О.С.Агеева, Т.Н.Строганова, К.С.Чемезова

ЭЛЕМЕНТЫ КВАНТОВОЙ

МЕХАНИКИ И ФИЗИКИ ТВЕРДОГО ТЕЛА

Тюмень. 2009


УДК 537(075):621.38

Агеева О.С., Строганова Т.Н., Чемезова К.С. Элементы квантовой механики и физики твердого тела: Учебное пособие. – Тюмень, -ТюмГНГУ, 2009. – 135 с.

В кратком виде излагаются физические основы квантовой механики, теория движения в поле потенциальных сил, изучаются туннельный эффект, атом водорода, физические основы работы лазеров.

Рассматриваются зонная теория твердых тел, электронная теория проводимости металлов и полупроводников, физические процессы в металлах, полупроводниках, p-n-переходах, обсуждаются вопросы, связанные с работой конкретных полупроводниковых и микроэлектронных приборов.

Предназначено для студентов технических специальностей ТюмГНГУ.

Ил. 79, табл.5.

Рецензенты: В.А.Михеев, кандидат физ.-мат. наук, заведующий кафедрой радиофизики Тюменского государственного университета; В.Ф.Новиков, доктор физ.-мат. наук, профессор, заведующий кафедрой физики №1 ТюмГНГУ.

© Издательство «Нефтегазовый университет», 2009


ПРЕДИСЛОВИЕ

Громадный прогресс в области электротехники и электроники в значительной мере связан с успехами физики твердого тела, поэтому современный инженер независимо от специальности должен обладать некоторым минимумом знаний в этой области науки. В свою очередь, физика твердого тела базируется на квантовой механике.

Квантовая механика - это наука о движении микрочастиц – электронов, нуклонов, атомов. Эти частицы подчиняются иным законам, чем макроскопические тела, состоящие из многих атомов. Основной особенностью микрочастиц является то, что они обладают свойствами волны. При этом многие характеристики частиц (энергия, импульс, момент импульса) в большинстве случаев могут иметь лишь дискретные значения и изменяться только определенными порциями – квантами. Отсюда и произошло название – квантовая механика.



Имеющаяся в настоящее время специальная литература по квантовой механике и физике твердого тела предполагает подробное, детальное изучение предмета; она использует достаточно сложный математический аппарат и не рассчитана на студента, для которого данная дисциплина не является основной. В то же время в учебниках по общему курсу физики ряд вопросов, связанных со свойствами твердых тел, либо освещен недостаточно, либо не рассматривается совсем. Связь между уравнениями квантовой механики, их решениями и работой современных электронных, оптических и оптоэлектронных приборов, как правило, не просматривается.

Авторы настоящего пособия сделали попытку частично восполнить существующий пробел в учебной литературе по квантовой механике и физике твердого тела и изложить некоторые разделы этого большого и сложного курса в форме, доступной для студента технического ВУЗа, изучающего курс общей физики на младших курсах. Главное внимание в пособии уделено рассмотрению свойств металлов и полупроводников с позиций зонной теории твердых тел.

Основные вопросы квантовой механики изложены в главе 1. В ней же даны основы работы лазеров. Главы 2-4 посвящены анализу поведения электронов в кристаллах, электрофизическим свойствам металлов и полупроводников. Наиболее подробно рассмотрено явление проводимости полупроводников, приведены примеры практического применения данного явления. В главах 5-7 рассмотрен p-n- переход и ряд оптических явлений в полупроводниках. В этой части пособия значительное внимание уделено физическим процессам, лежащим в основе работы современных полупроводниковых и микроэлектронных приборов.


ЭЛЕМЕНТЫ КВАНТОВОЙ МЕХАНИКИ

Гипотеза де Бройля. Корпускулярно-волновой дуализм микрочастиц

В 1924г. Луи де Бройль выдвинул гипотезу: корпускулярно-волновая двойственность свойств, установленная для света, имеет универсальный характер. Все частицы, имеющие конечный импульс, обладают волновыми свойствами. Движению частиц соответствует некоторый волновой процесс.

