Электрические приборы предназначены для измерения электрических ве­личин. Приборы, изучаемые в данной работе, относятся к группе показываю­щих, т. е. прямого действия (искомое значение физической величины определяют непосредственно по показанию прибора). По способу преобразования электрической энергии, подводимой к прибору, в механическую энергию перемещения подвижной части и по конструктивным особенностям измерительного механизма приборы делятся на магнитоэлектрические, электромагнитные, электродинамические, электростатические, ферродина­ми­ческие, индукци­он­­ные и др.

Условное обозначение принципа действия электроизмерительного прибора указывается на его шкале (табл. 1).

Таблица 1

Условные обозначения на шкале прибора

Условное

обозначение

Условное

обозначение

Магнитоэлектрическая

Ферродинамическая

Магнитоэлектрическая с термоэлектрическим преобразователем

Электростатическая

Магнитоэлектрическая с выпрямителем

Ферродинамическая

Электромагнитная

Индукционная

Магнитоэлектрические приборы, в которых катушка с током взаимо-действует с полем постоянного магнита, по­лучили широкое распространение для измерения постоянного тока (амперметры) и напряжения (вольтметры). Такие приборы имеют равномерную шкалу отсчета и высокую чувствительность. Для расширения предела измерения амперметры включаются в схему с по­мощью шунтов, а вольтметры – с добавочным со­противлением.

Схемы подключения магнитоэлектрических приборов приведены на рис. 1, где r A , r V – сопротивления измерительных приборов; R д – добавочный рези­стор; R ш – сопротивление шунта, которое может быть встроено в прибор или включено отдельно; I , I А – направление тока в цепи и катушке; U V , U д, U – соответственно напряжение на измерительном приборе, резисторе R д, измеряемое.

B электромагнитных приборах магнитное поле неподвижной катушки воздействует на подвижную ферромагнитную пластину, перемещая ее относительно катушки. В электромагнитных амперметрах катушка включается в сеть последовательно. Предел измерения устанавливается изменением числа витков измерительной катушки. Для измерения значительных переменных тока и напряжения применяются измерительные трансформаторы тока и напряжения. Катушки вольтметров включаются в сеть через большое добавочное сопротивление. Электромагнитные приборы просты, надежны, выдерживают значительные перегрузки, могут быть использованы в цепях постоянного и переменного тока, однако они имеют низкую чувствительность, малую точность, неравномерную шкалу, потребляют большую мощность.

В электродинамических приборах используется взаимодействие полей двух катушек с током, работают такие приборы как на постоянном, так и на переменном токе в качестве амперметров, вольтметров, ваттметров, фазометров. Основные недостатки электродинамических приборов – влияние внешних магнитных полей и слабый вращающий момент.

В ферродинамических приборах электродинамической системы в измерительном механизме используется стальной магнитопровод. Применение стали уменьшает точность прибора вследствие влияния гистерезиса и вихревых токов, сильно усложняет конструкцию прибора. В силу этих причин ферродинамические приборы для точных измерений мало пригодны и применяются главным образом в качестве регистрирующих приборов и щитовых ваттметров (посл­едние не имеют недостатков электродинамических ваттметров и значительно точнее индукционных).

В электростатических приборах для перемещения подвижной части измерительного механизма используют энергию электрического поля системы электродов. Такие приборы имеют практически равномерную шкалу, применяются для измерения только напряжения постоянного и переменного тока от 10 до десятков киловольт, имеют высший класс точности (0,05) и не потребляют активной мощности.

В индукционных приборах вращающий момент создается взаимодействием токов, наводимых в подвижной части прибора, металлическом диске, с магнитными потоками неподвижных электромагнитов. В индукционном ваттметре одна катушка включается последовательно в цепь, а вторая – параллельно, благодаря чему поток первой катушки пропорционален току I , a второй – напряжению U . Измерительный механизм индукционной системы применяется также в счетчиках электрической энергии переменного тока.

Цифровые измерительные приборы (ЦИП) имеют следующие преиму­щества по сравнению с аналоговыми: высокую точность измерения, широкий диапазон, индикацию результатов в цифровой форме, быстродействие, возможность вывода информации на ЭВМ, автоматический процесс измерения, выбор пределов измерения.

