пространственно-временном четырёхмерном континууме.


Четвертым базовым свойством материи (наряду с движением, способностью к самоорганизации, существовании в пространстве и времени) является отражение.

Отражение - способность материальных систем воспроизводить в самих себе свойства взаимодействующих с ними других материальных систем. Доказательством отражения является наличие следов (одного материального объекта на другом материальном объекте) - следы человека на грунте, следы грунта на обуви человека, царапины, эхо, отражение предметов в зеркале, гладкой поверхности водоема.

Отражение бывает:

  • механическим;
  • физическим;
  • химическим;
  • биологическим;
  • Социальным.

Особый вид отражения - биологический, который включает в себя стадии:

  • раздраженности;
  • чувствительности (допсихическое отражение):
  • психического отражения.

Необходимо рассматривать атрибутивистскую и функциональную концепцию информации.

Высшим уровнем (видом) отражением является сознание . Согласно материалистической концепции сознание - это способность высокоорганизованной материи отражать материю.

Теория отражения

Всеобщее свойство материи, обеспечивающее передачу информации на всех стадиях ее организации, называется отражение (reflection) и заключается “в воспроизведении, фиксировании того, что принадлежит отражаемому предмету. "... Логично предположить, что вся материя обладает свойством, по существу родственным с ощущением, свойством отражения..." (Ленин В. И).

Любое отражение несёт в себе информацию об отражаемом объекте. Способность к отражению зависит от уровня организации материи. Взаимодействиям объектов неорганической природы присущи пассивные формы отражения:

· простая механическая деформация (отпечаток тела на песке);

· сокращение или расширение в зависимости от колебаний окружающей температуры (термометр);

· отражение световых электромагнитных волн (фотография);

· отражение звуковых электромагнитных волн (эхо);

· химические изменения (цвет лакмусовой бумаги);

Хотя и у неорганических форм материи мы наблюдаем определенные признаки чувствительности – притяжение и отталкивание частиц, атомная валентность, молекулярная связь, неорганические тела не способны активно использовать результаты взаимодействия как средство самосохранения. Но этот пассивный “зачаточный” вид отражения, носящий форму лишь физического взаимодействия тел, является генетической предпосылкой для возникновения более высоких форм отражения в живой природе и человеческом обществе, когда отражение превращается в информационную модель , в образ и используется в процессах познания и управления .

Активные формы отражения:

· раздражимость клетки;

· чувствительность, т. е. способности иметь ощущения;

· восприятие - способности отражать вещи в некоторой совокупности их свойств;

· мышление - отражение существенных связей в окружающем мире;

· сознание и самосознание.

Становление человека и человеческого общества в процессе трудовой деятельности и общения с помощью речи обусловило возникновение формы отражения в виде сознания и самосознания. Сознание – высшая форма отражения на современном этапе эволюции материи.

Чем больше внутреннее разнообразие системы, тем больше ее элементов реагируют на внешнее воздействие изменением своих свойств, тем адекватнее отражение системой внешнего мира, а чем больше возможностей отражения, тем система может быстрее совершенствоваться, увеличивая свое разнообразие.

Не масса и не энергия, а развитие у систем способности к адекватному отражению характеризует уровень их организации .

На простом примере для нас это означает следующее: если вы знаете только русский язык, и не знаете, скажем, английского языка, то вы не способны отражать в своем сознании англоязычную речь и письмо, не способны извлекать из нее информацию и ориентироваться при помощи этой информации. Те, кто знают оба этих языка, бесспорно, имеют больше возможностей для ориентации в окружающем мире и для дальнейшего расширения своих знаний.

Таким образом, если, согласно ленинской теории отражения, процесс распространения информации есть процесс отражения , то воспринятая информация есть результат отражения - воспринятый образ . При отражении в материальных структурах этот образ материален, при отражении в идеальном сознании - идеален.

Вот небольшой список однокоренных слов:

· Формация (лат. Formatio) – вид, видимость, внешность, наружность, поверхность, облик, образ, форма.

· Реформац ия – преобразование исходной формы в новую форму.

· Деформац ия - искажение исходной формы.

· Информац ия – внедрение в исходную форму, то есть след, отпечаток, впечатление, вкрапление, образ, память о чужой форме.

Так на этом фоне может буквально пониматься слово «информация».

“Информация” превратилась в необычайно широкое понятие и встала в один ряд с такими философскими категориями, как материя, энергия, пространство и время. Однако единого общепризнанного определения информации не существует до сих пор, более того, это понятие остается одним их самых дискуссионных в современной науке. Все мы имеем представление о том, что такое материя, энергия, пространство, время, информация, мы можем описать их свойства, мы можем их измерять, но мы так и не можем пока дать их четкого научного определения.

Давайте познакомимся с определениями информации, данными выдающимися учеными:

· Информация – это обозначение содержания, полученного от внешнего мира в процессе приспособления к нему (Н. Винер).

· Информация – отрицательная энтропия (негэнтропия) (Л. Бриллюэн).