С каждым движущимся микрообъектом связываются корпускулярные характеристики: энергия E и импульс и волновые характеристики - длина волны λ или частота ν. Полная энергия частицы и ее импульс определятся формулами

; (1.1.1)

. (1.1.2)

Длина волны, связанной с движущейся частицей, определится выражением

. (1.1.3)

Экспериментальное подтверждение гипотезы де Бройля получено в опытах по дифракции электронов на кристаллах. Рассмотрим кратко сущность этих опытов.


Ряд экспериментов, проведенных в 10-х – 20-х гг. ХХ в., показали, что частицы, которые привычно представлялись «кирпичиками мироздания», твердыми шариками – корпускулами, - проявляют волновые свойства. Была продемонстрирована дифракция электронов на кристалле, т.е. пучок электронов вел себя аналогично электромагнитной волне. В 1924 г. Луи де Бройль высказал гипотезу о том, что все частицы (а следовательно, и все тела, состоящие из этих частиц) обладают волновыми свойствами. Мерой этих волновых свойств является так называемая длина волны де Бройля . Действительно, сравним квант (фотон) частоты n и длины волны l = с/n и электрон с импульсом р = m e v :

.

Значение l Б для обычных тел крайне мало, и их волновые свойства нельзя наблюдать (напомним: для дифракции требовалось, чтобы размер объекта имел порядок l). Именно поэтому в опыте проявляются волновые свойства лишь таких легких частиц, как электрон. Самые крупные объекты, для которых были продемонстрированы волновые свойства – это молекулы фуллерена С 60 и С 70 (масса ~ 10 -24 кг).

Итак, одна из важнейших концепций современности – идея о единстве всех форм материи, и вещества, и поля. Нет принципиальных различий между ними, материя может проявлять себя и как вещество, и как поле. Эта концепция носит название корпускулярно-волнового дуализма (двойственности) материи .

При этом мы вынуждены характеризовать все наблюдаемые величины в терминах классической науки, т.е. на уровне того макромира, в котором существуем сами. Нам трудно вообразить объект, являющийся одновременно и частицей, и волной, поскольку в обыденной жизни мы с такими объектами не встречаемся. Приходится в методологических целях разделять эти понятия. Причины кроются в сложности нашего строения как мыслящих существ. В науке кибернетике показано, что самовоспроизводящаяся система должна обладать высоким уровнем сложности. Мы изучаем микромир как бы извне, будучи неизмеримо сложнее устроены, чем его объекты. Именно и только поэтому дуализм материи не кажется нам очевидным, естественным, присущим ей свойством.

3. Динамика микрочастиц. Принцип неопределенностей Гейзенберга

Если частица проявляет свойства волны, то она как бы размыта в пространстве, представляя собой волновой пакет. В этом случае невозможно говорить о ее координате. Но нельзя ли, например, принять за таковую начало волнового пакета или координату максимума его огибающей?

Оказывается, неопределенность координаты микрочастицы – это фундаментальное свойство микромира, более того, скорость микрочастицы также не поддается точному измерению. Этот факт никак не связан с точностью измерительных приборов.

Действительно, представим себе, что мы пытаемся измерить координату и скорость частицы и используем для этого свет. Минимальное расстояние, которое нам удастся измерить, будет определяться длиной волны этого света, и чем она меньше, тем точнее будет измерение. Но чем меньше длина волны света, тем выше его частота и больше энергия кванта. Квант, обладающий большой энергией, будет взаимодействовать с исследуемой частицей и передаст ей часть своей энергии. Та скорость, которую мы в результате измерим, будет вовсе не искомой первоначальной скоростью частицы, а следствием ее взаимодействия с измерительным прибором. Итак, чем точнее мы измеряем координату, тем меньше точность измерения скорости, и наоборот.

Для волны х р = l E/c = l hn/c =l h/l = h – это максимальная точность.

Формула, выражающая взаимосвязь между неопределенностями нахождения координаты х и импульса р частицы, была получена впервые В.Гейзенбергом и носит его имя:

Dх Dр ³ h –

- принцип неопределенностей Гейзенберга.

Аналогичные соотношения выполняются для неопределенностей Dу и Dz.

