Торпедные двигатели: вчера и сегодня

ОАО «НИИ мортеплотехники» осталось единственным предприятием в Российской Федерации, осуществляющим полномасштабную разработку тепловых энергоустановок

В период от основания предприятия и до середины 1960-х гг. главное внимание уделялось разработке турбинных двигателей для противокорабельных торпед с рабочим диапазоном работы турбин на глубинах 5-20 м. Противолодочные торпеды проектировались тогда только на электроэнергетике. В связи с условиями применения противокорабельных торпед важными требованиями к энергосиловым установкам были максимально возможная мощность и визуальная незаметность. Требование по визуальной незаметности легко выполнялось за счет применения двухкомпонентного топлива: керосина и маловодного раствора перекиси водорода (МПВ) концентрации 84%. В продуктах сгорания содержался водяной пар и двуокись углерода. Выхлоп продуктов сгорания за борт осуществлялся на расстоянии 1000-1500 мм от органов управления торпедой, при этом пар конденсировался, а двуокись углерода быстро растворялась в воде так, что газообразные продукты сгорания не только не достигали поверхности воды, но и не оказывали влияния на рули и гребные винты торпеды.

Максимальная мощность турбины, достигнутая на торпеде 53-65, составила 1070 кВт и обеспечивала движение со скоростью около 70 узлов. Это была самая скоростная торпеда в мире. Для снижения температуры продуктов сгорания топлива с 2700-2900 К до приемлемого уровня в продукты сгорания впрыскивалась морская вода. На начальной стадии работ соли из морской воды осаждались в проточной части турбины и приводили к ее разрушению. Это происходило до тех пор, пока не были найдены условия безаварийной работы, минимизирующие влияние солей морской воды на работоспособность газотурбинного двигателя.

При всех энергетических преимуществах перексида водорода как окислителя, его повышенная пожаровзрывоопасность при эксплуатации диктовала поиск применения альтернативных окислителей. Одним из вариантов подобных технических решений была замена МПВ на газообразный кислород. Турбинный двигатель, разработанный на нашем предприятии, сохранился, а торпеда, получившая обозначение 53-65К, успешно эксплуатировалась и не снята с вооружения ВМФ до сих пор. Отказ от применения МПВ в торпедных тепловых энергосиловых установках привел к необходимости проведения многочисленных научно-исследовательских работ по поиску новых топлив. В связи с появлением в середине 1960-х гг. атомных подводных лодок, имеющих высокие скорости подводного движения, противолодочные торпеды с электроэнергетикой оказались малоэффективными. Поэтому наряду с поиском новых топлив исследовались новые типы двигателей и термодинамические циклы. Наибольшее внимание было уделено созданию паротурбинной установки, работающей в замкнутом цикле Ренкина. На этапах предварительной как стендовой, так и морской отработки таких агрегатов, как турбина, парогенератор, конденсатор, насосы, клапана и всей системы в целом использовалось топливо: керосин и МПВ, а в основном варианте – твердое гидрореагирующее топливо, обладающее высокими энергетическими и эксплуатационными показателями.

Паротурбинная установка была успешно отработана, но работы по торпеде были остановлены.

В 1970-1980-х гг. большое внимание уделялось разработке газотурбинных установок открытого цикла, а также комбинированного цикла с применением в системе газовыхлопа эжектора на больших глубинах работы. В качестве топлива использовались многочисленные рецептуры жидкого монотоплива типа Otto-Fuel II, в том числе с добавками металлического горючего, а также с применением жидкого окислителя на основе гидроксил аммония перхлорат (НАР).

Практический выход получило направление создания газотурбинной установки открытого цикла на топливе типа Otto-Fuel II. Был создан турбинный двигатель мощностью более 1000 кВт для ударной торпеды калибра 650 мм.

В середине 1980-х гг. по результатам проведенных исследовательских работ руководством нашего предприятия было принято решение о развитии нового направления – разработки для универсальных торпед калибра 533 мм аксиально-поршневых двигателей на топливе типа Otto-Fuel II. Поршневые двигатели по сравнению с турбинными обладают более слабой зависимостью экономичности от глубины хода торпеды.

С 1986-го по 1991 гг. был создан аксиально-поршневой двигатель (модель 1) мощностью около 600 кВт для универсальной торпеды калибра 533 мм. Он успешно прошел все виды стендовых и морских испытаний. В конце 1990-х годов в связи с уменьшением длины торпеды была создана вторая модель этого двигателя путем модернизации в части упрощения конструкции, повышении надежности, исключения дефицитных материалов и внедрения многорежимности. Эта модель двигателя принята в серийной конструкции универсальной глубоководной самонаводящейся торпеды.

В 2002 г. ОАО «НИИ мортеплотехники» было поручено создание энергосиловой установки для новой легкой противолодочной торпеды калибра 324 мм. После анализа всевозможных типов двигателей, термодинамических циклов и топлив выбор был сделан также, как и для тяжелой торпеды, в пользу аксиально-поршневого двигателя открытого цикла на топливе типа Otto-Fuel II.

Однако при проектировании двигателя был учтен опыт слабых сторон конструкции двигателя тяжелой торпеды. Новый двигатель имеет принципиально другую кинематическую схему. В нем отсутствуют элементы трения в топливоподающем тракте камеры сгорания, что исключило возможность взрыва топлива в процессе работы. Вращающиеся части хорошо сбалансированы, а приводы вспомогательных агрегатов значительно упрощены, что привело к снижению виброактивности. Внедрена электронная система плавного регулирования расхода топлива и соответственно мощности двигателя. Практически отсутствуют регуляторы и трубопроводы. При мощности двигателя 110 кВт во всем диапазоне требуемых глубин, на малых глубинах он допускает удвоение мощности при сохранении работоспособности. Широкий диапазон параметров работы двигателя позволяет использовать его в торпедах, антиторпедах, самодвижущихся минах, средствах гидроакустического противодействия, а также в автономных подводных аппаратах военного и гражданского назначения.

Все эти достижения в области создания торпедных энергосиловых установок были возможны в связи с наличием в ОАО «НИИ мортеплотехники» уникальных экспериментальных комплексов, созданных как собственными силами, так и за счет государственных средств. Комплексы располагаются на территории около 100 тыс.м2. Они обеспечены всеми необходимыми системами энергоснабжения, в том числе системами воздуха, воды, азота и топлив высокого давления. В испытательные комплексы входят системы утилизации твердых, жидких и газообразных продуктов сгорания. В комплексах имеются стенды для испытаний макетных и полномасштабных турбинных и поршневых двигателей, а также двигателей других типов. Имеются, кроме того, стенды для испытаний топлив, камер сгорания, различных насосов и приборов. Стенды оснащены электронными системами управления, измерения и регистрации параметров, визуального наблюдения испытуемых объектов, а также аварийной сигнализацией и защитой оборудования.

