Созданию теории упругости и пластичности как самостоятельного раздела механики предшествовали работы ученых XVII и XVIII вв, Еще в начале XVII в. Г. Галилей (1564-1642) сделал попытку решить задачи о растяжении и изгибе бруса. Он был одним из первых, кто попытался применить расчеты к инженерно-строительным задачам.

Теорией изгиба тонких упругих стержней занимались такие выдаю­щиеся ученые, как Э. Мариотт, Я. Бернулли-старший, Ш.О. Кулон, Л. Эйлер, причем становление теории упругости как науки можно свя­зать с работами Р. Гуна, Т. Юнга, Ж.Л. Лагранжа, С. Жермен.

Роберт Гук (1635-1703) положил начало механике упругих тел, опубликовав в 1678 r . работу, в которой описал установленный им за кон пропорциональности между нагрузкой и деформацией при растя­жении. Томас Юнг (1773-1829) в самом начале XIX в. ввел понятие модуля упругости при растяжении и сжатии. Он установил также раз­личие между деформацией растяжения или сжатия и деформацией сдви­га. К этому же времени относятся работы Жозефа Луи Лагранжа (1736-1813) и Софи Жермен (1776-1831). Они нашли решение задачи об изгибе и колебаниях упругих пластинок. В дальнейшем теорию пластинок усовершенствовали С. Пуассон и 781-1840) и Л. Навье (1785-1836).

Так, к концу XVIII и началу XIX вв. были заложены основы со­противления материалов и создана почва для возникновения теории упругости. Быстрое развитие техники ставило перед математикой огромное количество практических задач, что и привело к быстрому развитию теории. Одной из многих важных проблем была проблема ис­следования свойств упругих материалов. Решение этой проблемы да­вало возможность более глубоко и полно изучить внутренние силы и деформации, возникающие в упругом теле под действием внешних сил.

Датой возникновения математической теории упругости надо счи­тать 1821 г., когда вышла в свет работа Л. Навье, в которой были сформулированы основные уравнения.

Большие математические трудности решения задач теории упруго­сти привлекли к ней внимание многих выдающихся ученых-математи­ков XIX в.: Ламе, Клапейрона, Пуассона и др. Дальнейшее развитие теория упругости получила в трудах французского математика О. Коши (1789-1857), который ввел понятия деформации и напряжения, упростив тем самым вывод общих уравнений.

В 1828 г. основной аппарат математической теории упругости на­шел свое завершение в трудах французских ученых и инженеров Г. Ла­ме (1795-1870) и Б. Клапейрона (1799-1864), преподававших в то вре­мя в Институте инженеров путей сообщения в Петербурге. В их сов­местной работе дано приложение общих уравнений к решению практи­ческих проблем.

Решение многих задач теории упругости стало возможным после того, как французский механик Б. Сен-Венан (1797-1886) выдвинул принцип, носящий его имя, и предложил эффективный метод решения задач теории упругости. Заслуга его, по словам известного английского ученого А. Лява (1863-1940), заключается еще и в том, что он увязал проблемы кручения и изгиба балок с общей теорией.

Если французские математики занимались в основном общими проблемами теории, то русские ученые внесли большой вклад в разви­тие науки о прочности решением многих актуальных практических задач. С 1828 но 1860 г. в петербургских технических вузах препода­вал математику и механику выдающийся ученый М. В. Остроградс­кий (1801-1861). Его исследования по вопросам колебаний, возни­кающих в упругой среде, имели важное значение для развития теории упругости. Остроградский воспитал плеяду ученых и инженеров. Сре­ди них следует назвать Д. И. Журавского (1821-1891), который, ра­ботая на строительстве Петербурго-Московской железной дороги, создал не только новые схемы мостов, но и теорию расчета мостовых ферм, а также вывел формулу касательных напряжений в изгибаемой балке.

А. В. Гадолин (1828-1892) применил задачу Ламе об осесимметричной деформации толстостенной трубы к исследованию напряжений, возникающих в стволах артиллерийских орудий, одним из первых при­ложив теорию упругости к конкретной инженерной задаче.

Из других задач, решенных в конце XIX в., нужно отметить работы X. С. Головина (1844-1904), произведшего методами теории упруго сти точный расчет кривого бруса, что дало возможность определить степень точности приближенных решений.

Большая заслуга в развитии науки о прочности принадлежит В. Л. Кирпичеву (1845-1913). Ему удалось значительно упростить различные методы расчета статически неопределимых конструкций. Он первый применил оптический метод к экспериментальному опреде­лению напряжений, создал метод подобия.

Тесная связь с практикой строительства, принципиальность и глу­бина анализа характеризуют советскую науку. И. Г. Бубнов (1872- 1919) разработал новый приближенный метод интегрирования диффе­ренциальных уравнений, блестяще развитый Б. Г. Галеркиным (1871-1945). Вариационный метод Бубнова-Галеркина в настоя­щее время получил широкое распространение. Большое значение име­ют труды этих ученых в теории изгиба пластинок. Новые важные ре­зультаты, продолжая исследования Галеркина, получил П.Ф. Папкович (1887-1946).

Метод решения плоской задачи теории упругости, основанный на применении теории функций комплексного переменного, был предло­жен Г.В. Колосовым (1867-1936). Впоследствии этот метод был раз­вит и обобщен Н.И. Мусхелишвили (1891-1976). Ряд задач по устой­чивости стержней и пластинок, вибрациям стержней и дисков, по тео­рии удара и сжатия упругих тел решил А.Н. Динник (1876-1950). Большое практическое значение имеют работы Л.С. Лейбензона (1879-1951) по устойчивости упругого равновесия длинных закру­ченных стержней, по устойчивости сферических и цилиндрических оболочек. Важное практическое значение имеют капитальные работы В. 3. Власова (1906-1958) по общей теории тонкостенных простран­ственных стержней, складчатых систем и оболочек.

