Признаки делимости натуральных чисел.

Числа, делящиеся без остатка на 2, называются четными .

Числа, которые не делятся без остатка на 2, называются нечетными .

Признак делимости на 2

Если запись натурального числа оканчивается четной цифрой, то это число делится без остатка на 2, а если запись числа оканчивается нечетной цифрой, то это число не делится без остатка на 2.

Например, числа 6 0 , 30 8 , 8 4 делятся без остатка на 2, а числа 5 1 , 8 5 , 16 7 не делятся без остатка на 2.

Признак делимости на 3

Если сумма цифр числа делится на 3, то и число делится на 3; если сумма цифр числа не делится на 3, то и число не делится на 3.

Например, выясним, делится ли на 3 число 2772825. Для этого подсчитаем сумму цифр этого числа: 2+7+7+2+8+2+5 = 33 - делится на 3. Значит, число 2772825 делится на 3.

Признак делимости на 5

Если запись натурального числа оканчивается цифрой 0 или 5, то это число делится без остатка на 5. Если же запись числа оканчивается иной цифрой, то число без остатка на 5 не делится.

Например, числа 1 5 , 3 0 , 176 5 , 47530 0 делятся без остатка на 5, а числа 1 7 , 37 8 , 9 1 не делятся.

Признак делимости на 9

Если сумма цифр числа делится на 9, то и число делится на 9; если сумма цифр числа не делится на 9, то и число не делится на 9.

Например, выясним, делится ли на 9 число 5402070. Для этого подсчитаем сумму цифр этого числа: 5+4+0+2+0+7+0 = 16 - не делится на 9. Значит, число 5402070 не делится на 9.

Признак делимости на 10

Если запись натурального числа оканчивается цифрой 0, то это число делится без остатка на 10. Если запись натурального числа оканчивается другой цифрой, то оно не делится без остатка на 10.

Например, числа 4 0 , 17 0 , 1409 0 делятся без остатка на 10, а числа 1 7 , 9 3 , 1430 7 - не делятся.

Правило нахождения наибольшего общего делителя (НОД).

Чтобы найти наибольший общий делитель нескольких натуральных чисел, надо:

2) из множителей, входящих в разложение одного из этих чисел, вычеркнуть те, которые не входят в разложение других чисел;

3) найти произведение оставшихся множителей.

Пример. Найдем НОД (48;36). Воспользуемся правилом.

1. Разложим числа 48 и 36 на простые множители.

48 = 2 · 2 · 2 · 2 · 3

36 = 2 · 2 · 3 · 3

2. Из множителей, входящих в разложение числа 48 вычеркнем те, которые не входят в разложение числа 36.

48 = 2 · 2 · 2 · 2 · 3

Остаются множители 2, 2 и 3.

3. Перемножим оставшиеся множители и получим 12. Это число и является наибольшим общим делителем чисел 48 и 36.

НОД (48;36) = 2 · 2 · 3 = 12.

Правило нахождения наименьшего общего кратного (НОК).

Чтобы найти наименьшее общее кратное нескольких натуральных чисел, надо:

1) разложить их на простые множители;

2) выписать множители, входящие в разложение одного из чисел;

3) добавить к ним недостающие множители из разложений остальных чисел;

4) найти произведение получившихся множителей.

Пример. Найдем НОК (75;60). Воспользуемся правилом.

1. Разложим числа 75 и 60 на простые множители.

75 = 3 · 5 · 5

60 = 2 · 2 · 3 · 3

2. Выпишем множители, входящие в разложение числа 75: 3, 5, 5.

НОК (75;60) = 3 · 5 · 5 · …

3. Добавим к ним недостающие множители из разложения числа 60, т.е. 2, 2.

НОК (75;60) = 3 · 5 · 5 · 2 · 2

4. Найдем произведение получившихся множителей

НОК (75;60) = 3 · 5 · 5 · 2 · 2 = 300.

Наименьшее общее кратное двух чисел непосредственно связано с наибольшим общим делителем этих чисел. Эта связь между НОД и НОК определяется следующей теоремой.

Теорема.

Наименьшее общее кратное двух положительных целых чисел a и b равно произведению чисел a и b , деленному на наибольший общий делитель чисел a и b , то есть, НОК(a, b)=a·b:НОД(a, b) .

Доказательство.