Для неопределенностей энергии и времени получается:

Итак, принцип неопределенностей – фундаментальное свойство природы, никак не связанное с несовершенством измерительных приборов, а носящее принципиальный характер.

Принцип неопределенностей, наряду с понятием о квантах, лег в основу новой квантовой механики, идеи и круг задач которой революционным образом отличались от всего известного науке ранее. Произошла ломка научной парадигмы, возник принципиально новый подход к рассмотрению явлений микромира, оказавшийся впоследствии очень плодотворным и в других областях науки.

Недостатки теории Бора указывали на необходимость пересмотра основ квантовой теории и представлений о природе микрочастиц (электронов, протонов и т.п.). Возник вопрос о том, насколько исчерпывающим является представление электрона в виде малой механической частицы, характеризующейся определенными координатами и определенной скоростью.

Мы уже знаем, что в оптических явлениях наблюдается своеобразный дуализм. Наряду с явлениями дифракции, интерференции (волновыми явлениями) наблюдаются и явления, характеризующие корпускулярную природу света (фотоэффект, эффект Комптона).

В 1924 г. Луи де Бройль выдвинул гипотезу, что дуализм не является особенностью только оптических явлений , а имеет универсальный характер. Частицы вещества также обладают волновыми свойствами .

«В оптике, – писал Луи де Бройль, – в течение столетия слишком пренебрегали корпускулярным способом рассмотрения по сравнению с волновым; не делалась ли в теории вещества обратная ошибка?» Допуская, что частицы вещества наряду с корпускулярными свойствами имеют также и волновые, де Бройль перенес на случай частиц вещества те же правила перехода от одной картины к другой, какие справедливы в случае света.

Если фотон обладает энергией и импульсом , то и частица (например электрон), движущаяся с некоторой скоростью, обладает волновыми свойствами, т.е. движение частицы можно рассматривать как движение волны.

Согласно квантовой механике, свободное движение частицы с массой m и импульсом (где υ – скорость частицы) можно представить как плоскую монохроматическую волну (волну де Бройля ) с длиной волны

(3.1.1)

распространяющуюся в том же направлении (например в направлении оси х ), в котором движется частица (рис. 3.1).

Зависимость волновой функции от координаты х даётся формулой

, (3.1.2)

где – волновое число волновой вектор направлен в сторону распространения волны или вдоль движения частицы:

. (3.1.3)

Таким образом, волновой вектор монохроматической волны , связанной со свободно движущейся микрочастицей, пропорционален её импульсу или обратно пропорционален длине волны .

Поскольку кинетическая энергия сравнительно медленно движущейся частицы , то длину волны можно выразить и через энергию:

. (3.1.4)

При взаимодействии частицы с некоторым объектом – с кристаллом, молекулой и т.п. – её энергия меняется: к ней добавляется потенциальная энергия этого взаимодействия, что приводит к изменению движения частицы. Соответственно, меняется характер распространения связанной с частицей волны, причём это происходит согласно принципам, общим для всех волновых явлений. Поэтому основные геометрические закономерности дифракции частиц ничем не отличаются от закономерностей дифракции любых волн. Общим условием дифракции волн любой природы является соизмеримость длины падающей волны λ с расстоянием d между рассеивающими центрами : .

Гипотеза Луи де Бройля была революционной, даже для того революционного в науке времени. Однако, она вскоре была подтверждена многими экспериментами.

Недостаточность теории Бора указывала на необходимость пересмотра основ квантовой теории и представлений о природе микрочастиц (электронов, протонов и т. п.). Возник вопрос о том, насколько исчерпывающим является представление электрона в виде малой механической частицы, характеризуемой определенными координатами и определенной скоростью.

В результате углубления представлений о природе света выяснилось, что в оптических явлениях обнаруживается своеобразный дуализм. Наряду с такими свойствами света, которые самым непосредственным образом свидетельствуют о его волновой природе (интерференция, дифракция), имеются и другие свойства, столь же непосредственно обнаруживающие его корпускулярную природу (фотоэффект, явление Комптона).