Теория пластичности имеет более короткую историю. Первая мате­матическая теория пластичности была создана Сен-Венаном в 70-е годы XIX в. на основании опытов французского инженера Г. Треска. В начале XX в. над проблемами пластичности работали Р. Мизес. Г. Генки, Л. Прандтль, Т. Карман. С 30-х годов XX в, теория плас­тичности привлекла к себе внимание большого круга видных зарубеж­ных ученых (А. Надаи, Р. Хилла, В. Прагера, Ф. Ходжа, Д. Друккера и др.). Широко известны работы по теории пластичности советских уче­ных В.В. Соколовского, А.Ю. Ишлинского, Г.А. Смирнова-Аляева, Л. М. Качанова. Фундаментальный вклад в создание деформационной теории пластичности внес А.А. Ильюшин. А.А. Гвоздев разработал теорию расчета пластинок и оболочек по разрушающим нагрузкам Эта теория успешно развита А.Р. Ржаницыным.

Теория ползучести как раздел механики деформируемого тела сформировалась сравнительно недавно. Первые исследования в этой области относятся к 20-м годам XX в. Их общий характер определяет­ся тем, что проблема ползучести представляла большую важность для энергомашиностроения и инженеры были вынуждены искать простые и быстро ведущие к цели методы решения практических задач. В создании теории ползучести большая роль принадлежит тем авторам, ко­торые внесли существенный вклад в создание современной теории пластичности. отсюда общность многих идей и подходов. В нашей стране первые работы по механической теории ползучести принадлежат Н.М. Беляеву (1943), К.Д. Миртову (1946), к концу 40-х годов отно­сятся первые исследования Н. Н. Малинина, Ю.Н. Работнова.

Исследования в области упруговязких тел выполнены в работах А.Ю. Ишлинского, А.Н. Герасимова, А.Р. Ржаницына, Ю.Н. Работнова. Применение этой теории к стареющим материалам, в первую очередь к бетону, дано в работах Н.X. Арутюняна, А.А. Гвоздева, Г.Н Маслова. Большой объем исследований ползу чести полимерных материалов выполнен научными коллективами под руководством А.А. Ильюшина, А.К. Малмейстера, М.И. Розовского, Г.Н. Савина.

Советское государство уделяет большое внимание науке. Органи­зация научно-исследовательских институтов, участие в разработке актуальных проблем больших коллективов ученых позволили поднять советскую науку на более высокую ступень.

В кратком обзоре нет возможности подробнее остановиться на рабо­тах всех ученых, внесших свой вклад в развитие теории упругости и пластичности. Желающие подробно ознакомиться с историей развития этой науки могут обратиться к учебнику Н.И. Безухова, где дан детальный разбор основных этапов развития теории упругости и плас­тичности, а также приведена обширная библиография.

1.1.Основные гипотезы, принципы и определения

Теория напряжений как раздел механики сплошных сред базируется на ряде гипотез, основными из которых следует назвать гипотезы сплошности и естественного (фонового) напряженного состояния.

Согласно гипотезе о сплошности все тела принимаются за совершенно сплошные как до приложения нагрузки (до деформирования), так и после ее действия. При этом сплошным (непрерывным) остается любой объем тела, в том числе и элементарный, то есть бесконечно малый. В связи с этим деформации тела считаются непрерывными функциями координат, когда материал тела деформируется без образования в нем трещин или прерывистых складок.

Гипотеза об естественном напряженном состоянии предполагает наличие начального (фонового) уровня напряженности тела, обычно принимаемого за нулевой, а фактические напряжения, вызываемые внешней нагрузкой, считаются приращения напряжений над ест естественным уровнем.

Наряду с названными основными гипотезами, в теории напряжений принят и ряд основополагающих принципов, среди которых в первую очередь необходимо назвать наделение тел идеальной упругостью, шаровой изотропией, совершенной однородностью, линейной зависимостью между напряжениями и деформациями.

Идеальная упругость есть способность материалов, подвергаемых деформированию, восстанавливать свою первоначальную форму (размеры и объем) после снятия внешней нагрузки (внешнего воздействия). Практически все горные породы и большинство строительных материалов обладают в известной степени упругостью, к этим материалам можно отнести и жидкости, и газы.

Шаровая изотропия предполагает одинаковость свойств материалов во всех направлениях действия нагрузки, антиподом ей является анизотропия, то есть неодинаковость свойств в различных направлениях (некоторые кристаллы, древесина и др.). При этом нельзя смешивать понятия шаровой изотропии и однородности: например, для однородной структуры древесины свойственна анизотропия – различие в прочности дерева вдоль и поперек волокон. Упругим, изотропным и однородным материалам присуща линейная зависимость между напряжениями и деформациями, описываемая законом Гука, рассмотрению которого посвящен соответствующий раздел учебного пособия.

Основополагающим принципом в теории напряжений (и деформаций, в том числе) является и принцип локальности действия самоуравновешенных внешних нагрузок – принцип Сен-Венана. Согласно этому принципу, приложенные к телу в какой либо точке (линии) уравновешенная система сил вызывает в материале напряжения, быстро убывающие по мере удаления от места приложения нагрузки, например, по экспоненциальному закону. Примером такого действия может служить разрезание бумаги ножницами, которые деформируют (режут) бесконечно малую часть листа (линию), тогда как остальные части листа бумаги не будут нарушены, то есть будет иметь место локальная деформация. Применение принципа Сен-Венана способствует упрощению математических выкладок при решении задач по оценке НДС за счет замены заданной сложной для математического описания нагрузки на более простую, но эквивалентную ей.