Пусть М – какое-нибудь кратное чисел a и b . То есть, М делится на a , и по определению делимости существует некоторое целое число k такое, что справедливо равенство M=a·k . Но М делится и на b , тогда a·k делится на b .

Обозначим НОД(a, b) как d . Тогда можно записать равенства a=a 1 ·d и b=b 1 ·d , причем a 1 =a:d и b 1 =b:d будут взаимно простыми числами . Следовательно, полученное в предыдущем абзаце условие, что a·k делится на b , можно переформулировать так: a 1 ·d·k делится на b 1 ·d , а это в силу свойств делимости эквивалентно условию, что a 1 ·k делится на b 1 .

Также нужно записать два важных следствия из рассмотренной теоремы.

    Общие кратные двух чисел совпадают с кратными их наименьшего общего кратного.

    Это действительно так, так как любое общее кратное M чисел a и b определяется равенством M=НОК(a, b)·t при некотором целом значении t .

    Наименьшее общее кратное взаимно простых положительных чисел a и b равно их произведению.

    Обоснование этого факта достаточно очевидно. Так как a и b взаимно простые, то НОД(a, b)=1 , следовательно, НОК(a, b)=a·b:НОД(a, b)=a·b:1=a·b .

Наименьшее общее кратное трех и большего количества чисел

Нахождение наименьшего общего кратного трех и большего количества чисел можно свести к последовательному нахождению НОК двух чисел. Как это делается, указано в следующей теореме.a 1 , a 2 , …, a k совпадают с общими кратными чисел m k-1 и a k , следовательно, совпадают с кратными числа m k . А так как наименьшим положительным кратным числа m k является само число m k , то наименьшим общим кратным чисел a 1 , a 2 , …, a k является m k .

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Виноградов И.М. Основы теории чисел.
  • Михелович Ш.Х. Теория чисел.
  • Куликов Л.Я. и др. Сборник задач по алгебре и теории чисел: Учебное пособие для студентов физ.-мат. специальностей педагогических институтов.

Математические выражения и задачи требуют множества дополнительных знаний. НОК - это одно из основных, особенно часто применяемое в Тема изучается в средней школе, при этом не является особо сложным в понимании материалом, человеку знакомому со степенями и таблицей умножения не составит труда выделить необходимые числа и обнаружить результат.

Определение

Общее кратное - число, способное нацело разделиться на два числа одновременно (а и b). Чаще всего, это число получают методом перемножения исходных чисел a и b. Число обязано делиться сразу на оба числа, без отклонений.

НОК - это принятое для обозначения краткое название, собранной из первых букв.

Способы получения числа

Для нахождения НОК не всегда подходит способ перемножения чисел, он гораздо лучше подходит для простых однозначных или двухзначных чисел. принято разделять на множители, чем больше число, тем больше множителей будет.

Пример № 1

Для простейшего примера в школах обычно берутся простые, однозначные или двухзначные числа. Например, необходимо решить следующее задание, найти наименьшее общее кратное от чисел 7 и 3, решение достаточно простое, просто их перемножить. В итоге имеется число 21, меньшего числа просто нет.

Пример № 2

Второй вариант задания гораздо сложнее. Даны числа 300 и 1260, нахождение НОК - обязательно. Для решения задания предполагаются следующие действия:

Разложение первого и второго чисел на простейшие множители. 300 = 2 2 * 3 * 5 2 ; 1260 = 2 2 * 3 2 *5 *7. Первый этап завершен.

Второй этап предполагает работу с уже полученными данными. Каждое из полученных чисел обязано участвовать в вычислении итогового результата. Для каждого множителя из состава исходных чисел берется самое большое число вхождений. НОК - это общее число, поэтому множители из чисел должны в нем повторятся все до единого, даже те, которые присутствуют в одном экземпляре. Оба изначальных числа имеют в своем составе числа 2, 3 и 5, в разных степенях, 7 есть только в одном случае.

Для вычисления итогового результата необходимо взять каждое число в наибольшей их представленных степеней, в уравнение. Остается только перемножить и получить ответ, при правильном заполнении задача укладывается в два действия без пояснений:

1) 300 = 2 2 * 3 * 5 2 ; 1260 = 2 2 * 3 2 *5 *7.

2) НОК = 6300.

Вот и вся задача, если попробовать вычислить нужное число посредством перемножения, то ответ однозначно не будет верным, так как 300 * 1260 = 378 000.

Проверка:

6300 / 300 = 21 - верно;

6300 / 1260 = 5 - верно.