В 1924 г. Луи де-Бройль выдвинул смелую гипотезу, что дуализм не является особенностью одних только оптических явлений, но имеет универсальное значение. «В оптике, - писал он, - в течение столетия слишком пренебрегали корпускулярным способом рассмотрения по сравнению с волновым; не делалась ли в теории вещества обратная ошибка?». Допуская, что частицы вещества наряду с корпускулярными свойствами имеют также и волновые, де-Бройль перенес на случай частиц вещества те же правила перехода от одной картины к другой, какие справедливы в случае света. Фотон обладает энергией

и импульсом

По идее де-Бройля, движение электрона или какой-либо другой частицы связано с волновым процессом, длина волны которого равна

а частота

Гипотеза де-Бройля вскоре была подтверждена эксперимент тально. Дэвиссон и Джермер исследовали в 1927 г. отражение электронов от монокристалла никеля, принадлежащего к кубической системе.

Узкий пучок моноэнергетических электронов направлялся на поверхность монокристалла, сошлифованную перпендикулярно к большой диагонали кристаллической ячейки (параллельные этой поверхности кристаллические плоскости обозначаются в кристаллографии индексами (111); ем. § 45). Отраженные электроны улавливались цилиндрическим электродом, присоединенным к гальванометру (рис. 18.1). Интенсивность отраженного пучка оценивалась по силе тока, текущего через гальванометр. Варьировались скорость электронов и угол . На рис. 18.2 показана зависимость силы тока, измеряемой гальванометром, от угла при различных энергиях электронов.

Вертикальная ось на графиках определяет направление падающего пучка. Сила тока в заданном направлении представляется длиной отрезка, проведенного от начала координат до пересечения с кривой. Из рисунка видно, что рассеяние оказалось особенно интенсивным при определенном значении угла Этот угол соответствовал отражению от атомных плоскостей, расстояние между которыми d было известно из рентгенографических исследований. При данном сила тока оказалась особенно значительной при ускоряющем напряжении, равном 54 В. Вычисленная по формуле (18,1) длина волны, отвечающая этому напряжению, равна 1,67 А.

Брэгговская длина волны, отвечающая условию

равнялась 1,65 А. Совпадение настолько разительно, что опыты Дэвиссона и Джермера следует признать блестящим подтверждением идеи де-Бройля.

Г. П. Томсон (1927) и независимо от него П. С. Тартаковский получили дифракционную картину при прохождении электронного пучка через металлическую фольгу. Опыт осуществлялся следующим образом (рис. 18.3). Пучок электронов, ускоренных разностью потенциалов порядка нескольких десятков киловольт, проходил через тонкую металлическую фольгу и попадал на фотопластинку. Электрон при ударе о фотопластинку оказывает на нее такое же действие, как и фотон. Полученная таким способом электронограмма золота (рис. 18.4, а) сопоставлена с полученной в аналогичных условиях рентгенограммой алюминия (рис. 18.4, б).

Сходство обеих картин поразительно, Штерн и его сотрудники показали, что дифракционные явления обнаруживаются также у атомных и молекулярных пучков. Во всех перечисленных случаях дифракционная картина. соответствует длине волны, определяемой соотношением (18.1).

В опытах Дэвиссона и Джермера, а также в опытах Томсона интенсивность электронных пучков была столь велика, что через кристалл проходило одновременно большое число электронов. Поэтому можно было предположить, что наблюдаемая дифракционная картина обусловлена одновременным участием в процессе большого числа электронов, а отдельный электрон, проходя через кристалл, дифракции не обнаруживает. Чтобы выяснить этот вопрос, советские физики Л. М. Биберман, Н. Г. Сушкин и В. А. Фабрикант осуществили в 1949 г. опыт, в котором интенсивность электронного пучка была настолько слабой, что электроны проходили через прибор заведомо поодиночке. Промежуток времени между двумя последовательными прохождениями электронов через кристалл примерно в 30 000 раз превосходил время, затрачиваемое электроном на прохождение всего прибора. При достаточной экспозиции была получена дифракционная картина, ничем не отличающаяся от той, какая наблюдается при обычной интенсивности пучка. Таким образом, было доказано, что волновые свойства присущи отдельному электрону.