Говоря о предмете изучения в теории напряжений, следует дать и определение самого напряжения, под которым понимается мера внутренних усилий в теле, в пределах некоторого его сечения, распределенных по рассматриваемому сечению и противодействующих внешней нагрузке. При этом напряжения, действующие на поперечной площадке и перпендикулярной ей, называются нормальными; соответственно напряжения, параллельные этой площадке или касающиеся ее, будут касательными.

Рассмотрение теории напряжений упрощается при введении следующих допущений, практически не снижающих точность получаемых решений:

Относительные удлинения (укорочения), а также относительные сдвиги (углы сдвига) много меньше единицы;

Перемещения точек тела при его деформировании малы по сравнению с линейными размерами тела;

Углы поворота сечений при изгибном деформировании тела также очень малы по сравнению с единицей, а их квадраты пренебрежимо малы в сравнении с величинами относительных линейных и угловых деформаций.

ОСНОВЫ ТЕОРИИ УПРУГОСТИ

ОСЕСИММЕТРИЧНЫЕ ЗАДАЧИ ТЕОРИИ УПРУГОСТИ

ОСНОВЫ ТЕОРИИ УПРУГОСТИ

Основные положения, допущения и обозначения Уравнения равновесия элементарного параллелепипеда и элементарного тетраэдра. Нормальные и касательные напряжения по наклонной площадке

Определение главных напряжений и наибольших касательных напряжений в точке. Напряжения по октаэдрическим площадкам Понятие о перемещениях. Зависимости между деформациями и перемещениями. Относительная

линейная деформация в произвольном направлении Уравнения совместности деформаций. Закон Гука для изотропного тела Плоская задача в прямоугольных координатах Плоская задача в полярных координатах

Возможные решения задач теории упругости. Решения задач в перемещениях и напряжениях Наличие температурного поля. Краткие выводы по разделу ПРОСТЕЙШИЕ ОСЕСИММЕТРИЧНЫЕ ЗАДАЧИ Уравнения в цилиндрических координатах Уравнения в цилиндрических координатах (продолжение)

Деформация толстостенного сферического сосуда Сосредоточенная сила, действующая на плоскость

Частные случаи загрузки упругого полупространства: равномерная загрузка по площади круга, загрузка на площади круга по "полушару", обратная задача Вдавливание абсолютно жесткого шара в упругое полупространство. Задача об упругом смятии шаров ТОЛСТОСТЕННЫЕ ТРУБЫ

Общие сведения. Уравнение равновесия элемента трубы Исследование напряжений при давлении на одном из контуров. Условия прочности при упругой деформации Напряжения в составных трубах. Понятие о расчете многослойных труб Примеры расчетов

ПЛАСТИНЫ, МЕМБРАНЫ Основные определения и гипотезы

Дифференциальное уравнение изогнутой срединной поверхности пластины в прямоугольных координатах Цилиндрический и сферический изгиб пластины

Изгибающие моменты при осесимметричном изгибе круглой пластины. Дифференциальное уравнение изогнутой срединной поверхности круглой пластины Граничные условия в круглых пластинах. Наибольшие напряжения и прогибы. Условия прочности. Температурные напряжения в пластинах

Определение усилий в мембранах. Цепные усилия и напряжения. Приближенное определение прогибов и напряжений в круглых мембранах Примеры расчетов Примеры расчетов (продолжение)

1.1 Основные положения, допущения и обозначения

Теория упругости имеет целью аналитическое изучение напряженнодеформированного состояния упругого тела. С помощью теории упругости могут быть проверены решения, полученные с использованием допущений сопротивления

материалов, и установлены границы применимости этих решений. Иногда разделы теории упругости, в которых, как и в сопротивлении материалов, рассматривается вопрос о пригодности детали, но с использованием достаточно сложного математического аппарата (расчет пластин, оболочек, массивов), относят к прикладной теории упругости.

В настоящей главе изложены основные понятия математической линейной теории упругости. Применение математики к описанию физических явлений требует их схематизации. В математической теории упругости задачи решаются с возможно меньшим числом допущений, что усложняет математические приемы, применяемые для решения. В линейной теории упругости предполагается существование линейной зависимости между составляющими напряжениями и деформациями. Для ряда материалов (резина, некоторые сорта чугуна) такая зависимость даже при малых деформациях не может быть принята: диаграмма σ - ε в пределах упругости имеет одинаковые очертания как при нагружении, так и при разгрузке, но в обоих случаях криволинейна. При исследовании таких материалов необходимо пользоваться зависимостями нелинейной теории упругости.

В математической линейной теории упругости исходят из следующих допущений:

1. О непрерывности (сплошности) среды. При этом атомистическая структура вещества или наличие каких-либо пустот не учитывается.

2. О естественном состоянии, на основании которого начальное напряженное (деформированное) состояние тела, возникшее до приложения силовых воздействий, не учитывается, т. е. предполагается, что в момент нагружения тела деформации и напряжения в любой его точке равны нулю. При наличии начальных напряжений это допущение будет справедливым, если только к результирующим напряжениям (сумме начальных и возникших от из воздействий) могут быть применены зависимости линейной теории упругости.