Правильность полученного результата определяется посредством проверки - деления НОК на оба исходных числа, если число целое в обоих случаях, то ответ верен.

Что значит НОК в математике

Как известно, в математике нет ни одной бесполезной функции, эта - не исключение. Самым распространенным предназначением этого числа является приведение дробей к общему знаменателю. Что изучают обычно в 5-6 классах средней школы. Также дополнительно является общим делителем для всех кратных чисел, если такие условия стоят в задаче. Подобное выражение может найти кратное не только к двум числам, но и к гораздо большему количестве - трем, пяти и так далее. Чем больше чисел - тем больше действий в задаче, но сложность от этого не увеличивается.

Например, даны числа 250, 600 и 1500, необходимо найти их общее НОК:

1) 250 = 25 * 10 = 5 2 *5 * 2 = 5 3 * 2 - на этом примере детально описано разложение на множители, без сокращения.

2) 600 = 60 * 10 = 3 * 2 3 *5 2 ;

3) 1500 = 15 * 100 = 33 * 5 3 *2 2 ;

Для того чтобы составить выражение, требуется упомянуть все множители, в этом случае даны 2, 5, 3, - для всех этих чисел требуется определить максимальную степень.

Внимание: все множители необходимо доводить до полного упрощения, по возможности, раскладывая до уровня однозначных.

Проверка:

1) 3000 / 250 = 12 - верно;

2) 3000 / 600 = 5 - верно;

3) 3000 / 1500 = 2 - верно.

Данный метод не требует каких-либо ухищрений или способностей уровня гения, все просто и понятно.

Еще один способ

В математике многое связано, многое можно решить двумя и более способами, то же самое касается поиска наименьшего общего кратного, НОК. Следующий способ можно использовать в случае с простыми двузначными и однозначными числами. Составляется таблица, в которую вносятся по вертикали множимое, по горизонтали множитель, а в пересекающихся клетках столбца указывается произведение. Можно отразить таблицу посредством строчки, берется число и в ряд записываются результаты умножения этого числа на целые числа, от 1 до бесконечности, иногда хватает и 3-5 пунктов, второе и последующие числа подвергаются тому же вычислительному процессу. Все происходит вплоть до того, как найдется общее кратное.

Даны числа 30, 35, 42 необходимо найти НОК, связывающий все числа:

1) Кратные 30: 60, 90, 120, 150, 180, 210, 250 и т. д.

2) Кратные 35: 70, 105, 140, 175, 210, 245 и т. д.

3) Кратные 42: 84, 126, 168, 210, 252 и т. д.

Заметно, что все числа достаточно разные, единственное общее среди них число 210, вот оно и будет НОК. Среди связанных с этим вычислением процессов есть также наибольший общий делитель, вычисляющийся по похожим принципам и часто встречающийся в соседствующих задачах. Различие невелико, но достаточно значимо, НОК предполагает вычисление числа, которое делится на все данные исходные значения, а НОД предполагает под собой вычисление наибольшего значение на которое делятся исходные числа.

Ланцинова Айса

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Задачи на НОД и НОК чисел Работа ученицы 6 класса МКОУ «Камышовская ООШ» Ланциновой Айсы Руководитель Горяева Зоя Эрднигоряевна, учитель математики с. Камышово, 2013г

Пример нахождения НОД чисел 50, 75 и 325. 1) Разложим числа 50, 75 и 325 на простые множители. 50= 2 ∙ 5 ∙ 5 75= 3 ∙ 5 ∙ 5 325= 5 ∙ 5 ∙ 13 2) Из множителей входящих в разложение одного из этих чисел, вычеркнем те, которые не входят в разложение других. 50= 2 ∙ 5 ∙ 5 75= 3 ∙ 5 ∙ 5 325= 5 ∙ 5 ∙13 3) Найдём произведение оставшихся множителей 5 ∙ 5 = 25 Ответ: НОД (50, 75 и 325)= 25 Наибольшее натуральное число, на которое делятся без остатка числа a и b называют наибольшим общим делителем этих чисел.

Пример нахождения НОК чисел 72, 99 и 117. 1) Разложим на простые множители числа 72, 99 и 117. 72 = 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 99 = 3 ∙ 3 ∙ 11 117 = 3 ∙ 3 ∙13 2) Выписать множители, входящих в разложение одного из чисел 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 и добавить к ним недостающие множители остальных чисел. 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 ∙ 11 ∙ 13 3)Найдите произведение получившихся множителей. 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 ∙ 11 ∙ 13= 10296 Ответ: НОК (72, 99 и 117) = 10296 Наименьшим общим кратным натуральных чисел a и b называют наименьшее натуральное число, которое кратно a и b .