Большинство ЦИП имеет несколько диапазонов измерения, для которых указываются предельные значения. Выбор диапазона производится вручную или автоматически. Переключение диапазона сопровождается изменением положения запятой на цифровом отсчетном устройстве (ЦОУ). Точность измерения определяется погрешностью квантования, которая зависит от числа разрядов ЦОУ.

Измерением называется процесс нахождения опытным путем значения физической величины с помощью специальных технических средств. Электроизмерительные приборы широко используются при наблюдении за работой электроустановок, при контроле за их состоянием и режимами работы, при учете расхода и качества электрической энергии, при ремонте и наладке электротехнического оборудования.

Электроизмерительными приборами называют средства электрических измерений, предназначенные для выработки сигналов, функционально связанных с измеряемыми физическими величинами в форме, доступной для восприятия наблюдателем или автоматическим устройством.

Электроизмерительные приборы делятся:

  • по виду получаемой информации на приборы для измерения электрических (ток, напряжение, мощность и др.) и неэлектрических (температура, давление и др.) величин;
  • по методу измерения - на приборы непосредственной оценки (амперметр, вольтметр и др.) и приборы сравнения (измерительные мосты и компенсаторы);
  • по способу представления измеряемой информации - на аналоговые и дискретные (цифровые).

Наибольшее распространение получили аналоговые приборы непосредственной оценки, которые классифицируются по признакам: род тока (постоянный или переменный), род измеряемой величины (ток, напряжение, мощность , сдвиг фаз), принцип действия (магнитоэлектрические, электромагнитные, электро- и ферродинамические), класс точности и условия эксплуатации.

Для расширения пределов измерения электрических приборов на постоянном токе используются шунты (для тока) и добавочные сопротивления Rd (для напряжения); на переменном токе трансформаторы тока (тт) и напряжения (тн).

Используемые приборы для измерения электрических величин.

Измерение напряжения осуществляется вольтметром (V), подключаемым непосредственно на зажимы исследуемого участка электрической цепи.

Измерение тока осуществляется амперметром (А), включаемым последовательно с элементами исследуемой цепи.

Измерение мощности (W) и сдвига фаз () в цепях переменного тока производится с помощью ваттметра и фазометра. Эти приборы имеют две обмотки: неподвижную токовую, которая включается последовательно, и подвижную обмотку напряжения, включаемую параллельно.

Для измерения частоты переменного тока (f) применяются частотометры.

Для измерения и учета электрической энергии - счетчики электрической энергии, подключаемые к измерительной цепи аналогично ваттметрам.

Основными характеристиками электроизмерительных приборов являются: погрешность, вариации показаний, чувствительность, потребляемая мощность, время установления показаний и надежность.

Основными частями электромеханических приборов являются электроизмерительная цепь и измерительный механизм.

Измерительная цепь прибора является преобразователем и состоит из различных соединений активного и реактивного сопротивлений и других элементов в зависимости от характера преобразования. Измерительный механизм преобразует электромагнитную энергию в механическую, необходимую для углового перемещения его подвижной части относительно неподвижной. Угловые перемещения стрелки а функционально связано с крутящим и противодействующим моментом прибора уравнением преобразования вида:

к - конструктивная постоянная прибора;

Электрическая величина, под действием которой стрелка прибора отклоняется на угол

На основании данного уравнения можно утверждать, что если:

  1. входная величина Х в первой степени (п=1), то а будет менять знак при изменении полярности, и на частотах, отличных от 0, прибор работать не может;
  2. n=2, то прибор может работать как на постоянном, так и на переменном токе;
  3. в уравнение входит не одна величина, то в качестве входной можно выбирать любую, оставляя остальные постоянными;
  4. две величины являются входными, то прибор можно использовать в качестве множительного преобразователя (ваттметр, счетчик) или делительного (фазометр, частотометр);
  5. при двух или более входных величинах на несинусоидальном токе прибор обладает свойством избирательности в том смысле, что отклонение подвижной части определяется величиной только одной частоты.

Общими элементами являются: отсчетное устройство, подвижная часть измерительного механизма, устройства для создания вращающего, противодействующего и успокаивающего моментов.

Отсчетное устройство имеет шкалу и указатель. Интервал между соседними метками шкалы называют делением.

Цена деления прибора представляет собой значение измеряемой величины, вызывающее отклонение стрелки прибора на одно деление и определяется зависимостями:

Шкалы могут быть равномерными и неравномерными. Область между начальным и конечным значениями шкалы называют диапазоном показаний прибора.

Показания электроизмерительных приборов несколько отличаются от действительных значений измеряемых величин. Это вызвано трением в измерительной части механизма, влиянием внешних магнитных и электрических полей, изменением температуры окружающей среды и т.д. Разность между измеренным Аи и действительным Ад значениями контролируемой величины называется абсолютной погрешностью измерений:

Так как абсолютная погрешность не дает представления о степени точности измерений, то используют относительную погрешность:

Поскольку действительное значение измеряемой величины при измерении неизвестно, для определения и можно воспользоваться классом точности прибора.

Амперметры, вольтметры и ваттметры подразделяются на 8 классов точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Цифра, обозначающая класс точности, определяет наибольшую положительную или отрицательную основную приведенную погрешность, которую имеет данный прибор. Например, для класса точности 0,5 приведенная погрешность составит ±0,5%.

Технические характеристики амперметров
Наименование параметра Амперметры Э47 Вольтметры Э47
Система электромагнитная электромагнитная
Способ вывода информации аналоговый аналоговый
Диапазон измерений 0...3000 А 0...600 В
Способ установки на панель щита на панель щита
Способ включения <50 А- непосредственный, >100 А-через трансформатор тока с вторичным током 5 А непосредственный
Класс точности 1,5 1,5
Предел допускаемой основной погрешности приборов, % ±1,5 ±1,5
Номинальное рабочее напряжение, не более 400 В 600 В
Допустимая длительная перегрузка (не более 2 ч) 120% от конечного значения диапазона измерений
Средняя наработка до отказа, не менее, ч 65000 65000
Средний срок службы, не менее, лет 8 8
Температура окружающего воздуха, °С 20±5 20±5
Частота измеряемой величины, Гц 45...65 45...65
Положение монтажной плоскости вертикальное вертикальное
Габариты, мм 72x72x73,5 96x96x73,5 72x72x73,5 96x96x73,5

Электроизмерительные приборы (амперметры и вольтметры) серии Э47

Применяются в низковольтных комплектных устройствах в распределительных электрических сетях жилых, коммерческих и производственных объектов.

Амперметры Э47 - аналоговые электромагнитные электроизмерительные приборы - предназначены для измерения силы тока в электрических цепях переменного тока.

Вольтметры Э47 - аналоговые электромагнитные электроизмерительные приборы - предназначены для измерения напряжения в электрических цепях переменного тока.

Широкий диапазон измерений: амперметры до 3000 А, вольтметры до 600 В. Класс точности 1.5.

Амперметры, рассчитанные на измерение токов выше 50 А подключают к измеряемой цепи через трансформатор тока с номинальным вторичным рабочим током 5 А.

Принцип действия амперметров и вольтметров серии Э47

Амперметры и вольтметры Э47 относятся к приборам с электромагнитной системой. В составе имеют круглую катушку с помещенными внутрь подвижным и неподвижным сердечниками. При протекании тока через витки катушки, создается магнитное поле, намагничивающее оба сердечника. Вследствие чего.

одноименные полюса сердечников отталкиваются, и подвижный сердечник поворачивает ось со стрелкой. Для защиты от негативного влияния внешних магнитных полей, катушка и сердечники защищены металлическим экраном.

Принцип действия приборов магнитоэлектрической системы основан на взаимодействии поля постоянного магнита и проводников с током, а электромагнитной - на втягивании стального сердечника в неподвижную катушку при существовании в ней тока. Электродинамическая система имеет две катушки. Одна из катушек, подвижная, укрепляется на оси и располагается внутри неподвижной катушки.

Принцип действия прибора, возможность его работы в тех или иных условиях, возможные предельные погрешности прибора могут быть установлены по условным обозначениям, нанесенным на циферблат прибора.

Например: (А) - амперметр; (~) - переменный ток в пределах от 0 до 50А; () - вертикального положения, класс точности 1,0 и т.д.

Измерительные трансформаторы тока и напряжения имеют ферромагнитные магнитопроводы, на которых располагаются первичные и вторичные обмотки. Число витков вторичной обмотки всегда больше первичной.

Зажимы первичной обмотки трансформатора тока обозначают буквами Л1 и Л2 (линия), а вторичной - И1 и И2 (измерение). По правилам техники безопасности один из зажимов вторичной обмотки трансформатора тока, так же, как и трансформатора напряжения, заземляют, что делается на случай повреждения изоляции. Первичную обмотку трансформатора тока включают последовательно с объектом, у которого проводят измерения. Сопротивление первичной обмотки трансформатора тока мало по сравнению с сопротивлением потребителя. Вторичная обмотка замыкается на амперметр и токовые цепи приборов (ваттметр, счетчик и т. д.). Токовые обмотки ваттметров, счетчиков и реле рассчитывают на 5А, вольтметры, цепи напряжения ваттметров, счетчиков и обмоток реле - на 100 В.

Сопротивления амперметра и токовых цепей ваттметра невелики, поэтому трансформатор тока работает фактически в режиме короткого замыкания. Номинальный ток вторичной обмотки равен 5А. Коэффициент трансформации трансформатора тока равен отношению первичного тока к номинальному току вторичной обмотки, а у трансформатора напряжения - отношению первичного напряжения ко вторичному номинальному.

Сопротивление вольтметра и цепей напряжения измерительных приборов всегда велико и составляет не менее тысячи Ом. В связи с этим трансформатор напряжения работает в режиме холостого хода.

Показания приборов, включенных через трансформаторы тока и напряжения, необходимо умножать на коэффициент трансформации.

Трансформаторы тока ТТИ

Трансформаторы тока ТТИ предназначены: для применения в схемах учета электроэнергии при расчетах с потребителями; для применения в схемах коммерческого учета электроэнергии; для передачи сигнала измерительной информации измерительным приборам или устройствам защиты и управления. Корпус трансформатора выполнен неразборным и опломбирован наклейкой, что делает невозможным доступ ко вторичной обмотке. Клеммные зажимы вторичной обмотки закрываются прозрачной крышкой, что обеспечивает безопасность при эксплуатации. Кроме того, крышку можно опломбировать. Это особенно важно в схемах учета электроэнергии, так как позволяет исключить несанкционированный доступ к клеммным зажимам вторичной обмотки.

Встроенная медная луженая шина у модификации ТТИ-А - дает возможность подключения как медных, так и алюминиевых проводников.

Номинальное напряжениe - 660 В; номинальная частота сети - 50 Гц; класс точности трансформатора 0,5 и 0,5S; номинальный вторичный рабочий ток - 5А.

Технические характеристики трансформаторов ТТИ
Модификации трансформаторов Номинальный первичный ток трансформатора, А
ТТИ-А 5; 10; 15; 20; 25; 30; 40; 50; 60; 75; 80; 100; 120; 125; 150; 200; 250; 300; 400; 500; 600; 800; 1000
ТТИ-30 150; 200; 250; 300
ТТИ-40 300; 400; 500; 600
ТТИ-60 600; 750; 800; 1000
ТТИ-85 750; 800; 1000; 1200; 1500
ТТИ-100 1500; 1600; 2000; 2500; 3000
ТТИ-125 1500; 2000; 2500; 3000; 4000; 5000

Электронные аналоговые приборы представляют собой сочетание различных электронных преобразователей и магнитоэлектрического прибора и служат для измерения электрических величин. Они обладают высоким входным сопротивлением (малым потреблением энергии от объекта измерения) и высокой чувствительностью. Используются для измерения в цепях повышенной и высокой частоты.

Принцип действия цифровых измерительных приборов основан на преобразовании измеряемого непрерывного сигнала в электрический код, отображаемый в цифровой форме. Достоинствами являются малые погрешности измерения (0.1-0,01 %) в широком диапазоне измеряемых сигналов и высокое быстродействие от 2 до 500 измерений в секунду. Для подавления индустриальных помех они снабжены специальными фильтрами. Полярность выбирается автоматически и указывается на отсчетном устройстве. Содержат выход на цифропечатающее устройство. Используются как для измерения напряжения и тока, так и пассивных параметров - сопротивление, индуктивность, емкость. Позволяют измерять частоту и ее отклонение, интервал времени и число импульсов.

Глава VI

ЭЛЕКТРИЧЕСКИЕ ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ И ИЗМЕРЕНИЯ

§ 67. Общие сведения

Электрические измерительные приборы служат для измерения различных электрических величин: силы тока, напряжения, сопротивления, мощности, энергии, а также многих неэлектрических величин, в том числе температуры, давления, влажности, скорости, уровня жидкости, толщины материала и др.
В связи с тем, что абсолютно точных приборов нет, показания электроизмерительных приборов несколько отличаются от действительного значения измеряемых величин.
Разность между измеренным и действительным значением величины называется абсолютной погрешностью прибора . Если, например, в цепи сила тока I = 10 а , а амперметр, включенный в эту цепь, показывает I изм = 9,85 а , то абсолютная погрешность показания прибора

ΔA = I изм - I = 9,85 - 10 = -0,15 a . (94)

Приведенной погрешностью прибора γ пр называется отношение абсолютной погрешности ΔA к наибольшему значению величины A макс, которую можно измерить при данной шкале прибора:

Приведенная погрешность прибора, находящегося в нормальных рабочих условиях (температура 20° С, отсутствие вблизи прибора ферромагнитных масс, нормальное рабочее положение шкалы и т. д.), называется основной погрешностью прибора .

Пример. Пусть при измерении силы тока I = 4 а в нормальных условиях пользовались амперметром со шкалой 0 - 10 а и он показывал, что сила тока в цепи 4,1 а . Вычислить основную (приведенную) погрешность прибора, характеризующую его точность.
Решение .

В зависимости от допускаемой основной погрешности электроизмерительные приборы делятся на восемь классов точности: 0,05; 0,1; 0,2; 0,5; 1; 1,5; 2,5; 4.
Цифра класса точности показывает величину допускаемой основной (приведенной) погрешности ΔA макс прибора в процентах вне зависимости от знака погрешности.
Класс точности

Прибор, у которого класс точности выражен меньшим числом, позволяет выполнять измерение с большей точностью.
Зная класс точности прибора и наибольшее значение величины, которую можно измерить при данной шкале прибора, можно определить наибольшую возможную абсолютную погрешность выполненного измерения:

Пример. Допустим, что наибольшая сила тока, которую можно измерить данным амперметром, составляет 15 а , а класс точности прибора К = 4.
Определить наибольшую возможную абсолютную погрешность при выполнении измерения в любой точке шкалы.
Решение .

Чем ближе измеряемая величина к наибольшему значению, которое позволяет измерить прибор, тем меньшая получается относительная погрешность при прочих равных условиях. Это обстоятельство следует учитывать при выборе предела измерения прибора для выполнения измерения.
Электроизмерительные приборы классифицируются по роду измеряемой величины, принципу действия, степени точности и роду измеряемого тока, кроме того, они делятся на эксплуатационные группы.
По роду измеряемой величины приборы делятся на амперметры, вольтметры, омметры, ваттметры, счетчики, электротермометры, электротахометры (измеряющие число оборотов в минуту) и др.
По принципу действия измерительного механизма приборы могут быть следующих систем: электромагнитной, магнитоэлектрической, электродинамической, ферродинамическои, индукционной, выпрямительной, термоэлектрической, электронной, вибрационной и электростатической.
В зависимости от рода тока, для измерения которого предназначены приборы, они делятся на приборы, измеряющие переменный ток, постоянный ток, и приборы, измеряющие переменный и постоянный токи.
Выпускают приборы трех основных эксплуатационных групп: А , Б и В . Условные обозначения электроизмерительных приборов разных эксплуатационных групп приведены в табл. 7.


На шкале каждого электроизмерительного прибора условными знаками указаны необходимые сведения о конструкции и эксплуатации прибора. Например, на шкале вольтметра (рис. 79) указано: вольтметр (V) электромагнитной системы; предназначен для измерения переменного напряжения (~) в пределах от 0 до 250 в ; при измерениях напряжения прибор следует устанавливать вертикально (⊥); изоляция испытана напряжением 2 кв ; класс точности 1,5; заводской номер 5140; год выпуска 1966; эксплуатационная группа .

Электронные измерительные приборы обладают повышенным быстродействием, высокой чувствительностью и достаточно широким частотным диапазоном. Применяются они для измерения определенных электрических величин - напряжения, тока, сопротивления и других параметров.

Данные приборы делят на аналоговые и цифровые модели. Отличаются эти модели друг от друга тем, что у них разная форма воспроизведения информации - с помощью цифрового монитора или стрелочки. На сегодняшний день наибольшей популярностью пользуются электронные цифровые измерительные приборы, поскольку механические варианты проигрывают в правильности отображаемой информации. Впрочем, доступная стоимость многих склоняет к покупке именно механических приборов.

Указатели напряжения и индикаторы

Используются для определения наличия или отсутствия тока в сети для электроприборов, мощность которых не более 1000 В. Принцип действия - преобразование электрических сигналов в световые сигналы. На приборе имеется шкала и светоиндикатор, при помощи которых можно просто понять, есть ли в сети напряжение. Если свечение отсутствует, то это говорит об ее обрыве или отсутствии. Также индикаторами можно измерять фазы тока переменного и полярность тока постоянного.

Вольтметр, амперметр, омметр

Используется электронный прибор для измерения силы тока, напряжения, мощности, сопротивления, емкости, индуктивности и т. д. Они могут сочетать в себе преобразователи из измеряемой величины в напряжение постоянное, то есть силу тока, также могут сочетать в себе магнитоэлектрический аппарат и отличаться высокой чувствительностью, широким диапазоном частот и небольшим потреблением мощности.

Через делитель на выход усилителя подводится определяемое напряжение, а напряжение выхода после усилителя вычисляется магнитоэлектрическим аппаратом. Главная погрешность данного вольтметра - 0,5…1,0 процентов.

Вольтметр переменного тока - это электронный прибор, предназначенный для измерения и преобразования переменного напряжения в постоянное напряжение. Вольтметры делят в зависимости от измеряемого переменного напряжения: средних квадратичных значений, средних выпрямительных значений и амплитудных значений.

Омметр не выпускается в виде отдельного прибора, его функции выполняет электронный вольтметр. Омметр оснащен преобразователем, который представляет собой усилитель, окруженный обратной отрицательной связью измеряемым и образцовым резисторами. Следовательно, напряжение, измеряемое электронным вольтметром, пропорционально сопротивлению определяемого резистора. Такая схема пользуется большой популярностью для измерений сопротивления от 10 до 1000 МОм.

Частотомер и осциллограф

Частотомер применяет принцип заряда и разряда конденсатора и сочетается с аналоговым выходным механизмом, предназначенным для определения средней величины силы, протекающей через конденсатор во время его периодической перезарядки относительно определяемой частоты.

Для того, чтобы исследовать поведение сигналов во времени, применяется электронный осциллограф, дающий возможность для непосредственного наблюдения или записывания формы непериодических и периодических сигналов. За счет того, что в осциллографе подвижная часть делается электронным лугом, он практически без инерции и может использоваться для измерения величин с частотой до нескольких сотен мегагерц и непериодических операций, длительность которых достигает доли микросекунд.

Еще эти приборы для измерения тока и напряжения обладают большим входным сопротивлением и высокой чувствительностью. Однако, они обладают и недостатками, а именно невысокой точностью измерения (погрешность 10 процентов), конструктивной и электрической сложностью, высокой стоимостью. Более того, если сравнивать осциллограф с другими электронными измерительными приборами, то он самый сложный в эксплуатации и нуждается в определенной квалификации персонала.

Осциллограф получил широкое распространение благодаря измерениям фазы и частоты электрических колебаний. Кроме того, есть возможность исследовать колебания различных форм.

Как правило, этот прибор используют для непродолжительного измерения тока без разрыва цепи. Благодаря тому, что от определяемой линии подается ток на катушку, есть возможность не разрывать цепь в период работы - это и является первостепенным принципом работы этого электронного прибора. Токоизмерительные клещи могут быть аналоговыми или цифровыми. Основные функции, которые они выполняют: измерения переменного напряжения, постоянного напряжения, сопротивления, переменного тока, температуры.

Это прибор, который сочетает в себе практически все приборы, предназначенные для измерения тока и напряжени», а также других параметров. В нем могут быть и амперметр, и вольтметр, и омметр и подобные электронные приборы. За счет своего простого исполнения и положительных свойств данные мультиметры очень известны уже на протяжении многих лет. Мультиметры бывают различной степени точности, от чего напрямую зависит их стоимость, поэтому перед выбором этого электроизмерительного прибора необходимо определиться с задачами, которые он будет выполнять.

Ремонт электронных приборов

За счет того, что конструкции измерительных приборов разнообразны, описать все процессы разборки и сборки очень трудно. Однако, большинство процессов являются общими для любой конструкции приборов.

Однородные ремонтные процессы могут выполняться специалистами разных квалификаций. Приборы класса 1 - 1,5 - 2,5 - 4 должны ремонтироваться мастерами, квалификация которых имеет 4-6 разряд. Сложные и специальные приборы должны ремонтировать электромеханики 7-8 разряда.

Вообще, процессы разборки и сборки электроизмерительных приборов являются ответственными процессами, поэтому их необходимо выполнять аккуратно и тщательно. В случае небрежной разборки могут портиться отдельные детали, которые будут вести к добавлению новых неисправностей. Перед тем, как начинать разборку, следует продумать общий порядок проведения операций.

Полную разборку электронного прибора выполняют при капитальном ремонте, который связан с перемоткой катушек, рамок, сопротивлений, производством или заменой разрушенных и сгоревших частей. Она предусматривает разделение всех частей прибора между собой.

Когда выполняется средний ремонт, производят неполную разборку всех частей прибора, а ограничиваются лишь выниманием подвижной части, сменой подпятников, дозаправкой кернов, восстановлением подвижной части, регулировкой и подгонкой показаний механизма. Переградуировку во время среднего ремонта следует выполнять лишь в том случае, когда шкала потускнела и загрязнилась. В остальных случаях шкалу следует сохранить с прежними отметками. Показателем качественного среднего ремонта является производство прибора с прежней шкалой.

Для выполнения разборки и сборки приборов потребуются часовые пинцеты, отвертки, малые электрические паяльники, часовые кусачки, овалогубцы, плоскогубцы, специально сделанные ключи и т. д.

После полного ремонта прибора его проверяют, свободно ли движется подвижная часть, осматривается внутренняя часть, и производятся записи показаний отремонтированного и образцового аппарата во время измерений определяемой величины от нуля до максимума и обратно.

Измерение – это определение значения физической величины опытным путем с помощью специальных технических средств. Измерения выполняются в общепринятых единицах.

Основные элементы процесса измерения: объект измерения, измеряемая величина, средство измерений, принцип измерений, метод измерений, условия измерений, результат измерения, погрешность измерения, человек-оператор, выполняющий измерения (субъект измерения).

Объект измерения – это сложное, многогранное явление или процесс (например, электрические колебания на выходе автогенератора), характеризующийся множеством отдельных физических параметров. Интересующий нас и подлежащий измерению один из этих параметров называется измеряемой физической величиной (например, частота колебаний автогенератора).

Средство измерений – это техническое средство, используемое при измерениях и имеющее нормированные метрологические свойства.

Принцип измерений – это совокупность физических явлений, на которых основаны измерения (например, резонансный принцип измерения частоты).

Метод измерений представляет собой совокупность приемов использования принципов и средств измерений (например, метод сравнения измеряемой частоты с известной частотой).

Электрические методы измерений электрических и неэлектрических величин имеют ряд преимуществ по сравнению с другими методами измерений: незначительное потребление энергии; возможность дистанционной передачи измерительной информации; большая скорость измерений; высокая точность и чувствительность.

Методика измерений в отличие от метода включает в себя детально разработанный порядок процесса измерений с использованием конкретных методов и средств измерений.

Как бы тщательно не проводилось измерение, его результат будет содержать некоторую неточность, которая характеризуется погрешностью. Погрешность измерения – это отклонение результата измерения от истинного значения измеряемой величины.

Широко применяемый термин точность измерений характеризует качество измерений, отражающее близость их результатов к истинному значению. Большей точности соответствует меньшая погрешность измерения.

Значение физической величины, найденное путем ее измерения, называется результатом измерения. Результат измерения может быть получен в результате одного наблюдения или при обработке результатов нескольких

наблюдений. При этом под наблюдением понимают экспериментальную операцию, при которой получают одно числовое значение величины.

В Республике Беларусь введена Международная система единиц (International System of Units), сокращенно СИ (SI). Основными единицами этой системы являются: метр (m ), килограмм (kg ), секунда (s ), ампер (А ), кель-вин (К ), моль (mol ) и кандела (cd ), дополнительными – угловые единицы: радиан (рад) и стерадиан (ср). Кроме основных и дополнительных установлены производные единицы.


Технические средства, используемые при электрических измерениях и имеющие нормированные погрешности, по назначению подразделяются на меры, измерительные преобразователи, электроизмерительные приборы, электроизмерительные установки и измерительные системы.

Мерой называются средства измерения, предназначенные для воспроизведения значения физической величины заданного размера с определенной точностью. Существуют однозначные меры, например измерительная катушка сопротивления, конденсатор, и многозначные (переменного значения), а также наборы и магазины мер, т. е. комплекты мер для воспроизведения ряда одноименных значений величин различного размера (магазины сопротивлений, емкостей).

Измерительные преобразователи предназначены для выработки сигналов измерительной информации в форме, удобной для передачи, дальнейшего преобразования и обработки, но не поддающейся непосредственному восприятию наблюдателем. Некоторые из них – шунты, делители напряжения, измерительные трансформаторы, усилители – могут преобразовывать электрические величины в электрические же, но необходимые потребителю, другие – термоэлектрические термометры, тензорезисторы, индуктивные преобразователи – неэлектрические величины в электрические.

Электроизмерительные приборы– это средства электрических измерений, предназначенные для выработки сигналов измерительной информации в форме, удобной для непосредственного восприятия наблюдателем (например, вольтметр, амперметр, ваттметр, фазометр).

Электроизмерительные приборы классифицируют по назначению, конструктивному исполнению, роду измеряемой величины, принципу, условиям эксплуатации, классу точности и другим критериям.

В зависимости от рода измеряемой величины (например, напряжение, сила тока, мощность) электроизмерительные приборы подразделяются на амперметры, вольтметры, ваттметры и т. п. и комбинированные, измеряющие две и более величин (например, ампервольтомметры).

Электроизмерительные приборы, показания которых являются непрерывными функциями измеряемых величин, называются аналоговыми приборами. Электроизмерительные приборы, автоматически вырабатывающие дискретные сигналы измерительной информации, показания которых представлены в цифровой форме, называются цифровыми приборами.

Электроизмерительная установка состоит из ряда средств измерений (мер, измерительных преобразователей, приборов) и вспомогательных устройств, расположенных в одном месте. Электроизмерительные установки используются для поверки и градуировки электроизмерительных приборов и испытаний магнитных и электроизоляционных материалов.

В зависимости от способа получения результата различают два метода измерения: прямой и косвенный .

Прямым называется такое измерение, результат которого получается непосредственно из опытных данных. Сюда относятся измерения различных физических величин при помощи приборов, градуированных в установленных единицах, например, измерение силы тока амперметром, сопротивления проводника – омметром, температуры – термометром и т. д. Прямые измерения широко применяются из-за их простоты и скорости получения результата.

Косвенным называется измерение, при котором искомое значение величины определяется на основании известной математической зависимости между ней и величинами, полученными при прямых измерениях. Например, мощность Рв цепях постоянного тока вычисляют по формуле: Р = U I ; напряжение U в этом случае измеряют вольтметром, а ток I – амперметром; сопротивление резистора R = U/I – по измеренным значениям напряжения U и тока I . Косвенные измерения используются, как правило, только в тех случаях, когда нельзя применять прямые.