3. Об однородности, на основании которого предполагается, что состав тела одинаков во всех точках. Если применительно к металлам это допущение не дает больших погрешностей, то в отношении бетона при рассмотрении малых объемов оно может привести к значительным погрешностям.

4. О шаровой изотропности, на основании которого считается, что механи-ческие свойства материала одинаковы по всем направлениям. Кристаллы металла не обладают таким свойством, но для металла в целом, состоящего из большого числа мелких кристаллов, можно считать, что эта гипотеза справедлива. Для материалов, обладающих различными механическими свойствами в разных направлениях, как, например, для слоистых пластиков, разработана теория упругости ортотропных и анизотропных материалов.

5. Об идеальной упругости, на основании которого предполагается полное исчезновение деформации после снятия нагрузки. Как известно, в реальных телах при любом нагружении возникает остаточная деформация. Поэтому допущение

6. О линейной зависимости между составляющими деформациями и напря-жениями.

7. О малости деформаций, на основании которого предполагается, что относительные линейные и угловые деформации малы по сравнению с единицей. Для таких материалов, как резина, или таких элементов, как спиральные пружины, создана теория больших упругих деформаций.

При решении задач теории упругости пользуются теоремой о единственности решения: если заданные внешние поверхностные и объемные силы находятся в равновесии, им соответствует одна единственная система напряжений и перемещений. Положение о единственности решения справедливо, если только справедливы допущение о естественном состоянии тела (иначе возможно бесчисленное количество решений) и допущение о линейной зависимости между деформациями и внешними силами.

При решении задач теории упругости часто пользуются принципом Сен-Венана: если внешние силы, приложенные на небольшом участке упругого тела, заменить действующей на том же участке статически эквивалентной системой сил (имеющей тот же главный вектор и тот же главный момент), то эта замена вызовет лишь изменение местных деформаций.

В точках, достаточно удаленных от мест приложения внешних нагрузок, напряжения мало зависят от способа их приложения. Нагрузка, которая в курсе сопротивления материалов схематически выражалась на основании принципа Сен-Венана в виде силы или сосредоточенного момента, на самом деле представляет собой нормальные и касательные напряжения, распределенные тем или иным способом на определенном участке поверхности тела. При этом одной и той же силе или паре сил может соответствовать различное распределение напряжений. На основании принципа Сен-Венана можно считать, что изменение усилий на участке поверхности тела почти не отражается на напряжениях в точках, удаленных на достаточно большое расстояние от места приложения этих усилий (по сравнению с линейными размерами нагруженного участка).

Положение исследуемой площадки, выделенной в теле (рис. 1), определяется направляющими косинусами нормали N к площадке в выбранной системе прямоугольных осей координат х, у и z.

Если Р - равнодействующая внутренних сил, действующих по элементарной площадке , выделенной у точки А, то полное напряжение р N в этой точке по площадке с нормалью N определяется как предел отношения в

следующей форме:

.

Вектор р N можно разложить в пространстве на три взаимно перпенди-кулярные составляющие.

2. На составляющие σ N , τ N s и τ N t по направлениям нормали к площадке (нормальное напряжение) и двух взаимно перпендикулярных осей s и t (рис. 1,б), лежащих в плоскости площадки (касательные напряжения). Согласно рис.1, б

Если сечение тела или площадка параллельны одной из плоскостей координат, например у0z (рис. 2), то нормалью к этой площадке будет третья ось координат х и составляющие напряжения будут иметь обозначения σ x , τ xy и τ xz .

Нормальное напряжение положительно, если оно растягивающее, и отрицательно, если оно сжимающее. Знак касательного напряжения определяется с помощью следующего правила: если положительное (растягивающее) нормальное напряжение по площадке дает положительную проекцию, то касательное

напряжение по той же площадке считается положительным при условии, что оно тоже дает положительную проекцию на соответствующую ось; если же растягивающее нормальное напряжение дает отрицательную проекцию, то положительное касательное напряжение тоже должно давать отрицательную проекцию на соответствующую ось.

На рис. 3, например, все составляющие напряжения, действующие по граням элементарного параллелепипеда, совпадающим с плоскостями координат, положительны.

Чтобы определить напряженное состояние в точке упругого тела, необходимо знать полные напряжения р N по трем взаимно перпендикулярным площадкам, проходящим через эту точку. Так как каждое полное напряжение можно разложить на три составляющие, напряженное состояние будет определено, если будут известны девять составляющих напряжений. Эти составляющие можно записать в виде матрицы

,

называемой матрицей компонентов тензора напряжений в точке.

В каждой горизонтальной строчке матрицы записаны три составляющих напряжения, действующих по одной площадке, так как первые значки (название нормали) у них одинаковые. В каждом вертикальном столбце тензора записаны три напряжения, параллельных одной и той же оси, так как вторые значки (название оси, параллельно которой действует напряжение) у них одинаковые.

1.2 Уравнения равновесия элементарного параллелепипеда

и элементарного тетраэдра

Выделим у исследуемой точки А (с координатами х, у и z) напряженного упругого тела тремя взаимно перпендикулярными парами плоскостей элементарный параллелепипед с размерами ребер dx, dy и dz (рис. 2). По каждой из трех взаимно перпендикулярных граней, примыкающих к точке А (ближайших к плоскостям координат), будут действовать три составляющих напряжения − нормальное и два касательных. Считаем, что по граням, примыкающим к точке А, они положительны.

При переходе от грани, проходящей через точку А, к параллельной грани напряжения меняются и получают приращения. Например, если по грани CAD, проходящей через точку А, действуют составляющие напряжения σ х = f 1 (x,y,z), τ xy =f 2 (x,y,z,), τ xz =f 3 (x,y,z,) , то по параллельной грани, вследствие приращения только одной координаты х при переходе от одной грани к другой, будут действовать

составляющие напряжения Можно определить напряжения на всех гранях элементарного параллелепипеда, как показано на рис. 3.