Лист картона имеет форму прямоугольника, длина которого 48 см., а ширина 40 см. Этот лист надо разрезать без отходов на равные квадраты. Какие наибольшие квадраты можно получить из этого листа и сколько? Решение: 1) S = a ∙ b – площадь прямоугольника. S= 48 ∙ 40 = 1960 см ² . – площадь картона. 2) a – сторона квадрата 48: a – число квадратов, которое можно уложить по длине картона. 40: а – число квадратов, которое можно уложить по ширине картона. 3) НОД (40 и 48) = 8(см) – сторона квадрата. 4) S = a² – площадь одного квадрата. S = 8² = 64 (см ² .) – площадь одного квадрата. 5) 1960: 64 = 30 (количество квадратов). Ответ: 30 квадратов со стороной 8 см каждый. Задачи на НОД

Камин в комнате необходимо выложить отделочной плиткой в форме квадрата. Сколько плиток понадобится для камина размером 195 ͯ 156 см и каковы наибольшие размеры плитки? Решение: 1) S = 196 ͯ 156 = 30420 (см ²) – S поверхности камина. 2) НОД (195 и 156) = 39 (см) – сторона плитки. 3) S = a² = 39² = 1521 (см ²) – площадь 1 плитки. 4) 30420: = 20 (штук). Ответ: 20 плиток размером 39 ͯ 39 (см). Задачи на НОД

Садовый участок размером 54 ͯ 48 м по периметру необходимо оградить забором, для этого через равные промежутки надо поставить бетонные столбы. Сколько столбов необходимо привезти для участка, и на каком максимальном расстоянии друг от друга будут стоять столбы? Решение: 1) P = 2(a + b) – периметр участка. P = 2(54 + 48) = 204 м. 2) НОД (54 и 48) = 6 (м) – расстояние между столбами. 3) 204: 6 = 34 (столба). Ответ: 34 столба, на расстоянии 6 м. Задачи на НОД

Из 210 бордовых, 126 белых, 294 красных роз собрали букеты, причём в каждом букете количество роз одного цвета поровну. Какое наибольшее количество букетов сделали из этих роз и сколько роз каждого цвета в одном букете? Решение: 1) НОД (210, 126 и 294) = 42 (букета). 2) 210: 42 = 5 (бордовых роз). 3) 126: 42 = 3 (белых роз). 4) 294: 42 = 7 (красных роз). Ответ: 42 букета: 5 бордовых, 3 белых, 7 красных роз в каждом букете. Задачи на НОД

Таня и Маша купили одинаковое число почтовых наборов. Таня заплатила 90 руб., а Маша на 5 руб. больше. Сколько стоит один набор? Сколько наборов купила каждая? Решение: 1) 90 + 5 = 95 (руб.) заплатила Маша. 2) НОД (90 и 95) = 5 (руб.) – цена 1 набора. 3) 980: 5 = 18 (наборов) – купила Таня. 4) 95: 5 = 19 (наборов) – купила Маша. Ответ: 5 рублей, 18 наборов, 19 наборов. Задачи на НОД

В портовом городе начинаются три туристских теплоходных рейса, первый из которых длится 15 суток, второй – 20 и третий – 12 суток. Вернувшись в порт, теплоходы в этот же день снова отправляются в рейс. Сегодня из порта вышли теплоходы по всем трём маршрутам. Через сколько суток они впервые снова вместе уйдут в плавание? Какое количество рейсов сделает каждый теплоход? Решение: 1) НОК (15,20 и 12) = 60 (суток) – время встречи. 2) 60: 15 = 4 (рейса) – 1 теплоход. 3) 60: 20 = 3 (рейса) – 2 теплоход. 4) 60: 12 = 5 (рейсов) – 3 теплоход. Ответ: 60 суток, 4 рейса, 3 рейса, 5 рейсов. Задачи на НОК

Маша для Медведя купила в магазине яйца. По дороге в лес она сообразила, что число яиц делится на 2,3,5,10 и 15. Сколько яиц купила Маша? Решение: НОК (2;3;5;10;15) = 30 (яиц) Ответ: Маша купила 30 яиц. Задачи на НОК