Частиц вещества

Двойственная корпускулярно-волновая природа

В 1924 г. французский физик Луи де Бройль выдвинул гипотезу, согласно которой движение электрона, или какой-либо другой частицы, связано с волновым процессом. Длина волны этого процесса:

а частота ω = Е/ħ , т.е. корпускулярно-волновой дуализм присущ всем без исключения частицам.

Если частица имеет кинетическую энергию Е , то ей соответствует длина волны де Бройля:

Для электрона, ускоряемого разностью потенциалов , кинетическая энергия ,и длина волны

Å. (2.1)

Опыты Дэвиссона и Джермера (1927). Идея их опытов за­ключалась в следующем. Если пучок электронов обладает вол­новыми свойствами, то можно ожидать, даже не зная механиз­ма отражения этих волн, что их отражение от кристалла будет иметь такой же интерференционный характер, как у рентге­новских лучей.

В одной серии опытов Дэвиссона и Джермера для обнаруже­ния дифракционных максимумов (если таковые есть) измеря­лись ускоряющее напряжение электронов и одновременно положение детектора D (счетчика отраженных электронов). В опы­те использовался монокристалл никеля (кубической системы), сошлифованный так, как показано на рис.2.1.

Если его повернуть вокруг вертикаль­ной оси в положение, соответствующее ри­сунку, то в этом положении сошлифованная поверхность покрыта правильными рядами атомов, перпендикулярными к плоскости падения (плоскости рисунка), расстояние между которыми d= 0,215 нм.

Детектор перемещали в плоскости падения, меняя угол θ. При угле θ = 50° и ускоряю­щем напряжении U= 54Внаблюдался осо­бенно отчётливый максимум отраженных электронов, полярная диаграмма которого показана на рис.2.2.

Этот максимум можно истолковать как интерференционный максимум первого по­рядка от плоской дифракционной решетки с периодом

, (2.2)

что видно из рис.2.3. На этом рисун­ке каждая жирная точка представляет собой проекцию цепочки атомов, расположенных на прямой, перпендикулярной плоскости рисунка. Пе­риод d может быть измерен независи­мо, например, по дифракции рентге­новских лучей.

Вычисленная по формуле (2.1) дебройлевская длина волны для U= 54В равна 0,167 нм. Соответству­ющая же длина волны, найденная из формулы (2.2), равна 0,165 нм. Совпадение настолько хорошее, что полученный результат следует признать убедительным под­тверждением гипотезы де Бройля.

Другая серия опытов Дэвиссона и Джермера состояла в из­мерении интенсивности I отраженного электронного пучка при заданном угле падения, но при различных значениях ускоряю­щего напряжения U.

Теоретически должны появиться при этом интерференцион­ные максимумы отражения подобно отражению рентгеновских лучей от кристалла. От различных кристаллических плоскостей кристалла в результате дифракции падающего излучения на атомах исходят волны, как бы испытавшие зеркальное отраже­ние от этих плоскостей. Данные волны при интерференции усиливают друг друга, если выполняется условие Брэгга-Вульфа:



, m =1,2,3,…, (2.3)

где d - межплоскостное расстояние, α - угол скольжения.

Напомним вывод этой формулы. Из рис. 2.4 видно, что разность хода двух волн, 1 и 2, отразившихся зеркальноот соседних атомных слоев, АВС = . Следователь­но, направления, в которых возникают ин­терференционные максимумы, определяют­ся условием (2.3).

Теперь подставим в формулу (2.3) выра­жение (2.1) для дебройлевской длины вол­ны. Поскольку значения α и d экспериментаторы оставляли неизменными, то из формулы (2.3) следует, что

~т, (2.4)

т.е. значения , при которых образуются максимумы отра­жения, должны быть пропорциональны целым числам т = 1, 2, 3, ..., другими словами, находиться на одинаковых расстояни­ях друг от друга.

Это и было проверено на опыте, результаты которого пред­ставлены на рис.2. 5, где U представлено в вольтах. Видно, что максимумы интен­сивности I почти равноудалены друг от друга (такая же карти­на возникает и при дифракции рентгеновских лучей от крис­таллов).

Полученные Дэвиссоном и Джермером результаты весьма убедительно подтверждают гипотезу де Бройля. В теоретическом отношении, как мы видели, анализ дифракции дебройлевских волн полностью совпадает с дифрак­цией рентгеновского излучения.

Итак, характер зависимости (2.4) экспериментально подтвердился, однако наблюдалось некоторое расхождение с пред­сказаниями теории. А именно, между положениями экспери­ментальных и теоретических максимумов (последние показаны стрелками на рис. 2.5) наблюдается систематическое расхожде­ние, которое уменьшается с увеличением ускоряющего напря­жения U. Это расхождение, как выяснилось в дальнейшем, обу­словлено тем, что при выводе формулы Брэгга-Вульфа не было учтено преломление дебройлевских волн.

О преломлении дебройлевских волн. Показатель преломле­ния п дебройлевских волн, как и электромагнитных, определя­ется формулой

где и - фазовые скорости этих волн в вакууме и среде (кристалле).

Фазовая ско­рость дебройлевcкой волны - принципиально ненаблюдаемая величина. Поэтому формулу (2.5) следует преобразовать так, чтобы показатель преломления п можно было выразить через отношение измеряемых величин. Это можно сделать следующим образом. По определению, фазовая скорость

, (2.6)

где k - волновое число. Считая аналогично фотонам, что частота и дебройлевских волн тоже не меняется при переходе границы раздела сред (если такое предположение несправедливо, то опыт неизбежно укажет на это), представим (2.5) с уче­том (2.6) в виде

Попадая из вакуума в кристалл (металл), электроны оказыва­ются в потенциальной яме. Здесь их кине­тическая энергия возрастает на «глубину» потенциальной ямы (рис. 2.6). Из формулы (2.1), где ,следует, что λ~ Поэтому выражение (2.7) можно переписать так:

(2.8)

где U 0 - внутренний потенциал кристалла. Видно, что чем бо­льше U (относительно ), тем п ближе к единице. Таким обра­зом, п проявляет себя особенно при малых U ,и формула Брэг­га-Вульфа принимает вид

(2.9)

Убедимся, что формула Брэгга-Вульфа (2.9) с учетом пре­ломления действительно объясняет положения максимумов ин­тенсивности на рис. 2.5. Заменив в (2.9) п и λ согласно формулам (2.8) и (2.1) их выражениями через ускоряющую разность потенциалов U, т.е.

(2.11)

Теперь учтем, что распределение на рис.2.5 получено для никеля при значениях U 0 =15 B, d =0,203 нм и α =80°. Тогда (2.11) после несложных преобразований можно перепи­сать так:

(2.12)

Вычислим по этой формуле значение , например, для макси­мума третьего порядка (m = 3), для которого расхождение с формулой Брэгга-Вульфа (2.3) оказалось наибольшим:

Совпадение с действительным положением максимума 3-го по­рядка не требует комментариев.

Итак, опыты Дэвиссона и Джермера следует признать блес­тящим подтверждением гипотезы де Бройля.

Опыты Томсона и Тартаковского . В этих опытах пучок элек­тронов пропускался через поликристаллическую фольгу (по ме­тоду Дебая при изучении дифракции рентгеновского излучения). Как и в случае рентгеновского излучения, на фотопластинке, рас­положенной за фольгой, наблюдалась система дифракционных колец. Сходство обеих картин поразительно. Подозрение, что система этих колец порождается не электронами, а вторичным рентгеновским излучением, возникающим в результате паде­ния электронов на фольгу, легко рассеивается, если на пути рассеянных электронов создать магнитное поле (поднести по­стоянный магнит). Оно не влияет на рентгеновское излучение. Такого рода проверка показала, что интерференционная карти­на сразу же искажалась. Это однозначно свидетельствует, что мы имеем дело именно с электронами.

Г. Томсон осуществил опыты с быстрыми электронами (де­сятки кэВ), II.С. Тартаковский - со сравнительно медленными электронами (до 1,7 кэВ).

Опыты с нейтронами и молекулами. Для успешного наблю­дения дифракции волн на кристаллах необходимо, чтобы длина волны этих волн была сравнима с расстояниями между узлами кристаллической решетки. Поэтому для наблюдения дифракции тяжелых частиц необходимо пользоваться частицами с достаточ­но малыми скоростями. Соответствующие опыты по дифракции нейтронов и молекул при отражении от кристаллов были проде­ланы и также полностью подтвердили гипотезу де-Бройля в при­менении и к тяжелым частицам.

Благодаря этому было экспериментально доказано, что вол­новые свойства являются универсальным свойством всех час­тиц. Они не обусловлены какими-то особенностями внутренне­го строения той или иной частицы, а отражают их общий закон движения.

Опыты с одиночными электронами . Описанные выше опыты выполнялись с использованием пучков частиц. Поэтому возни­кает естественный вопрос: наблюдаемые волновые свойства вы­ражают свойства пучка частиц или отдельных частиц?

Чтобы ответить на этот вопрос, В. Фабрикант, Л. Биберман и Н. Сушкин осуществили в 1949 г. опыты, в которых применялись столь слабые пучки электронов, что каждый электрон проходил через кристалл заведомо поодиночке и каждый рассеянный элект­рон регистрировался фотопластинкой. При этом оказалось, что отдельные электроны по­падали в различные точки фотопластинки со­вершенно беспорядочным на первый взгляд образом (рис.2.7,а). Между тем при доста­точно длительной экспозиции на фотоплас­тинке возникала дифракционная картина (рис.2.7, б), абсолютно идентичная картине дифракции от обычного электронного пучка. Так было доказано, что волновыми свойст­вами обладают и отдельные частицы.

Таким образом, мы имеем дело с микро­объектами, которые обладают одновременно как корпускулярными, так и волновыми свойствами. Это позволяет нам в дальней­шем говорить об электронах, но выводы, к которым мы придем, имеют совершенно об­щий смысл и в равной степени применимы к любым частицам.

Из формулы де Бройля следовало, что волновые свойства должны быть присущи любой частице вещества, имеющей массу и скорость . В 1929г. опыты Штерна доказали, что формула де Бройля справедлива и для пучков атомов и молекул. Он получил следующее выражение для длины волны:

Ǻ,

где μ – молярная масса вещества, N А – число Авогадро, R – универсальная газовая постоянная, Т – температура.

При отражении пучков атомов и молекул от поверхностей твердых тел должны наблюдаться дифракционные явления, которые описываются теми же соотношениями, что и плоская (двумерная) дифракционная решетка. Опыты показали, что кроме частиц, рассеянных под углом, равным углу падения, наблюдаются максимумы числа отраженных частиц под другими углами, определяемыми формулами двумерной дифракционной решетки.

Формулы де Бройля оказались справедливыми также для нейтронов. Это подтвердили опыты по дифракции нейтронов на приемниках.

Таким образом, наличие волновых свойств у движущихся частиц, обладающих массой покоя, есть универсальное явление, не связанное с какой-либо спецификой движущейся частицы.

Отсутствие волновых свойств у макроскопических тел объясняется следующим образом. Подобно той роли, кото­рую играет скорость света при решении вопроса о применимо­сти ньютоновской (нерелятивистской) механики, существует критерий, показывающий в каких случаях можно ограничиться классическими представлениями. Этот критерий связан с постоянной Планка ħ. Физическая размерность ħ равна (энергия )x(время ),или (им­пульс )x(длина ),или (момент импульса). Величину с такой размерностью называют действием. Постоянная Планка явля­ется квантом действия.

Если в данной физической системе значение некоторой характерной величи­ны Н сразмерностью действия сравнимо с ħ , то поведение этой системы может быть описано только в рамках квантовой тео­рии. Если же значение Н очень велико по сравнению с ħ , то поведение системы с высокой точностью описывают законы клас­сической физики.

Отметим, однако, что данный критерий имеет приближен­ный характер. Он указывает лишь, когда следует проявлять осторожность. Малость действия Н не всегда свидетельствует о полной неприменимости классического подхода. Во многих случаях она может дать некоторое качественное представление о поведении системы, которое можно уточнить с помощью квантового подхода.