· Информация – вероятность выбора (А. М. Яглом, И. М. Яглом).

· Информация – снятая неопределенность (К. Шеннон).

· Информация – мера сложности структур, мера упорядоченности материальных систем (А. Моль).

· Информация - снятая неразличимость, передача разнообразия (У.Р. Эшби).

· Информация – отраженное разнообразие (А. Д. Урсул).

Информация – мера неоднородности распределения материи и энергии в пространстве и времени (В. М. Глушков).

Подведем итоги.

Характерными чертами материи, ее атрибутами являются движение, пространство, время, отражение, взаимодействие, самоорганизация.

Среди всеобщих свойств, атрибутов материи важнейшим является движение как способ существования материи.

Хотя, по существу, при выводе преобразований Галилея уже было сказано все то, что подразумевается в этих преобразованиях о пространстве и времени, повторим еще раз соответствующие утверждения. Обычно, когда говорят о «классической» физике, то, в частности, имеют в виду пьютоновскую механику. Взгляды Ныотона на пространство и время точно отражают классический подход к этим понятиям. Стоит внимательнее остановиться на воззрениях Ньютона еще и потому, что они соответствуют нашему повседневному опыту, очень привычны и понятны, а переход к

представлению о пространство и времени, характерному для специальной теории относительности, связан с отказом от этих представлений. Более того, еще более решительный шаг от этих представлений сделан в теории тяготения Эйнштейна, которую называют иногда общей теорией относительности. Вот что можно прочесть у Ньютона: «Абсолютное пространство по самой своей сущности, безотносительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным».

Таким образом, но Ньютону, пространство представляет собой громадный пустой ящик, в который вложены материальные тела и в котором разыгрываются физические явления. Вместе с тем Ньютон знал, что в механике справедлив принцип Галилея. А это означало равноправие состояния покоя и равномерного прямолинейного движения. Как в этих условиях следует выделить «неподвижное абсолютное» пространство?

Конечно, выделить «неподвижное абсолютное» пространство, наблюдая явления механики, невозможно. Поэтому обнаружение абсолютного пространства и абсолютного движения связано уже с выходом за рамки механики. Предполагается, что оно возможно при истолковании оптических явлений. Поэтому в историческом очерке, посвященном истолкованию некоторых экспериментальных фактов (Дополнение II), будем считать, что привилегированная, выделенная система отсчета Ньюгопа (неподвижное абсолютное пространство) - это гелиоцентрическая система, хотя, в конце концов, выяснится, что никакой привилегированной системы вообще не существует, а существует привилегированный класс систем отсчета, в которых законы физики выглядят особенна просто, - класс ииерциальных систем отсчета.

Теперь посмотрим, что писал Ньютон о времени:

«Абсолютное, истинное математическое время само по себе и по своей сущности, без всякого отпошении к чему-либо внешнему, протекает равномерно и ипаче называется длительностью».

Снова мы сталкиваемся с утверждением о том, что и время есть нечто внешнее но отношению к природе. Итак, согласно воззрениям Ньютона, время и пространство существуют сами по себе и не зависят от материальных тел, находящихся в пространстве. Конечно, представления Ньютона о пространстве и времени кажутся нам очень схоластичными. Однако не следует их недооценивать. Мы приведем небольшую выдержку из книги (стр. 245):

«В беседах с одним из авторов этой книги в давно прошедшие годы Эйнштейн выражал свое глубочайшее уважение к Ньютону и, в частности, восхищение его мужеством. Он подчеркивал, что Ньютон даже лучше, чем его критики в XVII столетии, понимал

трудности, связанные с идеями абсолютного пространства и абсолютного времени. Однако постулирование этих понятий было в то время единственным практически осуществимым способом продвинуться в описании движения».

Конечно, возпикает естественный вопрос: почему же классическая механика, опирающаяся на такие представления о пространстве и времени, которые едва ли можно разъяснить, действует столь эффективно? Но оказывается, что эти представления приближенно верны, а отклонения от них в повседневной жизни совсем несущественны. Отклонения от классических представлений отчетливо обнаруживаются лишь при изучении микрочастиц и в космических условиях, и с ними уже столкнулась современная физика; но такие наблюдения требуют создания специальных условий и достаточно сложных приборов.

В конце этого небольшого параграфа необходимо все нее кратко изложить современный взгляд на эти вещи. С современной точки прения, пет абсолютного пространства и, следовательно, пет никакого абсолютного движения. Все инерциальные системы отсчета равноправны. Специальная теория относительности показывает, что отсчет времени наступления событий оказывается различным в различных инерциальных системах отсчета. Таким образом, отсчет времени оказывается уже зависящим от состояния движения. Теория тяготения Эйнштейна идет еще дальше. С точки зрения этой теории свойства пространства и времени не заданы навсегда, а определяются находящимися в пространстве телами. С точки зрения диалектического материализма, согласно которому пространство и время - это формы существования материи, выводы теории тяготения Эйнштейна представляются куда более удовлетворительными, чем ньютоновские представления о пространстве и времени.