Требуется изготовить ящик с квадратным дном для укладки коробок размером 16 ͯ 20 см. Какова должна быть наименьшая длина стороны квадратного дна, чтобы уместить коробки в ящик вплотную? Решение: 1) НОК (16 и 20) = 80 (коробок). 2) S = a ∙ b – площадь 1 коробки. S = 16 ∙ 20 = 320 (см ²) – площадь дна 1 коробки. 3) 320 ∙ 80 = 25600 (см ²) – площадь квадратного дна. 4) S = а² = а ∙ а 25600 = 160 ∙ 160 – размеры ящика. Ответ: 160 см- сторона квадратного дна. Задачи на НОК

Вдоль дороги от пункта К стоят столбы электролинии через каждые 45 м. Эти столбы решили заменить другими, поставив их на расстоянии 60 м друг от друга. Сколько столбов было и сколько будут стоять? Решение: 1) НОК (45 и 60) = 180. 2) 180: 45 = 4 –было столбов. 3) 180: 60 = 3 – стало столбов. Ответ: 4 столба, 3 столба. Задачи на НОК

Сколько солдат маршируют на плацу, если они будут маршировать строем по 12 человек в шеренге и перестраиваться в колонну по 18 человек в шеренге? Решение: 1)НОК (12 и 18) = 36 (человек) – маршируют. Ответ: 36 человек. Задачи на НОК

Приступим к изучению наименьшего общего кратного двух и более чисел. В разделе мы дадим определение термина, рассмотрим теорему, которая устанавливает связь между наименьшим общим кратным и наибольшим общим делителем, приведем примеры решения задач.

Общие кратные – определение, примеры

В данной теме нас будет интересовать только общие кратные целых чисел, отличных от нуля.

Определение 1

Общее кратное целых чисел – это такое целое число, которое кратно всем данным числам. Фактически, это любое целое число, которое можно разделить на любое из данных чисел.

Определение общих кратных чисел относится к двум, трем и большему количеству целых чисел.

Пример 1

Согласно данному выше определению для числа 12 общими кратными числами будут 3 и 2 . Также число 12 будет общим кратным для чисел 2 , 3 и 4 . Числа 12 и - 12 являются общими кратными числами для чисел ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 12 .

В то же время общим кратным числом для чисел 2 и 3 будут числа 12 , 6 , − 24 , 72 , 468 , − 100 010 004 и целый ряд любых других.

Если мы возьмем числа, которые делятся на первое число из пары и не делятся на второе, то такие числа не будут общими кратными. Так, для чисел 2 и 3 числа 16 , − 27 , 5 009 , 27 001 не будут общими кратными.

0 является общим кратным для любого множества целых чисел, отличных от нуля.

Если вспомнить свойство делимости относительно противоположных чисел, то получается, что некоторое целое число k будет общим кратным данных чисел точно также, как и число – k . Это значит, что общие делители могут быть как положительными, так и отрицательными.

Для всех ли чисел можно найти НОК?

Общее кратное можно найти для любых целых чисел.

Пример 2

Предположим, что нам даны k целых чисел a 1 , a 2 , … , a k . Число, которое мы получим в ходе умножения чисел a 1 · a 2 · … · a k согласно свойству делимости будет делиться на каждый из множителей, который входил в изначальное произведение. Это значит, что произведение чисел a 1 , a 2 , … , a k является наименьшим общим кратным для этих чисел.

Сколько всего общих кратных могут иметь данные целые числа?

Группа целых чисел может иметь большое количество общих кратных. Фактически, их число бесконечно.

Пример 3

Предположим, что у нас есть некоторое число k . Тогда произведение чисел k · z , где z – это целое число, будет являться общим кратным чисел k и z . С учетом того, что количество чисел бесконечно, то и количество общих кратных бесконечно.

Наименьшее общее кратное (НОК) – определение, обозначение и примеры

Вспомним понятие наименьшего числа из данного множества чисел, которое мы рассматривали в разделе «Сравнение целых чисел». С учетом этого понятия сформулируем определение наименьшего общего кратного, которое имеет среди всех общих кратных наибольшее практическое значение.

Определение 2

Наименьшее общее кратное данных целых чисел – это наименьшее положительное общее кратное этих чисел.