Кроме напряжений, приложенных к граням элементарного параллелепипеда, на него действуют объемные силы: силы веса, инерционные. Обозначим проекции этих сил, отнесенных к единице объема, на оси координат через X, У и Z. Если приравнять нулю сумму проекций на ось х всех нормальных, касательных и объемной сил,

действующих на элементарный параллелепипед, то после сокращения на произведение dxdydz получим уравнение

.

Составив аналогичные уравнения проекций сил на оси у и z , напишем три дифференциальных уравнения равновесия элементарного параллелепипеда, полученных Коши,

При уменьшении размеров параллелепипеда до нуля он превращается в точку, а σ и τ представляют собой составляющие напряжения по трем взаимно перпендикулярным площадкам, проходящим через точку А .

Если приравнять нулю сумму моментов всех сил, действующих на элементарный параллелепипед, относительно оси x c , параллельной оси х и проходящей через его центр тяжести, получим уравнение

или, с учетом того, что второй и четвертый члены уравнения высшего порядка малости по сравнению с остальными, после сокращения на dxdydz

τ yz - τ zy = 0 или τ yz = τ zy.

Составив аналогичные уравнения моментов относительно центральных осей у c и z c , получим три уравнения закона парности касательных напряжений

τ xy = τ yx, τ yx = τ xy , τ zx = τ xz . (1.3)

Этот закон формулируется так: касательные напряжения, действующие по взаимно перпендикулярным площадкам и направленные перпендикулярно к линии пересечения площадок, равны по величине и одинаковы по знаку.

Таким образом, из девяти составляющих напряжений матрицы тензора Т σ шесть попарно равны друг другу, и для определения напряженного состояния в точке достаточно найти лишь следующие шесть составляющих напряжений:

.

Но составленные условия равновесия дали нам всего лишь три уравнения (1.2), из которых шесть неизвестных найдены быть не могут. Таким образом, прямая задача определения напряженного состояния в точке в общем случае статически неопределима. Для раскрытия этой статической неопределимости необходимы дополнительные геометрические и физические зависимости.

Рассечем элементарный параллелепипед у точки А плоскостью, наклоненной к его граням; пусть нормаль N к этой плоскости имеет направляющие косинусы l, т и п. Получившаяся геометрическая фигура (рис. 4) представляет собой пирамиду с треугольным основанием − элементар-ный тетраэдр. Будем считать, что точка А совпадает с началом координат, а три взаимно перпендикулярные грани тетраэдра − с плоскостями координат.

Составляющие напряжения, действующие по этим граням тетраэдра, будем считать

положительными. Они показаны на рис. 4. Обозначим через , и проекции полного напряжения p N , действующего по наклонной грани BCD тетраэдра, на оси х, у и z. Площадь наклонной грани BCD обозначим dF. Тогда площадь грани АВС будет dFп, грани ACD − dFl и грани АDВ − dFт.

Составим уравнение равновесия тетраэдра, спроектировав все силы, действующие по его граням, на ось х; проекция объемной силы в уравнение проекций не входит, так

как представляет собой величину высшего порядка малости по сравнению с проекциями поверхностных сил:

Составив уравнения проекции сил, действующих на тетраэдр, на оси у и z , получим еще два аналогичных уравнения. В результате будем иметь три уравнения равновесия элементарного тетраэдра

Разделим пространственное тело произвольной формы системой взаимно перпендикулярных плоскостей хОу, yОz и хОz (рис. 5) на ряд элементарных параллелепипедов. У поверхности тела при этом образуются элементарные

тетраэдры, (криволинейные участки поверхности ввиду их малости можно заменить плоскостями). В таком случае р N будет представлять нагрузку на поверхности, а уравнения (1.4) будут связывать эту нагрузку с напряжениями σ и τ в теле, т. е. будут представлять граничные условия задачи теории упругости. Условия, определяемые этими уравнениями, называют условиями на поверхности.

Следует отметить, что в теории упругости внешние нагрузки представляются нормальными и касательными напряжениями, приложенными по какому-либо закону к площадкам, совпадающим с поверхностью тела.

1.3 Нормальные и касательные напряжения по наклонной

площадке

Рассмотрим элементарный тетраэдр ABCD, три грани которого параллельны координатным плоскостям, а нормаль N к четвертой грани составляет с координатными осями углы, косинусы которых равны l, т и п (рис. 6). Будем считать заданными составляющие нормальные и касательные напряжения, действующие по площадкам, лежащим в координатных плоскостях, и определим напряжения на площадке BCD. Выберем новую систему прямоугольных осей координат х 1 , y 1 и z 1 , так чтобы ось х 1 совпадала с нормалью N ,

В главах 4-6 были выведены основные уравнения теории упругости, устанавливающие законы изменения напряжений и деформаций в окрестности произвольной точки тела, а также соотношения, связывающие напряжения с деформациями и деформации с перемещениями. Приведем полную систему уравнений теории упругости в декартовых координатах.

Уравнения равновесия Навье:

Соотношения Коши:


Закон Гука (в прямой и обратной формах):


Напомним, что здесь е = е х + е у + e z - относительная объемная деформация, а по закону парности касательных напряжений Xj. = Tj; и соответственно у~ = ^ 7 . Входящие в (16.3, а) постоянные Ляме определяются по формулам (6.13).

Из приведенной системы видно, что она включает 15 дифференциальных и алгебраических уравнений, содержащих 15 неизвестных функций (6 компонент тензора напряжений, 6 компонент тензора деформаций и 3 компоненты вектора перемещения).

В силу сложности полной системы уравнений нельзя найти общее решение, которое было бы справедливо для всех задач теории упругости, встречающихся на практике.

Существуют различные способы уменьшения количества уравнений, если в качестве неизвестных функций принять, например, только напряжения или перемещения.

Если, решая задачу теории упругости, исключить из рассмотрения перемещения, то вместо соотношений Коши (16.2) можно получить уравнения, связывающие между собой компоненты тензора деформаций. Продифференцируем деформацию г х, определяемую первым равенством (16.2), два раза по у, деформацию г у - два раза по х и сложим полученные выражения. В результате получим

Выражение, стоящее в скобках, согласно (16.2) определяет угловую деформацию у. Таким образом, последнее равенство можно записать в виде

Аналогично можно получить еще два равенства, которые вместе с последним соотношением составляют первую группу уравнений совместности деформаций Сен-Венана:

Каждое из равенств (16.4) устанавливает связь между деформациями в одной плоскости. Из соотношений Коши могут быть также получены условия совместности, связывающие деформации в разных плоскостях. Продифференцируем выражения (16.2) для угловых деформаций следующим образом: у - по z у - по х;

По у; сложим два первых равенства и вычтем третье. В результате получим


Дифференцируя это равенство по у и учитывая, что,

приходим к следующему соотношению:

С помощью круговой подстановки получим еще два равенства, которые вместе с последним соотношением составляют вторую группу уравнений совместности деформаций Сен-Венана:

Уравнения совместности деформаций называются также условиями сплошности или неразрывности. Эти термины характеризуют тот факт, что при деформировании тело остается сплошным. Если представить тело состоящим из отдельных элементов и принять деформации е х, у в виде произвольных функций, то в деформированном состоянии из этих элементов не удастся сложить сплошное тело. При выполнении условий (16.4), (16.5) перемещения границ отдельных элементов будут таковы, что тело и в деформированном состоянии останется сплошным.

Таким образом, одним из способов сокращения количества неизвестных при решении задач теории упругости является исключение из рассмотрения перемещений. Тогда вместо соотношений Коши в полную систему уравнений будут входить уравнения совместности деформаций Сен-Венана.

Рассматривая полную систему уравнений теории упругости, следует обратить внимание на то, что она практически не содержит факторов, определяющих напряженно-деформированное состояние тела. К таким факторам относятся форма и размеры тела, способы его закрепления, действующие на тело нагрузки, за исключением объемных сил X, Y, Z.

Таким образом, полная система уравнений теории упругости устанавливает лишь общие закономерности изменения напряжений, деформаций и перемещений в упругих телах. Решение же конкретной задачи может быть получено, если заданы условия нагружения тела. Это дается в граничных условиях, которые и отличают одну задачу теории упругости от другой.

С математической точки зрения также понятно, что общее решение системы дифференциальных уравнений включает в себя произвольные функции и постоянные, которые и должны быть определены из граничных условий.

ТЕОРИЯ УПРУГОСТИ – раздел механики сплошных сред, изучающий перемещения, деформации и напряжения покоящихся или движущихся тел под действием нагрузок. Цель этой теории – вывод математических уравнений, решение которых позволяет ответить на следующие вопросы: каковы будут деформации данного конкретного тела, если к нему приложить в известных местах нагрузки заданной величины? Каковы будут при этом напряжения в теле? Вопрос в том, разрушится ли тело или выдержит эти нагрузки, тесно связан с теорией упругости, но, строго говоря, не входит в компетенцию этой теории.

Количество возможных примеров безгранично – от определения деформаций и напряжений в балке, лежащей на опорах и нагруженной силами, до расчета тех же величин в конструкции самолета, корабля, подводной лодки, в колесе вагона, в броне при ударе снаряда, в горном массиве при прохождении штольни, в каркасе высотного здания и т.д. Здесь нужно сделать оговорку: конструкции, состоящие из тонкостенных элементов, рассчитывают по упрощенным теориям, логически основанным на теории упругости; к таким теориям относятся: теория сопротивления материалов действию нагрузок (знаменитый «сопромат»), задачей которой, в основном, является расчет стержней и балок; строительная механика – расчет стержневых систем (например, мостов); и, наконец, теория оболочек – по существу, самостоятельная и очень сильно развитая область науки о деформациях и напряжениях, предмет исследования которой – важнейшие элементы конструкций – тонкостенные оболочки – цилиндрические, конические, сфероидальные, и имеющие более сложные формы. Поэтому в теории упругости обычно рассматриваются тела, у которых существенные размеры отличаются не слишком сильно. Таким образом, рассматривается упругое тело заданной формы, на которое действуют известные силы.

Основными понятиями теории упругости являются напряжения, действующие на малых площадках, которые можно мысленно провести в теле через заданную точку M , деформации малой окрестности точки M и перемещения самой точки M . Точнее говоря, вводятся тензоры напряжений s ij , тензор малых деформаций e ij и вектор перемещения u i .

Краткое обозначение s ij , где индексы i , j принимают значения 1, 2, 3 следует понимать как матрицу вида:

Аналогично следует понимать и краткое обозначение тензора e ij .

Если физическая точка тела M вследствие деформации заняла новое положение в пространстве , то вектор перемещения есть вектор с компонентами (u x u y u z ), или, сокращенно, u i . В теории малых деформаций компоненты u i и e i считаются малыми величинами (строго говоря, бесконечно малыми). Компоненты тензора e ij и вектора u ij связаны формулами Коши, которые имеют вид:

Видно, что e xy = e yx , и, вообще говоря, e ij = e ji , поэтому тензор деформаций является симметричным по определению.

Если упругое тело под действием внешних сил находится в равновесии (т.е. скорости всех его точек равны нулю), то в равновесии находится и любая часть тела, которую можно мысленно из него выделить. Из тела выделяется маленький (строго говоря, бесконечно малый) прямоугольный параллелепипед, грани которого параллельны координатным плоскостям декартовой системы Oxyz (рис. 1).

Пусть ребра параллелепипеда имеют длины dx , dy , dz соответственно (здесь, как обычно dx есть дифференциал x , и т.д.). Согласно теории напряжений, на гранях параллелепипеда действуют компоненты тензора напряжений, которые обозначаются:

на грани OADG : s xx , s xy , s xz

на грани OABC : s yx , s yy , s yz

на грани DABE : s zx , s zy , s zz

при этом компоненты с одинаковыми индексами (например s xx ) действуют перпендикулярно грани, а с разными индексами – в плоскости площадки.

На противоположных гранях значения одноименных компонент тензора напряжений немного отличаются, это связано с тем, что они являются функциями координат и изменяются от точки к точке (всегда, кроме известных простейших случаев), а малость изменения связана с малыми размерами параллелепипеда, поэтому можно считать, что если на грани OABC действует напряжение s yy , то на грани GDEF действует напряжение s yy +ds yy , причем малая величина ds yy именно в силу своей малости может быть определена с помощью разложения в ряд Тейлора:

(здесь используются частные производные, т.к. компоненты тензора напряжений зависят от x , y , z ).

Аналогично можно выразить напряжения на всех гранях через s ij и ds ij . Далее, чтобы перейти от напряжений к силам, нужно умножить величину напряжения на площадь той площадки, на которой оно действует (например, s yy + ds yy умножить на dx dz ). Когда все силы, действующие на параллелепипед, определены, можно, как это делают в статике, записать уравнение равновесия тела, при этом во всех уравнениях для главного вектора останутся только члены с производными, так как сами напряжения взаимно уничтожаются, а множители dx dy dz сокращаются и в результате

Аналогично получаются уравнения равновесия, выражающие равенство нулю главного момента всех сил, действующих на параллелепипед, которые приводятся к виду:

Эти равенства означают, что тензор напряжений есть симметричный тензор. Таким образом, для 6 неизвестных компонент s ij есть три уравнения равновесия, т.е. уравнений статики недостаточно для решения задачи. Выход из положения состоит в том, чтобы выразить напряжения s ij через деформации e ij с помощью уравнений закона Гука , а затем деформации e ij выразить через перемещения u i с помощью формул Коши, и результат подставить в уравнения равновесия. При этом получается три дифференциальных уравнения равновесия относительно трех неизвестных функций u x u y u z , т.е. число неизвестных равно числу уравнений. Эти уравнения называются уравнениями Ламе

не учитываются массовые силы (вес и др.)

D – оператор Лапласа , то есть

Теперь нужно задать на поверхности тела граничные условия;

основные виды этих условий следующие:

1. На известной части поверхности тела S 1 заданы перемещения, т.е. вектор перемещений равен известному вектору с компонентами { f x ; f y ; f z }:

u x = f (xyz )

u y = f (xyz)

u z = f (xyz )

(f x , f y , f z – известные функции координат)

2. На остальной части поверхности S 2 заданы поверхностные силы. Это означает, что распределение напряжений внутри тела таково, что величины напряжений в непосредственной близости от поверхности, а в пределе – на поверхности на каждой элементарной площадке создают вектор напряжений, равный известному вектору внешней нагрузки с компонентами { F x ;F y ; F z } поверхностных сил. Математически это записывается так: если в точке A поверхности вектор единичной нормали к этой поверхности имеет компоненты n x , n y , n z то в этой точке должны быть выполнены равенства относительно (неизвестных) компонент s ij : e ij , то для трех неизвестных получим шесть уравнений, то есть переопределенную систему. Эта система будет иметь решение только при выполнении дополнительных условий относительно e ij . Эти условия и есть уравнения совместности.

Эти уравнения часто называют условиями сплошности, подразумевая при этом, что они обеспечивают сплошность тела после деформации. Это выражение образное, но неточное: эти условия обеспечивают существование непрерывного поля перемещений, если в качестве неизвестных принять компоненты деформаций (или напряжений). Невыполнение этих условий ведет не к нарушению сплошности, а к отсутствию решения задачи.

Таким образом, теория упругости дает дифференциальные уравнения и граничные условия, которые позволяют сформулировать краевые задачи, решение которых дает полную информацию о распределении в рассматриваемых телах напряжений, деформаций и перемещений. Методы решения таких задач весьма сложны и наилучшие результаты дает сочетание аналитических методов с численными, использующими мощные компьютеры.

Владимир Кузнецов

Теория упругости изучает напряжения и деформации упругих тел, возникающие под действием на них внешних сил (нагрузки).

Упругость - это способность тела, изменившего свою форму и размеры под нагрузкой, принимать исходные размеры и форму после снятия нагрузки. Если изменение размеров тела линейно зависит от нагрузки, то имеет место линейная упругость . Тело, обладающее этим свойством, называют идеально упругим . Материалы, обладающие идеальной упругостью - это сталь, чугун, алюминий, дерево, стекло. Если изменение размеров тела нелинейно зависит от нагрузки, то говорят о нелинейной упругости. Нелинейной упругостью обладает, например, резина. Мы будем изучать линейную теорию упругости .

Рис. 1 - Линейная (1) и нелинейная (2) упругость

Если в каждой точке свойства тела одинаковы во всех направлениях, то такое тело называют изотропным . С инженерной точностью изотропной можно считать сталь. Если в каждой точке свойства тела различны в разных направлениях, то такое тело называют анизотропным . Такими свойствами обладает дерево, которое имеет одни свойства вдоль волокон и другие - поперек волокон. Мы будем изучать линейную теорию упругости изотропных тел .

Дополнительно введем следующие ограничения:

  1. Материал тел является однородным , т. е. его свойства одинаковы во всех точках тела;
  2. Материал тел обладает сплошностью , т. е. деформирование тела происходит без разрывов;
  3. Рассматриваются только тела, деформации и перемещения которых под нагрузкой малы по сравнению с размерами тела.

Таким образом, из нашего рассмотрения выпадают проблемы устойчивости упругого равновесия, расчеты сильно изогнутых стержней и изгиб пластин и оболочек при прогибах, сопоставимых с толщиной оболочки. Эти задачи рассматривает геометрически нелинейная теория упругости .

Линейная теория упругости изучает внутренние силы, возникающие в идеально упругом теле под действием на него внешних сил.

Таким образом, силы подразделяются на внешние (силы взаимодействия разных тел) и внутренние (силы, возникающие между двумя смежными элементами внутри тела). Внешние силы бывают приложены в точке (сосредоточенные), по поверхности тела (поверхностные) и в каждой точке тела (объемные).

Рассмотрим тело, находящееся в равновесии под действием внешних сил F1, F2, …, Fn (рис. 2а). Между частями тела возникают внутренние силы взаимодействия, которые могут разрушить тело. Чтобы определить эти силы в интересующем нас сечении, мысленно расчленим тело на две части и, отбросив правую часть, заменим ее действие на оставшуюся часть равнодействующей силой Р (рис. 2б).

Пусть ось OX направлена перпендикулярно нашему сечению. Тогда оси OY и OZ расположены в плоскости сечения. Проекция равнодействующей силы P на ось OX дает нам нормальную Px , а на оси OY и OZ - касательные Py и Pz составляющие этой силы.

В действительности сила P приложена не в точке, а неравномерно распределена по всему сечению. Интенсивность этой силы, то есть силу, действующую на единице площади, называют напряжением . Полное напряжение в точке определяют как предел отношения:

Нормальное напряжение в точке определяют как предел отношения

Касательные напряжения в точке определяют как пределы отношений

Первый индекс при касательных напряжениях обозначает направление касательных напряжений, а второй индекс - ось, нормальную к грани, на которой действуют касательные напряжения. Вырежем мысленно в произвольной точке рассматриваемого сечения элементарный параллелепипед со сторонами dx, dy и dz и рассмотрим напряжения, действующие на гранях этого параллелепипеда (рис. 3).

Тогда в каждой точке действуют напряжения, которые представляются матрицей, называемой тензором напряжений .

Ясно, что составляющие тензора напряжений зависят от выбора системы координат.

Через составляющие тензора напряжений можно найти так называемое эквивалентное напряжение , которое не зависит от выбора системы координат. Эквивалентное напряжение можно сопоставить с характеристикой прочности материала, которая представляется допускаемым напряжением .

Тогда условие прочности записывается в известном виде:

Задача теории упругости заключается в наиболее точном определении составляющих тензора напряжений, а значит и эквивалентного напряжения .

Обозначим схематично области применения различных теорий для описания напряженно-деформированного состояния деталей на диаграмме растяжения образца из мягкой стали до разрушения.

Рис. 4 - Области применения различных теорий: I - теория упругости, II - теория пластичности, III - механика разрушения

Если напряжения в расчетах получаются больше предела текучести (в современных обозначениях Rp ), то их называют условно-упругими. Существуют методы, которые позволяют с помощью упругих решений изучать упруго-пластическое и пластическое состояние детали. Рассмотрим общую структуру теории упругости.

Рис. 6 - Структурная схема теории упругости

С 70-х годов в работах по теории упругости чаще всего используют современный математический аппарат. Формальный математический аппарат - это обозначения и формализация объектов и действий над ними. В теории упругости используют тензорное исчисление. Мы в нашем курсе будем использовать тензорное исчисление только как иллюстрацию краткой записи развернутых выражений. Для возможности краткой записи оси координат и индексы напряжений обозначаются не буквами, а числами.

Ранг тензора - это число индексов при нем. Как будет показано в дальнейшем, тензор напряжений - это тензор второго ранга. По определению тензором второго ранга называют совокупность величин Aij , которые зависят от двух индексов и преобразуются при изменении системы координат по формулам

Ранг тензора не связан с размерностью пространства! Размерность пространства определяется числом значений, которое принимает каждый индекс. Если i , j , k , l принимают значения 1, 2, 3, то тензор (*) определен в трехмерном пространстве. Правила свертывания-развертывания выражений: по внутренним (повторяющимся в одночлене) индексам k , l производится суммирование, а сквозные (повторяющиеся слева и справа) индексы i , j определяют число уравнений. Пример развертывания выражения (*) для значений i = 2, j = 3:

Еще одно сокращение в записи - частные производные обозначаются индексом за запятой. Например:

Тогда запись обозначает несколько соотношений:

В дальнейшем мы убедимся, что табличка напряжений в точке является тензором второго ранга, т. е. удовлетворяет соотношениям (*) при изменении системы координат.