Современная торпеда — грозное оружие надводных кораблей, морской авиации и подводных лодок. Она позволяет быстро и точно наносить мощный удар по противнику в море. Это автономный, самодвижущийся и управляемый подводный снаряд, содержащий 0,5 тонны взрывчатого вещества или ядерную боевую часть.
Секреты разработки торпедного оружия является наиболее охраняемым, ведь число государств, владеющих этими технологиями даже меньше членов ядерного ракетного клуба.

В настоящее время отмечается серьёзный рост отставания России в проектировании и разработке торпедного вооружения . Долгое время ситуацию хоть как-то сглаживало наличие в России принятых на вооружении в 1977 году ракето-торпед «Швкал», однако с 2005 года подобное торпедное вооружение появилось и в Германии.

Имеется информация, что немецкие ракето-торпеды «Барракуда» способны развивать большую, чем «Шквал» скорость, но пока российские торпеды подобного типа распространены более широко. В целом же отставание обычных российских торпед от зарубежных аналогов достигает 20-30 лет .

Основным производителем торпед в России является ОАО Концерн «Морское подводное оружие – Гидроприбор». Данное предприятие в ходе проведения международного военно-морского салона в 2009 году («МВМС-2009») представило на суд публике свои разработки, в частности 533-мм универсальную телеуправляемую электрическую торпеду ТЭ-2 . Данная торпеда предназначена для поражения современных кораблей подводных лодок противника в любом районе Мирового океана.

Торпеда ТЭ-2 обладает следующими характеристиками :
— длина с катушкой (без катушки) телеуправления – 8300 (7900) мм;
— общая масса – 2450 кг;
— масса боевого заряда – 250 кг;
— торпеда способна развивать скорость от 32 до 45 узлов на дальности в 15 и 25 км соответственно;
— обладает сроком службы в 10 лет.

Торпеда ТЭ-2 оснащается акустической системой самонаведения (активная по надводной цели и активно-пассивная по подводной) и неконтактными электромагнитными взрывателями, а также достаточно мощным электродвигателем, обладающим устройством понижения уровня шума.

Торпеда ТЭ-2 может быть установлена на подводные лодки и корабли различных типов и по желанию заказчика выполнена в трёх различных вариантах :
— первый ТЭ-2-01 предполагает механический ввод данных по обнаруженной цели;
— второй ТЭ-2-02 электрический ввод данных по обнаруженной цели;
— третий вариант торпеды ТЭ-2 имеет меньшие массогабаритные показатели при длине в 6,5 метра и предназначен для использования на подводных лодках натовского образца, к примеру, на немецких подлодках проекта 209.

Торпеда ТЭ-2-02 специально разрабатывалась для вооружения атомных многоцелевых подводных лодок 971 проекта класса «Барс», которые несут ракетно-торпедное вооружение. Есть информация, что подобная АПЛ по контракту была закуплена военно-морским флотом Индии.

Самое печальное в том, что подобная торпеда ТЭ-2 уже сейчас не отвечает ряду требований предъявляемых к подобному оружию, а также уступает по своим техническим характеристикам иностранным аналогам . Все современные торпеды западного производства и даже новое торпедное оружие китайского производства имеет шланговое телеуправлении.

На отечественных же торпедах применяется буксируемая катушка – рудимент почти 50-летней давности. Что фактически ставит наши подводные лодки под расстрел противника с гораздо большими эффективными дистанциями по стрельбе.

Энциклопедичный YouTube

    1 / 3

    ✪ How do fish make electricity? - Eleanor Nelsen

    ✪ Torpedo marmorata

    ✪ Ford Mondeo печка. Как будет гореть?

    Субтитры

    Переводчик: Ksenia Khorkova Редактор: Ростислав Голод В 1800 году учёный-натуралист Александр фон Гумбольдт наблюдал, как косяк электрических угрей выпрыгнул из воды, чтобы защититься от приближающихся лошадей. Многим история показалась необычной, и они подумали, что Гумбольдт всё выдумал. Но рыбы, использующие электричество, встречаются чаще, чем вы думаете; и да, существует такой вид рыб - электрические угри. Под водой, где мало света, электрические сигналы дают возможность для коммуникации, навигации и служат для поиска, а в редких случаях - и для обездвижения жертвы. Приблизительно 350 видов рыб имеют специальные анатомические образования, которые генерируют и регистрируют электрические сигналы. Эти рыбы делятся на две группы в зависимости от того, сколько электричества они вырабатывают. Учёные называют первую группу рыбами со слабыми электрическими свойствами. Органы рядом с хвостом, называемые электрическими органами, генерируют до одного вольта электричества, почти две трети от пальчиковой батарейки. Как это работает? Мозг рыбы посылает сигнал через нервную систему к электрооргану, который заполнен стопками из сотен или тысяч похожих на диски клеток, которые называются электроцитами. Обычно электроциты вытесняют ионы натрия и калия для поддержания положительного снаружи и отрицательного заряда внутри. Но когда сигнал из нервной системы доходит до электроцита, он провоцирует открытие ионных каналов. Положительно заряженные ионы возвращаются назад внутрь. Теперь один конец электроцита заряжен отрицательно снаружи и положительно внутри. Но у противоположного конца противоположные заряды. Эти переменные заряды могут создавать ток, превращая электроцит в своеобразную биологическую батарею. Ключ к этой способности состоит в том, что сигналы скоординированы таким образом, чтобы дойти до каждой клетки в одно и то же время. Поэтому стопки электроцитов действуют как тысячи последовательных батарей. Крохотные заряды каждой батареи образуют электрическое поле, которое может перемещаться на несколько метров. Клетки, называемые электрорецепторами и находящиеся в коже, позволяют рыбе постоянно ощущать это поле и изменения в нём, вызванные окружающей средой или другими рыбами. Гнатонем Петерса, или нильский слоник, например, обладает удлинённым, похожим на хобот отростком на подбородке, который усеян электрическими рецепторами. Это позволяет рыбе принимать сигналы от других рыб, оценивать расстояние, определять форму и размеры близлежащих объектов или даже определять, живы или мертвы плавающие на поверхности воды насекомые. Но слоник и другие виды слабоэлектрических рыб не вырабатывают достаточно электричества для того, чтобы атаковать жертву. Этой способностью обладают рыбы с сильными электрическими свойствами, видов которых очень немного. Самая мощная сильноэлектрическая рыба - это электрическая рыба-нож, больше известная как электрический угорь. Три электрооргана охватывают почти всё её двухметровое тело. Как и слабоэлектрические рыбы, электрический угорь использует сигналы для навигации и коммуникации, но самые сильные электрические заряды он приберегает для охоты, при помощи двухфазной атаки находит, а затем и обездвиживает жертву. Сначала он выпускает пару сильных импульсов напряжением в 600 вольт. Эти импульсы вызывают спазмы мускулов жертвы и генерируют волны, выдающие место её укрытия. Сразу же после этого высоковольтные разряды вызывают ещё более сильные сокращения мышц. Угорь также может свернуться так, что электрические поля, возникающие на каждом конце электрического органа, пересекаются. Электрический шторм в конце концов выматывает и обездвиживает жертву, и электрический угорь может живьём проглотить свой обед. Два других вида сильноэлектрических рыб - это электрический сом, который может высвободить 350 вольт при помощи электрооргана, занимающего большую часть его тела, и электрический скат с почкоподобными электроорганами по бокам головы, которые вырабатывают 220 вольт. Однако в мире электрических рыб существует одна неразгаданная тайна: почему они сами себя не оглушают током? Возможно, что размер сильноэлектрических рыб позволяет им выдержать их собственные разряды или ток выходит из их тел слишком быстро. Учёные думают, что специальные белки могут защищать электроорганы, но на самом деле это одна из загадок, которую наука пока ещё не раскрыла.

Происхождение термина

Русским языком, как и другие европейскими языками, слово «торпедо» заимствовано из английского языка (англ. torpedo ) [ ] .

По поводу первого употребления этого термина в английском языке единого мнения нет. Некоторые авторитетные источники утверждают, что первая запись этого термина относится к 1776 году и в оборот его ввёл Дэвид Бушнелл , изобретатель одного из первых прототипов подводных лодок - «Черепахи ». По другой, более распространённой версии первенство употребления этого слова в английском языке принадлежит Роберту Фултону и относится к началу XIX века (не позднее 1810 года )

И в том и в другом случае термин «torpedo» обозначал не самодвижущийся сигарообразный снаряд, а подводную контактную мину яйцеобразной или бочонкообразной формы , которые имели мало общего с торпедами Уайтхеда и Александровского.

Изначально в английском языке слово «torpedo» обозначает электрических скатов , и существует с XVI века и заимствовано из латинского языка (лат. torpedo ), которое в свою очередь первоначально обозначало «оцепенение», «окоченение», «неподвижность». Термин связывают с эффектом от «удара» электрического ската .

Классификации

По виду двигателя

  • На сжатом воздухе (до Первой мировой войны);
  • Парогазовые - жидкое топливо сгорает в сжатом воздухе (кислороде) с добавлением воды , а полученная смесь вращает турбину или приводит в действие поршневой двигатель ;
    отдельным видом парогазовых торпед являются торпеды с ПГТУ Вальтера .
  • Пороховые - газы от медленно горящего пороха вращают вал двигателя или турбину;
  • Реактивные - не имеют гребных винтов , используется реактивная тяга (торпеды: РАТ-52, «Шквал »). Необходимо отличать реактивные торпеды от ракето-торпед , представляющих собой ракеты с боевыми частями-ступенями в виде торпед (ракетоторпеды «ASROC », «Водопад » и др.).
По способу наведения
  • Неуправляемые - первые образцы;
  • Прямоидущие - с магнитным компасом или гироскопическим полукомпасом;
  • Маневрирующие по заданной программе (циркулирующие) в районе предполагаемых целей - применялись Германией во Второй мировой войне ;
  • Самонаводящиеся пассивные - по физическим полям цели, в основном по шуму или изменению свойств воды в кильватерном следе (первое применение - во Второй мировой войне), акустические торпеды «Цаукениг» (Германия, применялись подводными лодками) и Mark 24 FIDO (США , применялись только с самолётов, так как могли поразить свой корабль);
  • Самонаводящиеся активные - имеют на борту гидролокатор . Многие современные противолодочные и многоцелевые торпеды;
  • Телеуправляемые - наведение на цель осуществляется с борта надводного или подводного корабля по проводам (оптоволокну).

По назначению

  • Противокорабельные (первоначально все торпеды);
  • Универсальные (предназначены для поражения как надводных так и подводных кораблей);
  • Противолодочные (предназначенные для поражения подводных кораблей).

«В 1865 году,- пишет Александровский,- мною был представлен… адмиралу Н. К. Краббе (управляющий Морским министерством Авт.) проект изобретённого мною самодвижещегося торпедо. Сущность… торпедо ничего более, как только копия в миниатюре с изобретённой мною подводной лодки. Как и в моей подводной лодке, так и моем торпедо главным двигатель - сжатый воздух, те же горизонтальные рули для направления на желаемой глубине… с той лишь разницей, что подводная лодка управляется людьми, а самодвижущееся торпедо… автоматическим механизмом. По представлению моего проекта самодвижущегося торпедо Н. К. Краббе нашел его преждевременным, ибо в то время моя подводная лодка только строилась».

По-видимому первой управляемой торпедой является разработанная в 1877 году Торпеда Бреннана .

Первая мировая война

Вторая мировая война

Электрические торпеды

Одним из недостатков парогазовых торпед является наличие на поверхности воды следа (пузырьков отработанного газа), демаскирующего торпеду и создающего атакованному кораблю возможность для уклонения от неё и определения местонахождения атакующих, поэтому после Первой мировой войны начались попытки применения в качестве двигателя торпеды электромотора . Идея была очевидна, но ни одно из государств, кроме Германии , до начала Второй мировой войны реализовать её не смогло. Кроме тактических преимуществ оказалось, что электрические торпеды сравнительно просты в изготовлении (так, трудозатраты на изготовление стандартной немецкой парогазовой торпеды G7a (T1) составляли от 3740 человеко-часов в 1939 г. до 1707 человеко-часов в 1943 г.; а на производство одной электроторпеды G7e (Т2) требовалось 1255 человеко-часов). Однако максимальная скорость хода электроторпеды равнялась только 30 узлам , в то время как парогазовая торпеда развивала скорость хода до 46 узлов. Также существовала проблема устранения утечки водорода из батареи аккумуляторов торпеды, что иногда приводило к его скоплению и взрывам.

В Германии электрическую торпеду создали ещё в 1918 г., но в боевых действиях её применить не успели. Разработки продолжили в 1923 г., на территории Швеции. В г. новая электрическая торпеда была готова к серийному производству, но официально её приняли на вооружение только в г. под обозначением G7e . Работы были настолько засекречены, что британцы узнали о ней только в том же 1939, когда части такой торпеды обнаружили при осмотре линейного корабля «Ройял Оук », торпедированного в Скапа-Флоу на Оркнейских островах .

Однако, уже в августе 1941 на захваченной U-570 в руки британцев попали полностью исправные 12 таких торпед. Несмотря на то что и в Британии, и в США в то время уже имелись опытные образцы электрических торпед, они просто скопировали германскую и приняли её на вооружение (правда, только в 1945, после окончания войны) под обозначением Mk-XI в британском и Mk-18 в американском флоте.

Работы по созданию специальной электрической батареи и электродвигателя, предназначенных для торпед калибра 533 мм, начали в 1932 г. и в Советском Союзе . В течение 1937-1938 гг. было изготовлено две опытовые электрические торпеды ЭТ-45 с электродвигателем мощностью 45 кВт. Она показала неудовлетворительные результаты, поэтому в 1938 г. разрабатывается принципиально новый электродвигатель с вращающимися в разные стороны якорем и магнитной системой, с высоким КПД и удовлетворительной мощностью (80 кВт). Первые образцы новой электрической торпеды изготовили в 1940 г. И хотя германская электрическая торпеда G7e попала в руки и советских инженеров, но те не стали её копировать, а в 1942 г., после проведения государственных испытаний, была принята на вооружение отечественная торпеда ЭТ-80. Пять первых боевых торпед ЭТ-80 поступили на Северный флот в начале 1943 г. Всего во время войны советские подводники израсходовали 16 электрических торпед.

Таким образом, реально во Второй мировой войне электрические торпеды имели на вооружении Германия и Советский Союз. Доля электрических торпед в боекомплекте подводных лодок кригсмарине составляла до 80 %.

Неконтактные взрыватели

Независимо друг от друга, в строгой тайне и почти одновременно военно-морские флоты Германии, Англии и Соединенных Штатов разработали магнитные взрыватели для торпед. Эти взрыватели имели большое преимущество перед более простыми контактными взрывателями. Противоминные переборки , находящиеся ниже броневого пояса кораблей сводили к минимуму разрушения, вызываемые при попадании торпеды в борт . Для максимальной эффективности поражения торпеда с контактным взрывателем должна была попасть в небронированную часть корпуса, что оказывалось весьма трудным делом. Магнитные взрыватели были сконструированы таким образом, что срабатывали при изменениях магнитного поля Земли под стальным корпусом корабля и взрывали боевую часть торпеды на расстоянии 0,3-3,0 метра от его днища. Считалось, что взрыв торпеды под днищем корабля наносит ему в два или три раза большие повреждения, чем такой же по мощности взрыв у его борта.

Однако, первые германские магнитные взрыватели статического типа (TZ1), которые реагировали на абсолютную величину напряжённости вертикальной составляющей магнитного поля , просто пришлось снять с вооружения в 1940 г., после Норвежской операции . Эти взрыватели срабатывали после прохождения торпедой безопасной дистанции уже при легком волнении моря, на циркуляции или при недостаточно стабильном ходе торпеды по глубине. В результате этот взрыватель спас несколько британских тяжёлых крейсеров от неминуемой гибели.

Новые германские неконтактные взрыватели появились в боевых торпедах только в 1943 г. Это были магнитодинамические взрыватели типа Pi-Dupl, в которых чувствительным элементом являлась индукционная катушка , неподвижно закреплённая в боевом отделении торпеды. Взрыватели Pi-Dupl реагировали на скорость изменения вертикальной составляющей напряжённости магнитного поля и на смену её полярности под корпусом корабля. Однако радиус реагирования такого взрывателя в 1940 г. составлял 2,5-3 м, а в 1943 по размагниченному кораблю едва достигал 1 м.

Только во второй половине войны на вооружение германского флота приняли неконтактный взрыватель TZ2, который имел узкую полосу срабатывания, лежащую за пределами частотных диапазонов основных видов помех. В результате даже по размагниченному кораблю он обеспечивал радиус реагирования до 2-3 м при углах встречи с целью от 30 до 150°, а при достаточной глубине хода (порядка 7 м) взрыватель TZ2 практически не имел ложных срабатываний из-за волнения моря. Недостатком ТZ2 являлось заложенное в него требование обеспечить достаточно высокую относительную скорость торпеды и цели, что было не всегда возможно при стрельбе тихоходными электрическими самонаводящимися торпедами.

В Советском Союзе это был взрыватель типа НВС (неконтактный взрыватель со стабилизатором ; это магнитодинамический взрыватель генераторного типа, который срабатывал не от величины, а от скорости изменения вертикальной составляющей напряжённости магнитного поля корабля водоизмещением не менее 3000 т на расстоянии до 2 м от днища). Он устанавливался на торпеды 53-38 (НВС мог применяться только в торпедах со специальными латунными боевыми зарядными отделениями).

Приборы маневрирования

В ходе Второй мировой войны во всех ведущих военно-морских державах продолжались работы по созданию приборов маневрирования для торпед. Однако только Германия смогла довести опытные образцы до промышленного производства (курсовые системы наведения FaT и её усовершенствованный вариант LuT ).

FaT

Первый образец системы наведения FaT был установлен на торпеде TI (G7a). Была реализована следующая концепция управления - торпеда на первом участке траектории двигалась прямолинейно на расстояние от 500 до 12500 м и поворачивала в любую сторону на угол до 135 градусов поперек движения конвоя, а в зоне поражения судов противника дальнейшее движение осуществляла по S-образной траектории («змейкой») со скоростью 5-7 узлов, при этом длина прямого участка составляла от 800 до 1600 м и диаметр циркуляции 300 м. В результате траектория поиска напоминала ступени лестницы. В идеале торпеда должна была вести поиск цели с постоянной скоростью поперек направления движения конвоя. Вероятность попадания такой торпеды, выпущенной с носовых курсовых углов конвоя со «змейкой» поперек курса его движения, оказывалась весьма высокой.

С мая 1943 году следующую модификацию системы наведения FaTII (длина участка «змейки» 800 м) стали устанавливать на торпедах TII (G7e). Из-за малой дальности хода электроторпеды эта модификация рассматривалась в первую очередь как оружие самообороны, выстреливавшееся из кормового торпедного аппарата навстречу преследующему эскортному кораблю.

LuT

Система наведения LuT была разработана для преодоления ограничений системы FaT и принята на вооружение весной 1944 года. По сравнению с предыдущей системой торпеды были оборудованы вторым гироскопом, в результате чего появилась возможность двукратной установки поворотов до начала движения «змейкой». Теоретически это давало возможность командиру подлодки атаковать конвой не с носовых курсовых углов, а с любой позиции - сначала торпеда обгоняла конвой, затем поворачивала на его носовые углы и только после этого начинала движение «змейкой» поперек курса движения конвоя. Длина участка «змейки» могла изменяться в любых диапазонах до 1600 м, при этом скорость торпеды была обратно пропорциональна длине участка и составляла для G7a с установкой на начальный 30-узловой режим 10 узлов при длине участка 500 м и 5 узлов при длине участка 1500 м.

Необходимость внесения изменений в конструкцию торпедных аппаратов и счётно-решающего прибора ограничили количество лодок, подготовленных к использованию системы наведения LuT, всего пятью десятками. По оценкам историков, в ходе войны немецкие подводники выпустили около 70 торпед с LuT.

Небезынтересная статья Максима Климова "Об облике современных торпед подводных лодок" была опубликована в журнале "Арсенал Отечества" № 1 (15) за 2015 год. С разрешения автора и редакции журнала ее текст предлагается читателям блога.

Китайская 533-мм торпеда Yu-6 (211ТТ1 разработки российского ЦНИИ «Гидроприбор»), оснащенная российской шланговой лодочной катушкой телеуправления (с) Максим Климов

Реальные ТТХ зарубежных торпед (преднамеренно занижаемых некоторыми отечественными «специалистами») и их «комплексная характеристика»

Массо-габаритные и транспортные характеристики современных зарубежных торпед калибра 53 см в сравнении с нашими экспортными торпедами УГСТ и ТЭ2:


При сравнении отечественных и зарубежных торпед очевидно, что если для УГСТ имеется некоторое отставание от западных образцов по ТТХ, то для это ТЭ2 отставание по ТТХ очень велико.

Учитывая закрытость информации по современных системам самонаведения (ССН), управления (СУ) и телеуправления (СТУ) целесообразно для их оценки и сравнения обозначить основные поколения развития послевоенного торпедного оружия:

1 — прямоидущие торпеды.

2 — торпеды с пассивными ССН (50-е годы).

3 — внедрение активных высокочастотных ССН (60-е годы).

4 — низкочастотные активно-пассивные ССН с допплеровской фильтрацией.

5 — внедрение вторичной цифровой обработки (классификаторов) с массовым переходом (тяжелых торпед) на шланговое телеуправление.

6 — цифровые ССН с увеличенным частотным диапазоном.

7 — сверхширокополосные ССН с оптоволоконным шланговым телеуправлением.

Торпеды, стоящие на вооружении ВМС стран Латинской Америки

В связи с закрытостью ТТХ новых западных торпед представляет интерес их оценка.

Торпеда Mk48

Известны транспортные характеристики первой модификации Mk48 — mod.1 (см. табл. 1).

Начиная с модификации mod.4, была увеличена длина топливного резервуара (430 кг топлива ОТТО II вместо 312), что уже дает увеличение дальности хода на скорости 55 уз свыше 25 км.

Кроме того, первая конструкция водомета была разработана американскими специалистами еще в конце 60х годов (Mk48 mod.1), КПД водомета разрабатывавшейся чуть позднее нашей торпеды УМГТ-1 составлял 0,68. В конце 80х годов после длительной отработки водомета новой торпеды «Физик-1» его КПД был увеличен до 0,8. Очевидно, что американские специалисты проводили аналогичные работы, с повышением КПД водомета торпеды Mk48.

С учетом этого фактора и увеличения длины топливного резервуара, заявления разработчиков о достижении дальности 35 км на скорости 55 уз для модификаций торпеды с mod.4 представляются обоснованными (и многократно подтвержденными по линии экспортных поставок).

Заявления некоторых наших специалистов о «соответствии» транспортных характеристик новейших модификаций Mk48 ранним (mod.1) направлены на маскировку отставания по транспортным характеристикам торпеды УГСТ (что обусловлено нашими жесткими и необоснованными требованиями по безопасности, заставивших ввести камортный топливный резервуар ограниченного объема).

Отдельный вопрос — максимальная скорость последних модификаций Mk48.

Логично предположить увеличение достигнутой с начала 70-х годов скорости 55 уз до «не менее 60», хотя бы за счет увеличения КПД водомета новых модификаций торпеды.

При анализе транспортных характеристик электрических торпед необходимо согласиться с выводом известного специалиста ЦНИИ «Гидроприбор» А.С. Котова «электрические торпеды превзошли по транспортным характеристикам тепловые» (для электрических с батареями AlAgO и тепловых на топливе ОТТО II). Выполненная им расчётная провека данных по торпеде DM2A4 с AlAgO батареей (50 км на 50 уз) оказалась близкой к заявленной разработчиком (52 уз на 48 км).

Отдельный вопрос — тип используемых в DM2A4 батарей. «Официально» в DM2A4 установлены батареи AgZn, в связи с чем некоторые наши специалисты принимают расчетные характеристики этих батарей как аналогов отечественных. Однако представителями фирмы-разработчика заявлялось, что производство батарей для торпеды DM2A4 в Германии невозможно по экологическим соображениям (завод в Греции), что явно говорит о существенно иной конструкции (и характеристиках) батарей DM2A4 в сравнении с отечественными батареями AgZn (не имеющими особых производственных ограничений по экологии).

Несмотря на то что батареи AlAgO имеют рекордные показатели по энергетике, сегодня в зарубежном торпедизме появилась устойчивая тенденция применения значительно менее энергоемких, но обеспечивающих возможность массовых торпедных стрельб универсальных литий-полимерных батарей (торпеды Black Shark (калибра 53 см) и Black Arrow (32 см) фирмы WASS), — даже ценой существенного снижения ТТХ (снижение дальности на максимальной скорости примерно вдвое от DM2A4 для Black Shark).

Массовые торпедные стрельбы — это аксиома современного западного торпедизма.

Причина этого требования — сложные и изменчивые условия среды, в которой применяются торпеды. «Унитарный прорыв» ВМС США, — принятие на вооружение в конце 60-х — начале 70-х годов торпед Mk46 и Mk48 с резко улучшенными ТТХ, был связан именно с необходимостью много стрелять для отработки и освоения новых сложных систем самонаведения, управления и телеуправления. По своим характеристикам унитарное топливо ОТТО-2 было откровенно средним и уступало по энергетике уже успешно освоенной в ВМС США паре перекись-керосин бо- лее чем на 30%. Но это топливо позволило значительно упростить устройство торпед, а главное — резко, более чем на порядок снизить стоимость выстрела.

Это обеспечило массовость стрельб, успешную доводку и освоение в ВМС США новых торпед с высокими ТТХ.

Приняв на вооружение в 2006-м торпеду Mk48 mod.7 (примерно в одно время с государственными испытаниями «Физик-1»), ВМС США за 2011-2012 годы успели произвести более 300 выстрелов торпедами Mk48 mod.7 Spiral 4 (4-я модификация программного обеспечения 7-й модели торпеды). Это не считая многих сотен выстрелов (за это же время) предшествующих «модов» Mk48 из модификаций последней мо- дели (mod.7 Spiral 1-3).

ВМС Великобритании в период испытаний торпеды StingRay mod.1 (серия с 2005 г.) провели 3 серии стрельб:

Первая — май 2002 г. на полигоне AUTEC (Багамские острова) 10 торпед по ПЛА типа «Трафальгар» (с уклонением и применением СГПД), было получено 8 наведений.

Вторая — сентябрь 2002 г. по ПЛ на средних и малых глубинах и лежащей на грунте (последнее — неудачно).

Третья — ноябрь 2003 г., после доработки программного обеспечения на полигоне BUTEC (Шетландские о-ва) по ПЛА типа «Свифтшур», получено 5 из 6 наведений.

Всего за период испытаний было проведено 150 стрельб торпедой StingRay mod.1.

Однако здесь необходимо учитывать то, что при разработке предшествовавшей торпеды StingRay (mod.0) было проведено около 500 испытаний. Уменьшить это количество стрельб для mod.1 позволила система сбора и регистрации данных всех стрельб, и реализации на ее базе «сухого полигона» для предварительной отработки новых решений ССН на базе этой статистики.

Отдельный и очень важный вопрос — испытания торпедного оружия в Арктике.

ВМС США и Великобритании проводят их на регулярной основе в ходе периодических учений ICEX с выполнением массовых стрельб торпедами.

Например, в ходе ICEX-2003, ПЛА Коннектикут» в течение 2-х недель выпустила, а персонал станции ICEX-2003 извлек из-подо льда 18 торпед АДСАР.

В ряде испытаний ПЛА «Коннектикут» атаковала торпедами имитатор цели, предоставленный Центром подводной войны ВМС США (NUWC), но в большинстве случаев, ПЛА, пользуясь способностью дистанционного управления оружием, (телеуправлением) использовал себя в качестве цели для собственных торпед.



Страница учебника «Торпедиста 2 класса ВМС США» с описанием оборудования и технологии переприготовления торпеды Mk 48

В ВМС США огромный (в сравнении с нами) объем торпедных стрельб обеспечивается не за счет финансовых затрат (как заявляется некоторыми «специалистами»), а именно благодаря малой стоимости выстрела.

Из-за высокой стоимости эксплуатации торпеда Mk50 из боекомплекта ВМС США была выведена. Цифры стоимости выстрела торпедой Mk48 в открытых зарубежных СМИ отсутствуют, но очевидно что они гораздо ближе к $12 тыс. — Mk46, чем к $53 тыс. — Mk50, по данным 1995 г.

Принципиальным вопросом для нас сегодня являются сроки разработки торпедного оружия. Как показывает анализ западных данных, он не может быть менее 6 лет (реально — больше):

Великобритания:

. модернизация торпеды Sting Ray (mod.1), 2005 г. разработка и испытания заняли 7 лет;

. модернизация торпеды Spearfish (mod.1) осуществляется с 2010 г. на вооружение планируется в 2017 г.

Сроки и этапы разработки торпед в ВМС США приведены на схеме.


Таким образом, заявления некоторых наших специалистов о «возможности разработки» новой торпеды за «3 года» не имеют под собой никаких серьезных оснований и являются сознательным обманом командования ВМФ и ВС РФ и руководства страны.

Исключительно важным в западном торпедостроении является вопрос малошумности торпед и выстрела.

Сравнение внешних шумов (со стороны кормы) торпеды Мк48 mod.1 (1971 г.) с уровнем шума атомных подводных лодок (вероятно типов «Пермит», «Стерджен» конца 60х годов) на частоте 1,7 кГц:

При этом необходимо учитывать, что шумность новых модификаций торпеды Mk48 на малошумном режиме движения должна быть значительно меньше NT-37C и быть гораздо ближе к DM2A3.

Главным же выводом из этого является возможность выполнения скрытных торпедных атак современными зарубежными торпедами с больших дальностей (свыше 20-30 км).

Стрельба на большие дальности невозможна без эффективного телеуправления (ТУ).

В зарубежном торпедостроении задача создания эффективного и надежного телеуправления была решена в конце 60-х годов с созданием шланговой лодочной катушки ТУ, обеспечившей высокую надежность, значительное снижение ограничений по маневрированию ПЛ с ТУ, многоторпедные залпы с ТУ.


Шланговая катушка телеуправления германской 533-мм торпеды DM2A1 (1971 г.)

Современные западные шланговые системы телеуправления имеют высокую надежность и практически не налагают ограничений на маневрирование ПЛ. Для исключения попадания провода телеуправления в винты на многих зарубежных ДЭПЛ на кормовых рулях натянуты защитные троса. С высокой вероятность можно предположить возможность телеуправления вплоть до полных ходов ДЭПЛ.


Защитные троса на кормовых рулях итальянской неатомной подводной лодки Salvatore Todaro германского проекта 212А

Шланговая катушка телеуправления не только не является «секретом» для нас, но в начале 2000-х ЦНИИ «Гидпроприбор» разработал и сдал ВМС Китая для изделия 211ТТ1 шланговую ЛКТУ.

Еще полвека назад на западе было осознанно что оптимизация параметров составных частей торпедного комплекса должны осуществляться не по отдельности (составных частей), а с учетом обеспечения максимальной эффективности именно как комплекса.

Для этого на западе (в отличие от ВМФ СССР):

. начались работы по резкому снижению шумности торпед (в т.ч. на низких частотах — рабочих для ГАС ПЛ);

. применены высокоточные приборы управления, обеспечившие резкое повышение точности движения торпед;

. требования к ТТХ ГАК ПЛ были уточнены с для эффективного применения телеуправляемых торпед на большие дистанции;

. автоматизированная система боевого управления (АСБУ) была глубоко интегрирована с ГАК или стала его частью (для обеспечения обработки не только «геометрической» информации стрельбовых задач, но и помехо-сигнальной)

Не смотря на то что все это внедрялось в ВМС зарубежных стран с начала 70-х годов прошлого века, нами это не осознано до сих пор!

Если на западе торпеда — это высокоточный комплекс для скрытного поражения целей с большой дистанции, то у нас до сих пор «торпеды — оружие ближнего боя».

Эффективные дистанции стрельбы западными торпедами составляют примерно 2/3 длины провода телеуправления. С учетом 50-60 км на торпедных катушках, обычных для современных западных торпед, эффективные дистанции получаются до 30-40 км.

При этом эффективность отечественных торпед даже с телеуправлением на дистанциях более 10 км резко снижается из-за низких ТТХ телеуправления и малой точности устаревших приборов управления.

Некоторые специалисты утверждают, что дистанции обнаружения ПЛ якобы малы и поэтому «большие эффективные дистанции не нужны». С этим нельзя согласиться. Даже при столкновении на «кинжальной дистанции», в процессе маневрирования в ходе боя весьма вероятно увеличение дистанции между ПЛ (а ПЛА ВМС США специально отрабатывали «разрыв дистанции» с уходом за эффективные залповые дистанции наших торпед).

Разница в эффективности зарубежного и отечественного подхода — «снайперская винтовка» против «пистолета», а с учетом того что дистанцию и условия боя определяем не мы — результат этого «сравнения» в бою очевиден — в большинстве случаев нас ждет расстрел (в т.ч. при наличии в боекомплекте наших ПЛ «перспективных» (но с устаревшей идеологией) торпед).

Кроме того, необходимо также развеять заблуждение некоторых специалистов о том что «торпеды не нужны против надводных целей, т.к. есть ракеты». С момента выхода из воды первой ракеты (ПКР) ПЛ не просто теряет скрытность, а становится объектом атаки авиационных противолодочных средств противника. С учетом их высокой эффективности, залп ПКР ставит ПЛ на грань уничтожения. В этих условиях возможность выполнения скрытной торпедной атаки надводных кораблей с больших дистанций становится одним из требований к современным и перспективным ПЛ.

Очевидно, что необходимы серьезные работы по устранению имеющихся проблем отечественных торпед, в первую очередь НИР по тематике:

. современных помехоустойчивых сверхширокополосных ССН (при этом крайне важна совместная отработка ССН и новых средств противодействия);

. высокоточных приборов управления;

. новых батарей торпед — как мощных одноразовых, так и многоразовых литий-полимерных (для обеспечения большой статистики стрельб);

. оптоволоконного высокоскоростного телеуправления, обеспечивающего многоторпедные залпы на дистанции в несколько десятков км;

. скрытности торпед;

. интеграции «борта» торпед и ГАК ПЛ для комплексной обработки помехо-сигнальной информации;

. разработки и проверки стрельбами новых способов применения телеуправляемых торпед;

. проведение испытаний торпед в условиях Арктики.

Все это безусловно требует большой статистки стрельбы (сотни и тысячи выстрелов), и на фоне нашей традиционной «экономии» это кажется на первый взгляд нереальным.

Однако требование наличия в составе ВМФ РФ подводных сил означает и требование современного и эффективного их торпедного оружия, а значит всю эту большую работу необходимо делать.

Необходимо устранение имеющегося отставания от развитых стран в торпедном оружии, с переходом на общепринятую в мире идеологию торпедного оружия ПЛ как высокоточного комплекса, обеспечивающего поражение скрытное целей с больших дистанций.

Максим Климов

АРСЕНАЛ ОТЕЧЕСТВА | №1 (15) / 2015

Парогазовые торпеды, впервые изготовленные во второй половине XIX столетия, стали активно использоваться с появлением подводных лодок. Особенно преуспели в этом германские подводники, потопившие только за 1915 год 317 торговых и военных судов с общим тоннажем 772 тыс. тонн. В межвоенные годы появились усовершенствованные варианты, которые могли применяться самолетами. В годы Второй мировой войны торпедоносцы сыграли огромную роль в противоборстве флотов воюющих сторон.

Современные торпеды оснащены системами самонаведения и могут оснащаться боеголовками с различным зарядом, вплоть до атомного. На них продолжают использоваться парогазовые двигатели, созданные с учетом последних достижений техники.

История создания

Идея атаки вражеских кораблей самодвижущимися снарядами возникла в XV веке. Первым задокументированным фактом стали идеи итальянского инженера да Фонтана. Однако технический уровень того времени не позволял создать рабочих образцов. В XIX веке идею доработал Роберт Фултон, который и ввел в использование термин «торпеда».

В 1865 году проект оружия (или как тогда называли «самодвижущегося торпедо») предложил российский изобретатель И.Ф. Александровский. Торпеда оборудовалась двигателем, работающим на сжатом воздухе.

Для управления по глубине использовались горизонтальные рули. Спустя год аналогичный проект предложил англичанин Роберт Уайтхед, который оказался проворнее российского коллеги и запатентовал свою разработку.

Именно Уайтхед начал использовать гиростат и соосную гребную установку.

Первым государством, взявшим на вооружение торпеду, стала Австро-Венгрия в 1871 году.

В течение последующих 3 лет торпеды поступили в арсеналы многих морских держав, в том числе и России.

Устройство

Торпеда представляет собой самоходный снаряд, движущийся в толще воды под воздействием энергии собственной силовой установки. Все узлы расположены внутри удлиненного стального корпуса цилиндрического сечения.

В головной части корпуса размещен заряд взрывчатого вещества с приборами, обеспечивающими подрыв боеголовки.

В следующем отсеке расположен запас топлива, вид которого зависит от типа установленного ближе к корме двигателя. В хвостовой части установлен гребной винт, рули глубины и направления, которые могут управляться автоматически или дистанционно.


Принцип работы силовой установки парогазовой торпеды основан на использовании энергии парогазовой смеси в поршневой многоцилиндровой машине или турбине. Возможно использование жидкого топлива (в основном керосин, реже спирт), а также твердого (пороховой заряд или любое вещество, выделяющее значительный объем газа при контакте с водой).

При использовании жидкого топлива на борту имеется запас окислителя и воды.

Горение рабочей смеси происходит в специальном генераторе.

Поскольку при сгорании смеси температура достигает 3,5-4,0 тыс. градусов, то имеется риск разрушения корпуса камеры сгорания. Поэтому в камеру подается вода, снижающая температуру горения до 800°C и ниже.

Основным недостатком ранних торпед с парогазовой силовой установкой стал хорошо различимый след выхлопных газов. Это стало причиной появления торпед с электрической установкой. Позднее в качестве окислителя стали использовать чистый кислород или концентрированную перекись водорода. Благодаря этому отработавшие газы полностью растворяются в воде и след от движения практически отсутствует.

При использовании твердого топлива, состоящего из одного или нескольких компонентов, не требуется использование окислителя. Благодаря этому факту снижается вес торпеды, а более интенсивное газообразование твердого топлива обеспечивает увеличение скорости и дальности хода.

В качестве двигателя применяются паротурбинные установки, оснащенные планетарными редукторами для снижения частоты вращения вала гребных винтов.

Принцип работы

На торпедах типа 53-39 перед применением следует вручную установить параметры глубины движения, курса и примерной дистанции до цели. После этого необходимо открыть предохранительный кран, установленный на магистрали подачи сжатого воздуха в камеру сгорания.

При прохождении торпедой трубы пускового аппарата происходит автоматическое открытие главного крана, и начинается подача воздуха непосредственно в камеру.

Одновременно начинается распыл керосина через форсунку и розжиг образовавшейся смеси при помощи электрического прибора. Установленная в камере дополнительная форсунка подает пресную воду из бортового резервуара. Смесь подается в поршневой двигатель, который начинает раскручивать соосные гребные винты.

Например, в германских парогазовых торпедах G7a использован 4-цилиндровый двигатель, оборудованный редуктором для привода соосных винтов, вращающихся в противоположном направлении. Валы полые, установлены один внутри другого. Применение соосных винтов позволяет уравновешивать отклоняющие моменты и поддерживается заданный курс движения.

Часть воздуха при пуске подается на механизм раскрутки гироскопа.

После начала контакта головной части с потоком воды начинается раскрутка крыльчатки предохранителя боевого отделения. Предохранитель оснащен прибором задержки, обеспечивающим взвод ударника в боевое положение через несколько секунд, за которые торпеда отойдет от места пуска на 30-200 м.

Отклонение торпеды от заданного курса корректируется ротором гироскопа, воздействующим на систему тяг, связанную с исполнительной машиной рулей направления. Вместо тяг могут использоваться электрические приводы. Ошибка в глубине хода определяется механизмом, уравновешивающим усилие пружины давлением столба жидкости (гидростат). Механизм связан с исполнительной машинкой руля глубины.


При ударе боевой части о корпус корабля происходит разрушение стержнями ударника капсюлей, которые вызывают детонацию боевой части. Немецкие торпеды G7a поздних серий оснащались дополнительным магнитным детонатором, срабатывавшим при достижении определенной напряженности поля. Аналогичный взрыватель использовался с 1942 года на советских торпедах 53-38У.

Сравнительные характеристики некоторых торпед подводных лодок периода Второй мировой войны приведены ниже.

Параметр G7a 53-39 Mk.15mod 0 Тип 93
Производитель Германия СССР США Япония
Диаметр корпуса, мм 533 533 533 610
Вес заряда, кг 280 317 224 610
Тип ВВ Тротил ТГА Тротил -
Предельная дальность хода, м до 12500 до 10000 до 13700 до 40000
Рабочая глубина, м до 15 до 14 - -
Скорость хода, уз до 44 до 51 до 45 до 50

Наведение на цель

Простейшей методикой наведения является программирование курса движения. Курс учитывает теоретическое прямолинейное смещение цели за время, необходимое для прохождения расстояния между атакующим и атакуемым кораблем.


Заметное изменение скорости хода или курса атакуемым кораблем приводит к прохождению торпеды мимо. Ситуацию отчасти спасает запуск нескольких торпед «веером», что позволяет перекрывать больший диапазон. Но подобная методика не гарантирует поражения цели и ведет к перерасходу боекомплекта.

До Первой мировой войны предпринимались попытки создания торпед с корректировкой курса по радиоканалу, проводам или иным способам, но до серийного производства дело не дошло. Примером может служить торпеда Джона Хаммонда Младшего, которая использовала для самонаведения свет прожектора вражеского корабля.

Для обеспечения наведения в 30-е годы стали разрабатываться автоматические системы.

Первыми стали системы наведения по акустическому шуму, издаваемому гребными винтами атакуемого судна. Проблемой являются малошумные цели, акустический фон от которых может оказаться ниже шума винтов самой торпеды.

Для устранения подобной проблемы создана система наведения по отраженным сигналам от корпуса корабля или создаваемой им кильватерной струи. Для корректировки движения торпеды могут применяться методики телеуправления по проводам.

Боевая часть

Боевой заряд, расположенный в головной части корпуса состоит из заряда взрывчатого вещества и взрывателей. На ранних моделях торпед, применявших в Первую мировую войну, использовалось однокомпонентное взрывчатое вещество (например, пироксилин).

Для подрыва применялся примитивный детонатор, установленный в носовой части. Срабатывание ударника обеспечивалось только в узком диапазоне углов, близком к перпендикулярному попаданию торпеды в цель. Позднее стали применятся усы, связанные с бойком, которые расширили диапазон этих углов.


Дополнительно стали устанавливаться инерционные взрыватели, срабатывавшие в момент резкого замедления движения торпеды. Использование таких детонаторов потребовало введения предохранителя, которым стала крыльчатка, раскручиваемая потоком воды. При использовании электрических взрывателей крыльчатка соединяется с миниатюрным генератором, заряжающим конденсаторную батарею.

Взрыв торпеды возможен только при определенном уровне заряда батареи. Подобное решение обеспечило дополнительную защиту атакующего корабля от самоподрыва. К моменту начала Второй мировой стали применяться многокомпонентные смеси, обладающие повышенной разрушающей способностью.

Так, в торпеде 53-39 используется смесь тротила, гексогена и алюминиевой пудры.

Применение систем защиты от подводного взрыва привело к появлению взрывателей, обеспечивавших подрыв торпеды вне зоны защиты. После войны появились модели, оснащенные ядерными боеголовками. Первая советская торпеда с ядерной боеголовкой модели 53-58 была испытана осенью 1957 года. В 1973 году ее сменила модель 65-73 калибра 650 мм, способная нести ядерный заряд мощностью 20 кт.

Боевое применение

Первым государством, применившим новое оружие в деле, стала Россия. Торпеды использовались во время русско-турецкой войны 1877-78 года и запускались с катеров. Второй крупной войной с использованием торпедного вооружения стала русско-японская война 1905 года.

В ходе Первой мировой войны оружие использовалось всеми воюющими сторонами не только в морях и океанах, но и на речных коммуникациях. Широкое использование подводных лодок Германией привело к большим потерям торгового флота Антанты и союзников. В ходе Второй мировой войны стали применяться усовершенствованные варианты вооружения, оснащенные электродвигателями, усовершенствованными системами наведения и маневрирования.

Любопытные факты

Были разработаны торпеды больших размеров, предназначенные для доставки крупных боеголовок.

Примером такого вооружения может служить советская торпеда Т-15, имевшая вес около 40 т при диаметре 1500 мм.

Оружие предполагалось использовать для атаки побережья США термоядерными зарядами мощностью 100 мегатонн.

Видео