Наименьшее общее кратное существует для любого количества данных чисел. Наиболее употребимой для обозначения понятия в справочной литературе является аббревиатура НОК. Краткая запись наименьшего общего кратного для чисел a 1 , a 2 , … , a k будет иметь вид НОК (a 1 , a 2 , … , a k) .

Пример 4

Наименьшее общее кратное чисел 6 и 7 – это 42 . Т.е. НОК (6 , 7) = 42 . Наименьшее общее кратное четырех чисел - 2 , 12 , 15 и 3 будет равно 60 . Краткая запись будет иметь вид НОК (- 2 , 12 , 15 , 3) = 60 .

Не для всех групп данных чисел наименьшее общее кратное очевидно. Часто его приходится вычислять.

Связь между НОК и НОД

Наименьшее общее кратное и наибольший общий делитель связаны между собой. Взаимосвязь между понятиями устанавливает теорема.

Теорема 1

Наименьшее общее кратное двух положительных целых чисел a и b равно произведению чисел a и b , деленному на наибольший общий делитель чисел a и b , то есть, НОК (a , b) = a · b: НОД (a , b) .

Доказательство 1

Предположим, что мы имеем некоторое число M , которое кратно числам a и b . Если число M делится на a , также существует некоторое целое число z , при котором справедливо равенство M = a · k . Согласно определению делимости, если M делится и на b , то тогда a · k делится на b .

Если мы введем новое обозначение для НОД (a , b) как d , то сможем использовать равенства a = a 1 · d и b = b 1 · d . При этом оба равенства будут взаимно простыми числами.

Мы уже установили выше, что a · k делится на b . Теперь это условие можно записать следующим образом:
a 1 · d · k делится на b 1 · d , что эквивалентно условию a 1 · k делится на b 1 согласно свойствам делимости.

Согласно свойству взаимно простых чисел, если a 1 и b 1 – взаимно простые числа, a 1 не делится на b 1 при том, что a 1 · k делится на b 1 , то b 1 должно делиться k .

В этом случае уместно будет предположить, что существует число t , для которого k = b 1 · t , а так как b 1 = b: d , то k = b: d · t .

Теперь вместо k подставим в равенство M = a · k выражение вида b: d · t . Это позволяет нам прийти к равенству M = a · b: d · t . При t = 1 мы можем получить наименьшее положительное общее кратное чисел a и b , равное a · b: d , при условии, что числа a и b положительные.

Так мы доказали, что НОК (a , b) = a · b: НОД (a , b) .

Установление связи между НОК и НОД позволяет находить наименьшее общее кратное через наибольший общий делитель двух и более данных чисел.

Определение 3

Теорема имеет два важных следствия:

  • кратные наименьшего общего кратного двух чисел совпадает с общими кратными этих двух чисел;
  • наименьшее общее кратное взаимно простых положительных чисел a и b равно их произведению.

Обосновать эти два факта не составляет труда. Любое общее кратное M чисел a и b определяется равенством M = НОК (a , b) · t при некотором целом значении t . Так как a и b взаимно простые, то НОД (a , b) = 1 , следовательно, НОК (a , b) = a · b: НОД (a , b) = a · b: 1 = a · b .

Наименьшее общее кратное трех и большего количества чисел

Для того, чтобы найти наименьшее общее кратное нескольких чисел, необходимо последовательно найти НОК двух чисел.

Теорема 2

Предположим, что a 1 , a 2 , … , a k – это некоторые целые положительные числа. Для того, чтобы вычислить НОК m k этих чисел, нам необходимо последовательно вычислить m 2 = НОК (a 1 , a 2) , m 3 = НОК (m 2 , a 3) , … , m k = НОК (m k - 1 , a k) .

Доказательство 2

Доказать верность второй теоремы нам поможет первое следствие из первой теоремы, рассмотренной в данной теме. Рассуждения строятся по следующему алгоритму:

  • общие кратные чисел a 1 и a 2 совпадают с кратными их НОК, фактически, они совпадают с кратными числа m 2 ;
  • общие кратные чисел a 1 , a 2 и a 3 m 2 и a 3 m 3 ;
  • общие кратные чисел a 1 , a 2 , … , a k совпадают с общими кратными чисел m k - 1 и a k , следовательно, совпадают с кратными числа m k ;
  • в связи с тем, что наименьшим положительным кратным числа m k является само число m k , то наименьшим общим кратным чисел a 1 , a 2 , … , a k является m k .

Так мы доказали теорему.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter