Методы титриметрического анализа подразделяют по варианту титрования и по тем химическим реакциям, которые выбраны для определения вещества (компонента). В современной химии выделяют количественный и

Виды классификации

Методы титриметрического анализа подбирают к конкретной химической реакции. В зависимости от типа взаимодействия, существует подразделение титриметрического определения на отдельные виды.

Методы анализа:

  • Окислительно-восстановительное титрование; метод базируется на изменении степени окисления у элементов в веществе.
  • Комплексообразование представляет собой сложную химическую реакцию.
  • Кислотно-основное титрование предполагает полную нейтрализацию взаимодействующих веществ.

Нейтрализация

Кислотно-основное титрование позволяет определять количество неорганических кислот (алкалиметрия), а также вычислять основания (ацидиметрия) в искомом растворе. По данной методике определяют вещества, реагирующие с солями. При использовании органических растворителей (ацетона, спирта) стало возможным определение большего количества веществ.

Комплексообразование

В чем сущность метода титриметрического анализа? Предполагается определение веществ путем осаждения искомого иона в качестве малорастворимого соединения либо его связывание в малодиссоциированный комплекс.

Редоксиметрия

Окислительно-восстановительное титрование основывается на реакциях восстановления и окисления. В зависимости от используемого титрованного раствора реагента в аналитической химии выделяют:

  • перманганатометрию, которая базируется на использовании перманганата калия;
  • йодометрию, которая основывается на окислении йодом, а также восстановлении иодид-ионами;
  • бихроматометрию, в которой используют окисление бихроматом калия;
  • броматометрию, основанную на окислении броматом калия.

Окислительно-восстановительные методы титриметрического анализа включают в себя и такие процессы, как цериметрия, титанометрия, ванадометрия. Они предполагают окисление либо восстановление ионов соответствующего металла.

По способу титрования

Существует классификация методов титриметрического анализа в зависимости от способа титрования. При прямом варианте титруют определяемый ион выбранным раствором реагента. Процесс титрования в методе замещения основан на определении точки эквивалентности при наличии неустойчивых химических соединений. Титрование по остатку (обратный метод) используют в том случае, когда трудно подобрать индикатор, а также при медленном протекании химического взаимодействия. К примеру, при определении карбоната кальция навеска вещества обрабатывается избыточным количеством титрованного

Значение анализа

Все методы титриметрического анализа предполагают:

  • точное определение объема одного либо каждого из реагирующих химических веществ;
  • присутствие титрованного раствора, благодаря которому выполняется процедура титрования;
  • выявление результатов анализа.

Титрование растворов является основой аналитической химии, поэтому важно рассмотреть основные операции, выполняемые при проведении эксперимента. Данный раздел тесно связан с повседневной практикой. Не имея представлений о наличии в сырье либо продукте главных компонентов и примесей, трудно планировать технологическую цепочку в фармацевтической, химической, металлургической промышленности. Основы аналитической химии применяются для решения сложных экономических вопросов.

Методы исследования в аналитической химии

Данная отрасль химии представляет собой науку об определении компонента либо вещества. Основы титриметрического анализа - методы, используемые для проведения эксперимента. С их помощью исследователь делает вывод о составе вещества, количественном содержании в нем отдельных частей. Также можно в ходе аналитического анализа выявить степень окисления, в которой находится составная часть изучаемого вещества. При классификации химии учитывают, какое именно действие предполагается выполнять. Для измерения массы получаемого осадка используется гравиметрический метод исследования. При анализе интенсивности раствора необходим фотометрический анализ. По величине ЭДС путем потенциометрии определяют составные компоненты исследуемого препарата. Кривые титрования наглядно демонстрируют проводимый эксперимент.

Подразделение аналитических методов

В случае необходимости в аналитической химии используют физико-химические, классические (химические), а также физические методики. Под химическими методами принято понимать титриметрический и гравиметрический анализ. Обе методики являются классическими, отработанными, широко используются в аналитической химии. предполагает определение массы искомого вещества либо его составных компонентов, которые выделяют в чистом состоянии, а также в виде нерастворимых соединений. Объемный (титриметрический) способ анализа основан на определении объема реактива, израсходованного на химическую реакцию, взятого в известной концентрации. Существует подразделение химических и физических методов на отдельные группы:

  • оптические (спектральные);
  • электрохимические;
  • радиометрические;
  • хроматографические;
  • масс спектрометрические.

Специфика титриметрического исследования

Данный раздел аналитической химии предполагает измерение количества реагента, который требуется для проведения полной химической реакции с известным количеством искомого вещества. Суть методики состоит в том, что к раствору исследуемого вещества прибавляют по каплям реактив с известной концентрацией. Добавление его продолжается до тех пор, пока количество его не будет эквивалентно количеству определяемого вещества, реагирующего с ним. Данный метод позволяет проводить с высокой скоростью количественные вычисления в аналитической химии.

В качестве основоположника методики рассматривают французского ученого Гей-Люсака. Вещество либо элемент, определяемое в данном образце, именуют определяемым веществом. В числе их могут быть ионы, атомы, функциональные группы, связанные свободные радикалы. Реагентами называют газообразные, жидкие, которые вступают в реакцию с определенным химическим веществом. Процесс титрования заключается в подливании одного раствора к другому при постоянном смешивании. Обязательным условием для успешного осуществления процесса титрования является применение раствора с установленной концентрацией (титранта). Для проведения расчетов используют то есть количество грамм-эквивалентов вещества, которое содержится в 1 литре раствора. Кривые титрования строят после проведения расчетов.

Химические соединения или элементы взаимодействуют между собой в четко определенных весовых количествах, соответствующих их грамм-эквивалентам.

Варианты приготовления титрованного раствора по навеске исходного вещества

В качестве первого способа приготовления раствора с заданной концентрацией (определенным титром) можно рассмотреть растворение навески точной массы в воде либо ином растворителе, а также разбавление приготовленного раствора до необходимого объема. Титр полученного реактива можно установить по известной массе чистого соединения и по объему готового раствора. Такую методику используют для приготовления титрованных растворов тех химических веществ, получить которые можно в чистом виде, состав которых не меняется при продолжительном хранении. Для взвешивания используемых веществ применяют бюксы с закрытыми крышками. Такой способ приготовления растворов не подходит для веществ, обладающих повышенной гигроскопичностью, а также для соединений, которые вступают в химическое взаимодействие с оксидом углерода (4).

Вторая технология приготовления титрованных растворов применяется на специализированных химических предприятиях, в специальных лабораториях. Она базируется на использовании отвешенных в точных количествах твердых чистых соединениях, а также на применении растворов с определенной нормальностью. Помещают вещества в стеклянные ампулы, затем их запаивают. Те вещества, которые находятся внутри стеклянных ампул, именуют фиксаналами. При непосредственном проведении эксперимента ампула с реактивом разбивается над воронкой, которая имеет пробивное устройство. Далее весь компонент переносится в мерную колбу, затем путем добавления воды получают необходимый объем рабочего раствора.

Для титрования также используется определенный алгоритм действий. Бюретка наполняется готовым рабочим раствором до нулевой отметки так, чтобы в нижней ее части не оказалось пузырьков воздуха. Далее отмеряют пипеткой анализируемый раствор, затем его помещают в коническую колбу. Добавляют в нее и несколько капель индикатора. Постепенно к готовому раствору по каплям добавляют из бюретки рабочий раствор, следят за изменением окраски. При появлении устойчивого цвета, который не исчезает через 5-10 секунд, судят о завершении процесса титрования. Далее приступают к расчетам, вычислению объема израсходованного раствора с заданной концентрацией, делают выводы по проведенному эксперименту.

Заключение

Титриметрический анализ позволяет определять количественный и качественный состав анализируемого вещества. Данный метод аналитической химии необходим для различных отраслей промышленности, его используют в медицине, фармацевтике. При выборе рабочего раствора обязательно учитывают его химические свойства, а также способность образовывать с изучаемым веществом нерастворимые соединения.

Лабораторная работа № 8

ТИТРИМЕТРИЧЕСКИЙ АНАЛИЗ

Цель работы: ознакомиться с основами титриметрического анализа, изучить основные методы и приёмы титрования.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1. Сущность титриметрического анализа . Основные понятия.

Титриметрический (объёмный) анализ является одним из важнейших видов количественного анализа. Его основными достоинствами являются точность, быстрота исполнения и возможность применения для определения самых разнообразных веществ. Определение содержания вещества в титриметрическом анализе осуществляется в результате проведения реакции точно известного количества одного вещества с неизвестным количеством другого, с последующим расчётом количества определяемого вещества по уравнению реакции. Реакция, которая при этом протекает должна быть стехиометрической, т. е. вещества должны реагировать строго количественно, согласно коэффициентам в уравнении. Только при соблюдении этого условия реакция может быть использована для количественного анализа.

Основной операцией титриметрического анализа является титрование – постепенное смешивание веществ до полного окончания реакции. Обычно в титриметрическом анализе используются растворы веществ. В ходе титрования раствор одного вещества постепенно приливается к раствору другого вещества до тех пор, пока вещества полностью не прореагируют. Раствор, который приливают, называется титрантом , раствор, к которому приливается титрант, называется титруемым раствором. Объём титруемого раствора, который подвергается титрованию, называется аликвотной частью или аликвотным объёмом.


Точкой эквивалентности называется момент, наступающий в ходе титрования, когда реагирующие вещества полностью прореагировали. В этот момент они находятся в эквивалентных количествах, т. е. достаточных для полного, без остатка, протекания реакции.

Для титрования применяются растворы с точно известной концентрацией, которые называются стандартными или титрованными . Различают несколько типов стандартных растворов.

Первичным стандартом называется раствор с точно известной концентрацией, приготовленный по точной навеске вещества. Вещество для приготовления первичного стандарта должно иметь определённый состав и быть определённой степени чистоты. Содержание в нём примесей не должно превышать установленных норм. Зачастую для приготовления стандартных растворов вещество подвергается дополнительной очистке. Перед взвешиванием вещество высушивается в эксикаторе над осушающим веществом или выдерживается при повышенной температуре. Навеску взвешивают на аналитических весах и растворяют в определённом объёме растворителя. Полученный стандартный раствор не должен изменять своих свойств при хранении. Стандартные растворы хранят в плотно закрытой посуде. При необходимости их предохраняют от попадания прямых солнечных лучей и воздействия высокой температуры. Стандартные растворы многих веществ (HCl, H2SO4, Na2B4O7 и др.) могут храниться годами без изменения концентрации.

Ввиду того, что подготовка вещества для приготовления стандартного раствора является длительным и трудоёмким процессом, химической промышленностью выпускаются т. наз. фиксаналы . Фиксанал представляет собой стеклянную ампулу, в которой запаяна определённая навеска вещества. Ампулу разбивают, и вещество количественно переносят в мерную колбу, доводя затем объём жидкости до метки. Применение фиксаналов значительно облегчает процесс и сокращает время приготовления стандартного раствора.

Некоторые вещества трудно получить в химически чистом виде (например, KMnO4). Из-за содержания примесей взять точную навеску вещества часто бывает невозможно. Кроме этого, растворы многих веществ при хранении изменяют свои свойства. Например, растворы щелочей способны поглощать углекислый газ из воздуха, в результате чего их концентрация со временем меняется. В этих случаях используют вторичные стандарты.

Вторичным стандартом называется раствор вещества с точно известной концентрацией, которая устанавливается по первичному стандарту. Вторичные стандарты (например, растворы KMnO4, NaOH и т. д.) хранятся при тех же условиях, что и первичные стандарты, но их концентрацию периодически проверяют по стандартным растворам так называемых установочных веществ.

2. Способы и виды титрования.

В процессе титрования аликвотная часть раствора отбирается обычно в колбу, затем к ней из бюретки малыми порциями приливается раствор титранта, до достижения точки эквивалентности. В точке эквивалентности измеряется объём титранта, израсходовавшийся на титрование раствора. Титрование может осуществляться несколькими способами.

Прямое титрование заключается в том, что раствор определяемого вещества А титруют стандартным раствором титранта В . Способом прямого титрования титруют растворы кислот, оснований, карбонатов и т. д.

При реверсивном титровании аликвотную часть стандартного раствора В титруют раствором определяемого вещества А . Реверсивное титрование применяется в том случае, если определяемое вещество неустойчиво при тех условиях, в которых производится титрование. Например, окисление нитритов перманганатом калия происходит в кислой среде.


NO2- + MnO2- + 6H+ ® NO3- + Mn2+ + 3H2O

Но сами нитриты в кислой среде неустойчивы.

2NaNO2 + H2SO4 ® Na2SO4 + 2HNO2

Поэтому стандартный раствор перманганата, подкисленный серной кислотой, титруют раствором нитрита, концентрацию которого хотят определить.

Обратное титрование применяют в тех случаях, когда прямое титрование не применимо: например, из-за очень низкого содержания определяемого вещества, невозможности определить точку эквивалентности, при медленном протекании реакции и т. д. В ходе обратного титрования к аликвотной части определяемого вещества А приливают точно измеренный объём стандартного раствора вещества В , взятый в избытке. Непрореагировавший избыток вещества В определяют титрованием стандартным раствором вспомогательного вещества С . По разности исходного количества вещества В и его количества, оставшегося после протекания реакции, определяют количество вещества В , вступившее в реакцию с веществом А , исходя из которого и рассчитывают содержание вещества А .

Косвенное титрование или титрование по заместителю. Основано на том, что титруют не само определяемое вещество, а продукт его реакции со вспомогательным веществом С .

Вещество D должно образовываться строго количественно по отношению к веществу А . Определив cодержание продукта реакции D титрованием стандартным раствором вещества В, по уравнению реакции рассчитывают содержание определяемого вещества А .

Реакции, которые используются в титриметрическом анализе, должны быть строго стехиометрическими, протекать достаточно быстро и по возможности при комнатной температуре. В зависимости от типа протекающей реакции различают:

Кислотно-основное титрование, в основе которого лежит реакция нейтрализации.

Окислительно-восстановительное титрование, основанное на окисчлительно-восстановительных реакциях.

Комплексонометрическое титрование, основанное на реакциях комплексообразования.

3. Кислотно-основное титрование.

В основе кислотно-основного титрования лежит реакция нейтрализации между кислотой и основанием. В результате реакции нейтрализации образуется соль и вода.

HAn + KtOH ® KtAn + H2O

Реакция нейтрализации протекает при комнатной температуре практически мгновенно. Кислотно-основное титрование применяется для определения кислот, оснований, а также многих солей слабых кислот: карбонатов, боратов, сульфитов, и т. д. При помощи данного метода можно титровать смеси различных кислот или оснований, определяя содержание каждого компонента в отдельности.

При титровании кислоты основанием или наоборот, происходит постепенное изменение кислотности среды, которое выражается водородным показателем рН. Вода представляет собой слабый электролит, который диссоциирует согласно уравнению.

Н2О ® Н+ + ОН-

Произведение концентрации ионов водорода на концентрацию ионов гидроксила есть величина постоянная, и называется ионное произведение воды.

https://pandia.ru/text/78/441/images/image002_110.gif" width="165" height="25 src="> (1)

В нейтральной среде концентрации водородных ионов и гидроксид-ионов равны и составляют 10-7м/л. Ионное произведение воды остаётся постоянным при добавлении в воду кислоты или основания. При добавлении кислоты увеличивается концентрация ионов водорода, что приводит к сдвигу равновесия диссоциации воды влево, в результате чего концентрация гидроксид-ионов уменьшается. Например, если = 10-3м./л., то = 10-11м./л. Ионное произведение воды останется постоянным.

Если увеличить концентрацию щёлочи, то концентрация гидроксид-ионов увеличится, а концентрация ионов водорода уменьшится, ионное произведение воды также останется постоянным. Например, = 10-2, = 10-12

Водородным показателем рН называется отрицательный десятичный логарифм концентрации ионов водорода.

рН = - lg . (2)

Исходя из уравнения (1) можно заключить, что в нейтральной среде рН = 7.

pН = - lg 10-7 = 7.

В кислой среде рН < 7, в щелочной рН > 7. Аналогично выводится формула для рОН из уравнения (1).

pОН = - lg = 14 – pH. (3)

В ходе кислотно-основного титования с каждой порцией приливаемого титранта изменяется рН раствора. В точке эквивалентности рН достигает определённого значения. В этот момент времени титрование необходимо прекратить и измерить объём титранта, пошедший на титрование. Для определения рН в точке эквивалентности строят кривую титрования – график зависимости рН раствора от объёма прибавляемого титранта. Кривую титрования можно построить экспериментально, измеряя рН в различные моменты титрования, или рассчитать теоретически, используя формулы (2) или (3). Для примера рассмотрим титрование сильной кислоты HCl сильным основанием NaOH.

Таблица 1. Титрование 100мл 0,1М раствора HCl 0,1М раствором NaOH.

nNaOH (моль)

nHCl (моль) вступившее в реакцию.

nHCl остающееся в растворе (моль)

1,00 10-2

1,00 10-2

По мере прибавления щёлочи к раствору кислоты, происходит уменьшение количества кислоты и рН раствора увеличивается. В точке эквивалентности кислота полностью нейтрализована щёлочью и рН = 7. Реакция раствора нейтральная. При дальнейшем добавлении щёлочи рН раствора определяется избыточным количеством NaOH. При добавлении 101 и 110мл. раствора NaOH избыток щёлочи составляет соответственно 1 и 10 мл. Kоличество NaOH в этих двух точках, исходя из формулы молярной концентрации раствора равно соответственно моль и 1 10-3моль

Исходя из формулы (3) для титруемого раствора с избытком щёлочи 1 и 10 мл. имеем значения рН соответственно 10 и 11. По рассчитанным значениям рН строим кривую титрования.

По кривой титрования видно, что в начале титрования рН раствора определяется присутствием в растворе соляной кислоты и слабо изменяется при добавлении раствора щёлочи. Вблизи точки эквивалентности происходит резкий скачок рН при добавлении очень малого количества щёлочи. В точке эквивалентности в растворе присутствует только соль и вода. Соль сильного основания и сильной кислоты гидролизу не подвергается и поэтому реакция раствора нейтральная рН = 7. Дальнейшее прибавление щёлочи приводит к увеличению рН раствора, которое также незначительно изменяется от объёма приливаемого титранта, как и в начале титрования. В случае титрования сильных кислот сильными основаниями и наоборот, точка эквивалентности совпадает с точкой нейтральности раствора.

При титровании слабой кислоты сильным основанием наблюдается несколько иная картина. Слабые кислоты в растворах диссоциируют не полностью и в растворе устанавливается равновесие..

HAn ® H+ + An-.

Константа этого равновесия называется константой диссоциации кислоты.

(4)

Поскольку слабая кислота диссоциирует не полностью, то концентрацию ионов водорода нельзя свести к общей концентрации кислоты в растворе как это было в случае титрования сильной кислоты. (6)

При добавлении раствора щёлочи к раствору слабой кислоты в растворе образуется соль слабой кислоты. Растворы, содержащие слабый электролит и его соль называются буферными растворами . Их кислотность зависит не только от концентрации слабого электролита, но и от концентрации соли. По формуле (5) можно рассчитать рН буферных растворов.

СKtAn – концентрация соли в буферном растворе.

KD – константа диссоциации слабого электролита

СHАn – концентрация слабого электролита в растворе.

Буферные растворы обладают свойством сохранять определённое значение рН при добавлении кислоты или основания (отсюда происходит их название). Добавление сильной кислоты к буферному раствору приводит к вытеснению слабой кислоты из её соли и следовательно, к связыванию ионов водорода:

KtAn + H+ ® Kt+ + HAn

При добавление сильного основания, последнее сразу нейтрализуется присутствующей в растворе слабой кислотой с образованием соли,

HAn + OH-® HOH + An-

что также приводит к стабилизации рН буферного раствора. Буферные растворы широко применяются в лабораторной практике в тех случаях, когда требуется создать среду с постоянным значением рН.

В качестве примера рассмотрим титрование 100 мл. 0,1М. раствора уксусной кислоты СН3СООН, 0,1М. раствором NaOH.

При добавлении щёлочи к раствору уксусной кислоты происходит реакция.

СН3СООН + NaOH ® СН3СООNa + H2O

Из уравнения реакции видно, что СН3СООН и NaOH вступают в реакцию в соотношении 1:1, следовательно количество вступившей в реакцию кислоты равно количеству щёлочи, содержащемуся в прилитом титранте. Количество образующегося ацетата натрия СН3СООNa также равно количеству щёлочи поступившему в раствор в ходе титрования.

В точке эквивалентности уксусная кислота полностью нейтрализована и в растворе присутствует ацетат натрия. Однако реакция раствора в точке эквивалентности не является нейтральной, поскольку ацетат натрия как соль слабой кислоты подвергается гидролизу по аниону.

СН3СОО - + Н+ОН- ® СН3СООН + ОН-.

Можно показать, что концентрация ионов водорода в растворе соли слабой кислоты и сильного основания может быть рассчитана по формуле.

0 " style="border-collapse:collapse;border:none">

CH3COOH вступившее в реакцию.

CH3COOН остающееся в растворе

1,00 10-2

1,00 10-2

0 ,100

По полученным данным строим кривую титрования слабой кислоты сильным основанием.



По кривой титрования видно, что точка эквивалентности при титровании слабой кислоты сильным основанием не совпадает с точкой нейтральности и лежит в области щелочной реакции раствора.

Кривые титрования позволяют точно определить рН раствора в точке эквивалентности, что является важным для определения конечной точки титрования. Определение точки эквивалентности можно производить инструментальным методом , непосредственно измеряя рН раствора при помощи прибора рН–метра, но чаще для этих целей используют кислотно-основные индикаторы. Индикаторы по своей природе являются органическими веществами, которые изменяют свою окраску в зависимости от рН среды. Сами по себе индикаторы являются слабыми кислотами или основаниями, которые обратимо диссоциируют согласно уравнению:

НInd ® H+ + Ind-

Молекулярная и ионная формы индикатора имеют различную окраску и переходят друг в друга при определённом значении рН. Пределы рН, в которых индикатор меняет свою окраску, называются интервалом перехода индикатора. Для каждого индикатора интервал перехода является строго индивидуальным. Например, индикатор метиловый красный меняет окраску в интервале рН = 4.4 – 6,2. При рН < 4,4 индикатор окрашен в красный цвет, при рН > 6,2, в жёлтый. Фенолфталеин в кислой среде бесцветен, в интервале рН = 8 – 10 он приобретает малиновую окраску. Для того, чтобы правильно выбрать индикатор, необходимо сопоставить его интервал перехода со скачком рН на кривой титрования. Интервал перехода индикатора должен по возможности совпадать со скачком рН. Например, при титровании сильной кислоты сильным основанием скачок рН наблюдается в интервале 4-10. В данный промежуток попадают интервалы перехода таких индикаторов как метиловый красный (4,4 – 6,2), фенолфталеин (8 – 10), лакмус (5 – 8). Все эти индикаторы пригодны для установления точки эквивалентности в данном виде титрования. Такие индикаторы как ализариновый желтый (10 – 12), тимоловый голубой (1,2 – 2,8) в данном случае совершенно непригодны. Их использование даст совершенно неверные результаты анализа.

При выборе индикатора желательно, чтобы изменение окраски было наиболее контрастным и резким. С этой целью иногда применяют смеси различных индикаторов или смеси индикаторов с красителями.

3. Окислительно – восстановительное титрование .

(редоксиметрия, оксидиметрия.)

К окислительно-восстановительным, относят обширную группу методов титриметрического анализа, основанных на протекании окислительно-восстановительных реакций. В окислительно-восстановительном титровании используются различные окислители и восстановители. При этом возможно определение восстановителей титрованием стандартными растворами окислителей и наоборот, определение окислителей стандартными растворами восстановителей. Благодаря большому разнообразию окислительно-восстановительных реакций этот метод позволяет определять большое количество самых разнообразных веществ, в том числе и тех которые непосредственно не проявляют окислительно-восстановительных свойств. В последнем случае используется обратное титрование. Например, при определении кальция его ионы осаждают оксалат – ионом

Ca2+ + C2O42- ® CaC2O4¯

Избыток оксалата затем оттитровывают перманганатом калия.

Окислительно-восстановительное титрование имеет ещё ряд достоинств. Окислительно-восстановительные реакции протекают достаточно быстро, что позволяет проводить титрование всего за несколько минут. Многие из них протекают в кислой, нейтральной и щелочной средах, что значительно расширяет возможности применения данного метода. Во многих случаях фиксирование точки эквивалентности возможно без применения индикаторов, поскольку применяемые растворы титрантов окрашены (KMnO4, K2Cr2O7) и в точке эквивалентности окраска титруемого раствора изменяется от одной капли титранта. Основные виды окислительно-восстановительного титрования различают по окислителю, используемому в реакции.

Перманганатометрия.

В данном методе окислительно-восстановительного титрования окислителем служит перманганат калия KMnO4. Перманганат калия сильный окислитель. Он способен вступать в реакции в кислой, нейтральной и щелочной средах. о различных средах окислительная способность перманганата калия неодинакова. Наиболее сильно она выражена в кислой среде.

MnO4- + 8H+ +5e ® Mn+ + 4H2O

MnO4- + 2H2O + 3e ® MnO2¯ + 4OH-

MnO4- + e ® MnO42-

Перманганатометрическим методом можно определять самые разнообразные вещества: Fe2+, Cr2+, Mn2+, Cl-, Br-, SO32-, S2O32-, NO2,- Fe3+, Ce4+, Cr2O72+, MnO2, NO3-, ClO3-.и т. д. Многие органические вещества: фенолы, аминосахара, альдегиды, щавелевую кислоту и т. д.

Перманганатометрия имеет много достоинств.

1. Перманганат калия является дешёвым и легкодоступным веществом.

2. Растворы перманганата окрашены в малиновый цвет, поэтому точку эквивалентности можно установить без применения индикаторов.

3. Перманганат калия сильный окислитель и поэтому пригоден для определения многих веществ, которые не окисляются другими окислителями.

4. Титрование перманганатом можно проводить при различной реакции среды.

Перманганатометрия имеет и некоторые недостатки.

1. Перманганат калия трудно получить в химически чистом виде. Поэтому приготовить стандартный раствор по точной навеске вещества затруднительно. Для титрования используют вторичные стандарты перманганата, концентрация которых устанавливается по стандартным растворам других веществ: (NH4)2C2O4, K4, H2C2O4 и др. которые называются установочными веществами.

2. Растворы перманганата неустойчивы и при длительном хранении меняют свою концентрацию, которую необходимо периодически проверять по растворам установочных веществ.

3. Окисление перманганатом многих веществ при комнатной температуре протекает медленно и для проведения реакции требуется нагревание раствора.

Йодометрия.

В йодометрическом титровании окислителем является йод. Йод окисляет многие восстановители: SO32-, S2O32-, S2-, N2O4, Cr2+, и т. д. Но окислительная способность у йода значительно меньше, чем у перманганата. Йод плохо растворим в воде, поэтому обычно его растворяют в растворе KI. Концентрацию стандартного раствора йода устанавливают стандартным раствором тиосульфата натрия Na2S2O3.

2S2O32- + I2 ® S4O62- + 2I-

При йодометрическом определении используются различные способы титрования. Вещества, легко окисляемые йодом, титруют непосредственно стандартным раствором йода. Так определяют: CN-, SO32-, S2O32-, и др.

Вещества, которые труднее окисляются йодом, титруют методом обратного титрования: к раствору определяемого вещества приливают избыток раствора йода. После окончания реакции избыточный йод отитровывают стандартным раствором тиосульфата. Индикатором в йодометрическом титровании служит обычно крахмал, который даёт с йодом характерное синее окрашивание, по появлению которого можно судить о присутствии в растворе свободного йода.

Методом косвенного йодометрического титрования определяют многие окислители: к раствору окислителя приливают определённый объём стандартного раствора йодида калия, при этом выделяется свободный йод, который затем отитровывается стандартным раствором тиосульфата. Методом косвенного титрования определяют Cl2, Br2, O3 KMnO4, BrO32- и т. д.

Достоинства йодометрического метода.

1. Йодометрический метод является очень точным и превосходит по точности другие методы окислительно-восстановительного титрования.

2. Растворы йода окрашены, что позволяет в некоторых случаях определять точку эквивалентности без применения индикаторов.

3. Йод хорошо растворим в органических растворителях, что позволяет использовать его для титрования неводных растворов.

Йодометрия имеет и некоторые недостатки.

1. Йод является летучим веществом и при титровании возможны его потери за счёт испарения. Поэтому йодометрическое титрование нужно проводить быстро и по возможности на холоду.

2. Йодид ионы окисляются кислородом воздуха, по этой причине йодометрическое титрование необходимо проводить быстро.

3. Дайте определения понятиям: первичный стандарт, вторичный стандарт, титрант, аликвотный объём, титрование.

4. Какие существуют виды титриметрического анализа, на чём основана их классификация?

5. Перечислите основные виды окислительно-восстановительного титрования. Дайте краткую характеристику перманганатометрии и йодометрии.

6. Что называется точкой эквивалентности? Какие существуют способы её установления, и какие из них использовались в данной лабораторной работе?

7. Для чего предназначены кривые титрования? Каковы принципы их построения в кислотно-основном и окислительно-восстановительном титровании?

В титриметрическом анализе количественное определение вещества производится, исходя из объема раствора известной концентрации, затраченного на реакцию с определенным веществом.

Процесс определения содержания вещества или точной концентрации раствора объемно-аналитическим путем называется титрованием . Эта важнейшая операция титриметрического анализа заключается в том, что к исследуемому раствору медленно приливают другой раствор точно известной концентрации в количестве, эквивалентном количеству определяемого соединения.

Объемы растворов, количественно реагирующих между собой, обратно пропорциональны нормальным концентрациям этих растворов:

V 1 = N 2 или V 1 x N 1 = N 2 x V 2 V 1 x N 1 = V 2 x N 2

Где V – объем реагирующего раствора, л; N – концентрация, н.

Это положение лежит в основе титриметрического анализа. Для того чтобы определить концентрацию одного из растворов, надо знать точно объемы реагирующих растворов, точную концентрацию другого раствора и момент, когда два вещества прореагируют в эквивалентных количествах. Условиями титриметрического определения являются:

а) точное измерение объемов реагирующих веществ;

б) приготовление растворов точно известной концентрации, с помощью которых проводится титрование, так называемых рабочих растворов (титранов) (часто такие растворы известной концентрации называют стандартными (титрованными);

в) определение конца реакции.

Титриметрическое определение занимает гораздо меньшее время, чем гравиметрическое. Вместо многих длительных операций гравиметрического анализа (осаждение, фильтрование, взвешивание и т.д.) при титриметрическом определении проводят всего одну операцию – титрование.

Точность титриметрических определений несколько меньше точности гравиметрического анализа, однако разница невелика, поэтому там, где возможно, стараются вести определение более быстрым методом.

Для того чтобы та или иная реакция могла служить основой для титрования, она должна удовлетворять ряду требований.

1. Реакция должна проходить количественно по определенному уравнению без побочных реакций. Необходимо быть уверенным. Что прибавляемый реактив расходуется исключительно на реакцию с определяемым веществом.

2. Окончание реакции следует точно фиксировать, чтобы количество реактива было

эквивалентно количеству определяемого вещества. На эквивалентности реагирующих веществ основано вычисление результатов анализа.

3. Реакция должна протекать с достаточной скоростью и быть практически необратимой. Точно фиксировать точку эквивалентности при медленно идущих реакциях почти невозможно.

СПОСОБЫ ТИТРОВАНИЯ

По способу выполнения титрования различают прямое, обратное или косвенное титрование (метод замещения).

При прямом титровании к раствору определяемого вещества непосредственно добавляют титрант. Для проведения анализа по этому методу достаточно одного рабочего раствора. Например, для определения кислоты необходим рабочий раствор щелочи, для определения окислителя – раствор восстановителя.

При обратном титровании к раствору анализируемого вещества приливают известный объем рабочего раствора, взятого в избытке. После этого титруют остаток первого рабочего раствора другим рабочим раствором и рассчитывают количество реагента, которое вступило в реакцию с анализируемым веществом. Например, для определения хлорид-ионов к анализируемому раствору хлорида добавляют известный объем раствора AqNO 3 , взятого в избытке. Происходит реакция

Aq + +Cl = AqCl↓.

Избыток раствора AqNO 3 определяют с помощью другого рабочего раствора – тиоцианата аммония NH 4 SCN:

Aq + + SCN - = AqSCN↓.

При косвенном титровании к анализируемому раствору приливается в избытке реагент, который реагирует с определяемым веществом. Затем один из продуктов реакции определяется титрованием. Например, для определения циановодородной кислоты добавляют раствор АqNO 3 в избытке. Происходит реакция

HCN + AqNO 3 = AqCN↓ + HNO 3

Затем азотная кислота легко определяется с помощью рабочего раствора щелочи NaOH:

HNO 3 + NaOH = NaNO 3 + H 2 O

В этом случае слабая циановодородная кислота замещается в эквивалентных количествах сильной.

3. КЛАССИФИКАЦИЯ МЕТОДОВ ТИТРИМЕТРИЧЕСКОГО

АНАЛИЗА

В титриметрическом анализе используют реакции различного типа (кислотно-основного взаимодействия, комплексообразования и т.д,), удовлетворяющие тем требованиям, которые предъявляются к титриметрическим реакциям. Отдельные титриметрические методы получили название по типу основной реакции, протекающей при титровании или по названию титранта (например, в аргентометрических методах титрантом является раствор AqNO 3 , в перманганатометрических – раствор KMnO 4 и т.д).По способу фиксирования точки эквивалентности выделяют методы титрования с цветными индикаторами, методы потенциометрического титрования, кондуктометрического, фотометрического и т.д. При классификации по типу основной реакции, протекающей при титровании, обычно выделяют следующие методы титриметрического анализа:

1 .методы кислотно-основного титрования, основанные на реакциях, связанных с процессом передачи протона:

H + + OH - = H 2 O, CH 3 COOH +OH - = CH 3 COO - + H 2 O,

CO 3 2- + H + = HCO - 3 ;

2. методы комплексообразования, использующие реакции образования координационных соединений (например, комплексонометрия):

Mg 2+ + H 2 V 2- = MgV 2_ + 2H +

ГдеV 2 = CH 2 – N /

׀ / CH 2 – COO-

3. Методы осаждения, основанные на реакциях образования малорастворимых

соединений:

Aq + + Cl - + AqCl↓ (аргентометрия),

Hg 2 2+ +2Cl - = Hg 2 Cl 2 ↓(меркурометрия);

4.методы окислительно-восстановительного титрования. основанные

на окислительно-восстановительных реакциях (оксидиметрия):

MnO 4 - + 5Fe 2+ + 8H + = Mn 2+ + 5Fe 3+ + 4H 2 O (перманганатометрия);

2S 2 O 3 2- + l 2 = S 4 O 6 2- + 2l - (йодометрия);

5NO - 2 + 2MnO 4 - + 6H + + 5NO - 3 + 2Mn 2+ +3H 2 O (нитритометрия);

3SbCl 4 - + Br - 3 + 6H + + 6Cl - = 3SbCl 6 - + Br _ + 3H 2 O (броматометрия).

В титриметрии используются самые разнообразные реакции. В зависимости от того, какая реакция лежит в основе титрования, различают следующие методы титриметрического анализа.

Кислотно-основные методы , в основе которых лежит реакция нейтрализации:

Н + + ОН - → Н 2 О

Этим методом определяют количество кислот, оснований, а также некоторых солей.

Методы окисления – восстановления (оксидиметрия). Эти методы основаны на реакциях окисления-восстановления. При помощи раствора окислителя определяют количество вещества, являющегося восстановителем и, наоборот.

Методы осаждения и комплексообразования основаны на осаждении ионов в виде труднорастворимых соединений и на связывании ионов в малодиссоциированный комплекс.

Различают следующие способы титрования :

прямое, когда при титровании происходит реакция между определяемым веществом и титрантом;

обратное, к огда к определяемому раствору добавляют заведомо избыточный, но точно отмеренный объем раствора известной концентрации и избыток реактива оттитровывают титрантом;

титрование заместителя , когда титрантом титруют продукт реакции определяемого вещества с каким-либо реактивом.

ТИТРАНТЫ

Титрантом называется раствор, с помощью которого производится титриметрическое определение, т.е. раствор, которым титруют. Чтобы проводить определение с помощью титранта, надо знать его точную концентрацию. Существуют два метода приготовления титрованных растворов, т.е. растворов точно известной концентрации.

1. Точная навеска, взятая на аналитических весах, растворяется в мерной колбе, т.е. готовится раствор, в котором известно количество растворенного вещества и объем раствора. В этом случае растворы называются растворами с приготовленным титром.

2. Раствор готовится приблизительно нужной концентрации, а точную концентрацию определяют титрованием, имея другой раствор с приготовленным титром. Титрованные растворы, точную концентрацию которых находят в результате титрования, называются растворами с установленным титром.

Титранты, как правило, готовят приблизительно нужной концентрации, а их точную концентрацию устанавливают. Необходимо помнить, что титр растворов с течением времени меняется и его надо проверять через определенные промежутки времени (от 1 до 3 нед. в зависимости от вещества, из которого приготовлен раствор). Поэтому, если титрант готовят по точно взятой навеске, то его титр соответствует приготовленному лишь ограниченное время.

Одним из правил титриметрического анализа является следующее:титры титрантов нужно устанавливать в таких же условиях, в каких будет выполняться анализ.

Для определения точной концентрации титранта (“установки титра”. или стандартизации) пользуются так называемым исходным или установочным веществом.

От свойств установочного вещества зависит точность определения титра титранта, а, следовательно, и точность всех последующих анализов. Установочное вещество должно удовлетворять следующим требованиям.

Соответствие состава вещества его химической формуле.

Химическая чистота – суммарное количество примесей не должно превышать0,1% - Устойчивость на воздухе, т.е. углекислого газа.

Устойчивость в растворе (не окисляться и не разлагаться).

Возможно, большая эквивалентная масса – это уменьшает относительную ошибку при определении.

Хорошая растворимость в воде.

Способность реагировать с раствором, титр которого устанавливается по строго определенному уравнению и с большой скорость.

Для установки титра титранта из установочного вещества готовят точный раствор по точно взятой навеске. Раствор готовится в мерной колбе. Мерная колба должна быть вымыта хромовой смесью до «полной стекаемости», ополоснута много раз водой под краном и затем 3 – 4 раза дистиллированной водой. Воронка должна быть чистой, сухой и свободно входить в горло колбы.

Навеску установочного вещества отвешивают на аналитических весах в бюксе. Можно отвесить точно рассчитанное количество, а можно взять количество, близкое к рассчитанному, но точно взвешенное. В первом случае раствор будет точно заданной концентрации, а во втором – точная концентрация рассчитывается.

Взятую навеску аккуратно переносят через воронку в мерную колбу. Остатки из бюкса тщательно смывают в воронку дистиллированной водой из промывалки. Затем обмывают внутренние стенки воронки и, слегка приподняв ее, - наружную часть трубки. Необходимо следить, чтобы общее количество воды, использованное для обмывания бюкса и воронки, занимало не более половины колбы. Осторожным вращательным движением перемешивают содержимое колбы, пока навеска полностью не растворится. Затем дистиллированной водой из промывалки доводят содержимое колбы до метки. Для этого наливают воду примерно на 1 см ниже метки. Ставят колбу так, чтобы метка была на уровне глаз и осторожно, по каплям, добавляют воду до тех пор, пока нижняя часть мениска не будет касаться метки на шейке колбы (рис.1). Тщательно закрывают колбу пробкой и, переворачивая колбу, перемешивают раствор 12-15 раз. Растворы для установки титра должны быть свежеприготовленными.

Для получения титрованных растворов часто пользуются фиксаналами , представляющими собой запаянные стеклянные ампулы, с точными навесками реактивов. На каждой ампуле имеется надпись, показывающая, какое вещество и в каком количестве находится в ампуле.

В мерную колбу вставляют воронку, также тщательно вымытую и ополоснутую дистиллированной водой. Если в ампуле содержится не раствор, а сухое вещество, то воронка должна быть сухой. Затем в воронку вставляют специальный стеклянный боек (обычно прилагается к коробке с фиксаналами), также сполоснутый дистиллированной водой. Ампулу протирают этиловым спиртом, чтобы удалить надпись и обмывают дистиллированной водой. Затем ее вставляют в воронку так, чтобы она своим тонким изогнутым внутрь дном касалась бойка, приподнимают ее и слегка ударяют о конец бойка. При этом содержимое ампулы попадает через воронку в колбу (рис.2). Сбоку или сверху в ампуле имеется углубление, в котором пробивают отверстие стеклянной палочкой с заостренным концом. Через это отверстие промывают дистиллированной водой из промывалки внутренние стенки ампулы. Промывать нужно много раз маленькими порциями. После этого ополаскивают наружные стенки ампулы и ампулу выбрасывают. Ополаскивают воронку и боек, затем поднимают воронку и обмывают наружную

Часть трубки воронки. Обмывают верхнюю часть шейки мерной колбы. Производя все эти операции по промыванию, следят, чтобы количество воды в мерной колбе к концу всех операций не превышало 2∕3объема колбы. Осторожно вращательным движением перемешивают содержимое колбы. Если фиксанал содержал сухое вещество, перемешивают его до полного растворения. Затем дистиллированной водой доводят содержимое колбы до метки. Тщательно закрывают колбу и перемешивают раствор 12-15 раз.

Для установки титра титранта пипеткой отбирают отдельные порции раствора и титруют их. Можно также брать отдельные навески исходного вещества и, растворив каждую из них в произвольном количестве воды, титровать весь полученный раствор. Этот способ дает более точные результаты, чем первый, однако является слишком трудоемким. Поэтому в лаборатории практически при выполнении анализов пользуются первым способом.

5. ОПРЕДЕЛЕНИЕ ТОЧКИ ЭКВИВАЛЕНТНОСТИ И КОНЦА

РЕАКЦИИ

При титровании употребляют не избыток реактива, а количество, эквивалентное количеству определяемого вещества. Необходимым условием при определении содержания вещества титриметрически является точное установление того момента, когда заканчивается реакция между титруемым веществом и титрантом, то есть фиксирование точки эквивалентности . Чем точнее определен конец реакции, тем точнее будет результат анализа.

Для определения конца реакции применяют особые реактивы, так называемые индикаторы. Действие индикаторов обычно сводится к тому, что они по окончании реакции между титруемым веществом и титрантом в присутствии небольшого избытка последнего претерпевают изменения и меняют окраску раствора или осадка. Когда из бюретки прибавлено столько титранта, что наблюдается заметное изменение окраски титруемого раствора, говорят что достигнута точка конца титрования.

В большинстве случаев индикаторы прибавляют к раствору исследуемого вещества и титрование происходит в присутствии индикатора. Это так называемые внутренние индикаторы . В некоторых случаях поступают иначе: по мере титрования от титруемого раствора отбирают капилляром по капле раствора, к которому по фарфоровой пластинке прибавляют каплю индикатора. Таким образом, реакция с индикатором происходит вне титруемого раствора. Применяемые в этом случае индикаторы называются внешними.

Для каждого титриметрического метода имеются отдельные индикаторы. При кислотно-основном титровании индикаторы меняют свою окраску при изменении рН раствора. В методах осаждения точку эквивалентности находят по прекращению образования осадка. Индикаторы, применяемые в этих методах, образуют ярко-окрашенный осадок или раствор с избытком титранта. Иногда, если титруют ярко-окрашенным раствором, например раствором KМnO 4, окончание титрования можно заметить без индикатора, так как первая капля титранта, которая не прореагирует с определенным веществом, изменяет окраску титруемого раствора.

Титриметрический анализ

История и принцип метода

Титриметрический анализ (титриметрия) -важнейший из химических методов анализа. Он возник в XVIII веке, вначале как эмпирический способ проверки качества различных материалов, например, уксуса, соды, отбеливающих растворов. На рубеже XVIII и XIX веков были изобретены бюретки и пипетки (Ф.Декруазиль). Особое значение имели труды Ж.Гей-Люссака, который ввел основные термины этого метода: титрование, титрант и другие, происходящие от слова «титр». Титр – это массарастворенного вещества (в граммах), содержащаяся в одном миллилитре раствора. Во времена Гей-Люссака результаты анализа вычисляли именно с помощью титров. Однако титр как способ выражения концентрации раствора оказался менее удобным, чем другие характеристики (например, молярные концентрации), поэтому в современной аналитике химии расчеты с применением титров ведут довольно редко. Напротив, различные термины, произведенные от слова «титр», применяют очень широко.

В середине XIX века немецкий химик К.Мор обобщил все созданные к тому времени титриметрические методики и показал, что в основе любой методики лежит один и тот же принцип. К раствору пробы, содержащей определяемый компонент Х, всегда прибавляют раствор с точно известной концентрацией реагента R (титрант). Этот процесс и называют титрованием. Проводя титрование, аналитик следит за протеканием химической реакции между Х и добавляемым R . По достижении точки эквивалентности (т.экв.), когда число молей эквивалентов введенного R точно сравняется с числом молей эквивалентов находившегося в пробе вещества Х, титрование прекращают и измеряютобъем затраченного титранта. Момент окончания титрования называют конечной точкой титрования (к.т.т.), ее, как и т.экв., выражают в единицах объема, обычно в миллилитрах. В идеальном случае V к.т.т = V т.экв. , но на практике точное совпадение по разным причинам не достигается, титрование заканчивают чуть раньше или, наоборот, чуть позже, чем будет достигнута т.экв. Естественно, титрование следует проводить так, чтобы различие между V т.экв. и V к.т.т. было бы как можно меньшим.

Поскольку массу или концентрацию Х рассчитывают по объему титранта, затраченному на титрование пробы (по V к.т.т.), впрошлом титриметрию называли объемным анализом . Это название нередко используют и сегодня, но термин титриметрический анализ более точен. Дело в том, что операция постепенного прибавления реагента (титрование) характерна для любой методики этого типа, а расход титранта можно оценивать не только путем измерения объема, но и другими способами. Иногда добавляемый титрант взвешивают (измерение массы на аналитических весах дает меньшую относительную погрешность, чем измерение объема). Иногда измеряют время, за которое будет введен титрант (при постоянной скорости ввода).

С конца XIX века титриметрические методики стали применять и в исследовательских,и в заводских, и в других лабораториях. С помощью нового метода оказалось возможным определять миллиграммовые и даже микрограммовые количества самых разных веществ. Широкому использованию титриметрии способствовали простота метода, невысокая стоимость и универсальность оборудования. Особенно широко титриметрию стали применять в 50-х годах XX века,после создания швейцарским аналитиком Г.Шварценбахомнового варианта этого метода (комплексонометрии). Одновременно началось широкое применение инструментальных методов контроля к.т.т. К концу 20 века значение титриметрии несколько снизилось в связи с конкуренцией более чувствительных инструментальных методов, но и сегодня титриметрия остается очень важным методом анализа. Она позволяет быстро, легко и достаточноточно определять содержание большинства химических элементов, отдельные органические и неорганические вещества, суммарное содержание однотипных веществ, а также обобщенные показатели состава (жесткость воды, жирность молока, кислотность нефтепродуктов).

Техника проведения титриметрического анализа

Принцип метода станет более понятен после изложения техники его проведения. Итак, пустьВам принесли раствор щелочи неизвестной концентрации, и Ваша задача – установить его точную концентрацию. Для этого Вам понадобится раствор регента , или титранта – вещества, которое вступает в химическую реакцию со щелочью, причем концентрация титранта должна быть точно известна. Очевидно, что для установления концентрации щелочи в качестве титранта используемраствор кислоты.

1. Отбираем с помощью пипетки точный объем анализируемого раствора – он называется аликвота . Как правило, объем аликвоты составляет 10-25 мл.

2. Переносим аликвоту в колбу для титрования, разбавляем водой и добавляем индикатор.

3. Заполняем бюретку раствором титранта и выполняем тирование – медленное, по каплям, добавление титранта к аликвоте исследуемого раствора.

4. Заканчиваем титрование в момент, когда индикатор изменит свою окраску. Этот момент называется конечной точкой титрования – к.т.т. К.т.т., как правило, совпадает с моментом, когда реакция между определяемым веществом и титрантом закончена, т.е. к аликвоте добавлено точно эквивалентное количество титранта – этот момент называется точкой эквивалентности, т.э. Таким образом т.э. и к.т.т. – это две характеристики одного и того же момента, одна – теоретическая, другая – экспериментальная, зависящая от выбранного индикатора. Поэтому надо правильно выбирать индикатор, с тем, чтобы к.т.т. как можно точнее совпадала с т.э.

5. Измеряют объем титранта, пошедшего на титрование, и вычисляют концентрацию исследуемого раствора.

Виды титриметрического анализа

Классифицировать титриметрические методики можно по нескольким независимым признакам: а именно: 1) по типу реакции между Х и R , 2) по способу проведения титрования и расчета результатов,3) по способу контроля т.экв.

Классификация по типу химической реакции – наиболее важная. Напомним, что далеко не все химические реакции можно использовать для проведения титрований.

Во-первых, как и в других химических методах, определяемый компонент (аналит) должен количественно реагировать с титрантом.

Во-вторых, надо, чтобы равновесие реакции устанавливалось как можно быстрее. Реакции, в которых после добавления очередной порции титранта установление равновесия требует хотя бы нескольких минут, в титриметрии применять затруднительно или вообще невозможно.

В-третьих, реакция должна отвечать единственному и заранее известному стехиометрическому уравнению. Если реакция ведет к смеси продуктов, состав этой смеси будет меняться в ходе титрования и зависеть от условий проведения реакции. Зафиксировать точку эквивалентности будет очень трудно, а результат анализа окажетсянеточным.Совокупности указанных требований отвечают реакции протолиза (нейтрализации), многие реакции комплексообразования и окисления-восстановления, а также некоторые реакции осаждения. Соответственно в титриметрическом анализе выделяют:

Метод нейтрализации,

Комплексометрию,

Редоксметрические методы

Методы осаждения.

Внутри каждого метода выделяют отдельные его варианты (табл.1). Их названия происходят от наименований реагентов, используемых в каждом из вариантов в качестве титранта (перманганатометрия, иодометрия, хроматометрия и т.п.).

Таблица 1.

Классификация титриметрических методик по типу используемой химической реакции

Реакция

Метод

Реагент (титрант)

Вариантметода

Определяемыевещества

Протолиз

Методнейтрализации

Н Cl, HClO 4 , HNO 3

Ацидиметрия

Oc нования

KOH, NaOH и др.

Алкалиметрия

Кислоты

Комплексо-образование

Комплексо-метрия

ЭДТА

Комплексонометрия

Металлы и ихсоединения

Фторидометрия, цианидометрия

Некоторые металлы, органическиевещества

Окисление-восстанов-ление

Редокс-метрия

KMnO 4

К 2 С r 2 O 7

Перманганатометрия

хроматометрия

Восстановители

KJ и Na 2 S 2 O 3

Иодометрия

Восстановители,окислители, кислоты

Аскорбиновая кислота

Аскорбинометрия

Окислители

Осаждение

Седиметрия

AgNO 3

Аргентометрия

Галогениды

Hg 2 (NO 3) 2

Меркуриметрия

KSCN

Роданометрия

Некоторые металлы

Ba(NO 3) 2

Бариеметрия

Сульфаты

Классификация по способу титрования. Обычно выделяют три способа: прямое, обратное и заместительное титрование. Прямое титрование предполагает непосредственное прибавление титранта к раствору пробы. Иногда применяют другой порядок смешивания реагентов – к известному количеству R постепенно добавляют раствор пробы, в котором хотят определить концентрацию Х; но это тоже прямое титрование. В обоих случаяхрасчет результатов анализа ведут по одним и тем же формулам, основанным на законе эквивалентов.

ν Х = ν R

где ν Х иν R – количества молей эквивалентов Х и R . Расчетные формулы, основанные на соотношении, а также примеры расчетов будут даны ниже.

Прямое титрование - удобный и самый распространенный вариант титриметрии. Он более точен, чем другие. Ведь случайные погрешности в основном возникают при измерении объема растворов, а в данном способе титрования объем измеряют только один раз.Однако прямое титрование возможно далеко не всегда. Многие реакции между Х и R идут недостаточно быстро, и после добавления очередной порции титранта в растворе не успевает установиться равновесие. Иногда прямое титрование невозможно из-за побочных реакций или ввиду отсутствия подходящего индикатора. В подобных случаях применяют более сложные схемы обратного или заместительного титрования. Они включают не менее двух химических реакций.

Обратное титрование проводят по двухстадийной схеме:

Х + R 1 =Y 1

R 1 + R 2 = Y 2

Вспомогательный реагент R 1 вводят в точно известном количестве. Объем и концентрацию раствора R 1 выбирают так, чтобы R 1 после завершения реакции с Хостался в избытке. Затем непрореагировавшую часть R 1 оттитровывают титрантом R 2 . Примером может быть перманганатометрическое титрование органических веществ. Титровать многие веществаперманганатом «напрямую» не удается из-за замедленности их окисления и по другим причинам. Но можно сначала добавить к анализируемой пробе известное (избыточное) количество KMnO 4 , подкислить и нагреть полученный раствор. Это приведет к полному и быстрому завершению окисления органических веществ. Затем оттитровывают оставшийся перманганат каким-либо активным восстановителем, например, раствором SnCl 2 или FeSO 4 .

Расчет результатов обратного титрования проводят, исходяиз очевидного соотношения:

ν Х =ν R 1 - ν R 2

Поскольку объемы в данном случае измеряют два раза (сначала объем раствора реагента R 1 , затем объем титранта R 2), случайная погрешность результата анализа несколько выше, чем при прямом титровании. Особенно сильно возрастает относительная погрешность анализа при малом избытке вспомогательного реагента, когдаν R 1 ≈ν R 2 .

Классификацияпо способу контроля т.экв. Известно несколько таких способов. C амый простой - безындикаторное титрование, самый распространенный – титрование с цветными индикаторами, а самые точные и чувствительные –инструментальные варианты титриметрии.

Безындикаторное титрование основано на применении реакций, которые сопровождаются изменением видимых свойств титруемого раствора. Как правило, один из реагентов (Х или R ) имеет видимую окраску. Ход такой реакции контролируют без специальных приборов и без добавления реактивов-индикаторов. Так, бесцветные восстановители титруют в кислой среде фиолетовым раствором окислителя – перманганата калия (KMnO 4). Каждая порция добавляемого титрантабудет сразу же обесцвечиваться, превращаясь под действием восстановителя в ионы Mn 2+ . Так будет продолжаться вплоть до т.экв. Однако первая же «лишняя» капля титранта окрасит титруемый раствор врозово-фиолетовый цвет, окраска не исчезнет и при перемешивании раствора. При появлении неисчезающей окраски титрование прекращают иизмеряют объемзатраченного титранта (V к.т.т.). Конец титрованияможно зафиксировать не только по появлению окраски титруемого раствора, как в рассмотренном примере, но ипо обесцвечиванию ранее окрашенного раствора пробы, а также по появлению какого-либо осадка, его исчезновению или изменению внешнего вида. Безындикаторное титрование применяют довольно редко, так как лишь немногие реакции сопровождаются изменением видимых свойств раствора.

Инструментальное титрование . За протеканием реакции между Х и R можно следить не просто «на глаз» (визуально), но и с помощью приборов, измеряющих некоторое физическое свойство раствора. Варианты инструментальной титриметрии различают, смотря по тому, какое именно свойство раствора контролируется. Можно использовать любое свойство, зависящее от качественного и количественного состава титруемого раствора. А именно, можно измерять электропроводность раствора (этот вариант называют кондуктометрическим титрованием), потенциал индикаторного электрода, опущенного в титруемый раствор (потенциометрическое титрование), поглощение света титруемым раствором (фотометрическое титрование) и т.п.Прекратить титрование можно тогда, когдабудет достигнуто некоторое заранее выбранное значение измеряемого свойства. Например, титруют раствор кислоты щелочью до тех пор, пока не будет достигнуто значение рН = 7. Однако чаще поступают по-другому - выбранное свойство растворамногократно (или даже непрерывно) измеряют по мере ввода титранта, причем не только до, но и после ожидаемой т.экв.По полученным данным строят графическую зависимость измеренного свойства от объема добавленного титранта (кривую титрования ). Вблизи точки эквивалентностинаблюдается резкое изменение составаисвойств титруемого раствора, а на кривой титрования регистрируется скачок или излом. Например, скачок потенциала электрода, опущенного в раствор. Положение т.экв оценивают по положению перегиба на кривой. Такой вариант анализа более трудоемок и длителен, чем обычное титрование, но дает более точные результаты. За одно титрование удается определить по отдельности концентрации целого ряда компонентов.

Известно более десятка вариантов инструментальной титриметрии. В создании их важную роль сыграл американский аналитик И.Кольтгоф. Соответствующие методики различаются по измеряемому свойству раствора, по используемой аппаратуре и по аналитическим возможностям, но все они чувствительнее и селективнее, чеминдикаторные илибезындикаторные визуальные варианты титриметрии. Инструментальный контроль особенно важен, когда нельзя применять индикаторы, например, при анализе мутных или интенсивно окрашенных растворов, а также при определении микропримесей и при анализе смесей. Однако инструментальная титриметрия требует оснащения лаборатории специальными приборами, желательно - самопишущими или полностью автоматизированными, что не всегда экономически целесообразно. Во многих случаях достаточно точные и надежные результаты могут быть получены более простым и дешевым способом, основанным на применении индикаторов.

Использование индикаторов . К титруемой пробе можно заранее добавить небольшое количество специального реактива - индикатора . Титрование надо будет прекратить в тот момент, когда индикатор под действием введенного титранта изменит видимую окраску, это и есть конечная точка титрования. Важно, чтобы изменение окраски происходило не постепенно, ав результате добавления всего одной «лишней» капли титранта. В некоторых случаях индикатор меняет не свою окраску, арастворимость или характер свечения. Однако такие индикаторы (адсорбционные, флуоресцентные, хемилюминесцентные и др.) применяют намного реже, чемцветные индикаторы. Изменение окраски любого индикатора происходит благодаря химическому взаимодействию индикатора с титрантом, приводящему кпереходу индикаторав новую форму.Свойства индикаторов необходимо рассмотреть более детально.

Индикаторы

В аналитических лабораториях применяют несколько сот цветных индикаторов разного типа (кислотно-основные, металлохромные, адсорбционные и т.п.). Когда-то в качестве индикаторов использовались настойки, полученные из растений - из цветов фиалки или из особого вида лишайников (лакмус). Впервые такие индикаторы стал применять еще Р.Бойль. В настоящее время природные индикаторы не используют, поскольку они всегда являются смесью разных веществ, поэтому переход их окраски выражен недостаточно четко. Современные индикаторы – это специально синтезированные индивидуальные органические соединения. Как правило, индикаторами являются соединения ароматического ряда, молекулы которых содержат несколько функциональных групп (заместителей).Известно множество подобных соединений, но только некоторые из нихможно применять в качестве цветных индикаторов. Предполагаемый индикатор должен отвечать целому ряду требований:

· индикатор должен хорошо растворяться, даваярастворы, устойчивые при хранении;

· в растворе индикатор должен существовать в нескольких формах, различных по структуре молекулы. Между формами должно устанавливаться подвижноехимическое равновесие. Например, кислотная форма индикатора переходит в основную (и обратно),окисленная- ввосстановленную (и обратно); металлохромный индикатор обратимо связываетсяв комплекс с ионами металла, и т.п.;

· цветной индикатордолжен интенсивно поглощать свет в видимой области спектра. Окраска его раствора должна быть различима даже при очень низкой концентрации (10 -6 – 10 -7 моль/л). В этом случае можно будет вводить в титруемый раствор очень малые количества индикатора, что способствует получению более точных результатов анализа;

· разныеформыиндикаторадолжны быть различны по своей окраске, то есть по спектру поглощения в видимой области. В таком случае в ходе титрования будет наблюдаться контрастный цветовой переход.Например, переход окраски индикатора из розовой в изумрудно-зеленую хорошо заметенна глаз. Зафиксировать же конечную точку титрования (к.т.т.) по переходурозовой окраски воранжевую или фиолетовую гораздо труднее. Очень важно, насколько различны спектры поглощения двух форм индикатора. Если одна из форм индикатора максимально поглощает свет с длиной волны λ 1 , а другая- с длиной волны λ 2 , то разность∆λ = λ 1 - λ 2 характеризует контрастность цветового переход. Чем больше ∆λ, тем лучше воспринимается на глаз переход окраски индикатора. Для повышения визуальной контрастности цветового перехода иногда используют смеси разных индикаторов или к индикатору добавляют посторонний инертный краситель;

· переход индикатора из одной формы в другую при изменении состава раствора должен проходить очень быстро, за доли секунды;

· переход должен вызываться единственным фактором, одним и тем же у всех индикаторов данного типа. Так, изменение окраски кислотно-основного индикатора не должно происходить за счет реакций другого типа, например при взаимодействии с окислителями, или ионами металлов, или белками! Напротив, редокс-индикаторы должны менять свою окраскутолько вследствие взаимодействия с окислителями и восстановителями, и происходить это должно при определенном потенциале, специфическом для каждого редокс-индикатора. Окраска этих индикаторов и потенциал перехода не должны зависеть от рН раствора. К сожалению, на практике потенциал перехода многих редокс-индикаторов зависит иот рН.

Чтобы ослабить влияние побочных процессов, иногда индикатор не вводят в титруемый раствор, а, наоборот, в ходе титрования периодически отбирают каплю титруемого раствора, смешивают ее на часовом стекле с каплей раствора индикатора и наблюдают, какая окраска получается. Такой прием позволяет использовать необратимо реагирующие индикаторы. С «внешним индикатором» удобнее работать, если заранее пропитать имбумагу.

Конечная точка титрования,фиксируемая по переходу окраски индикатора, может не совпадать с точкой эквивалентности. Несовпадение V к.т.т. и V т.экв приводит к систематической погрешностирезультата анализа. Величина погрешности определяется природой данного индикатора, его концентрацией и составом титруемого раствора.

Принцип подбора индикаторов очень прост и универсален:характеристика перехода индикатора (рТ-показатель титрования, потенциал перехода и т.п.) должна соответствовать ожидаемому составу титруемого растворав точке эквивалентности. Так, если аналитик титрует водный раствор сильной кислоты сильным основанием, в точке эквивалентности раствор будет иметь рН = 7. Следовательно,надо использоватькислотно-основной индикатор, который меняет свою окраску приблизительно при рН 7 (бромтимоловый синий и т.п.).Необходимые сведения о рТ - показателях титрования для индикаторов разного типа есть в справочной литературе.

Расчет результатов титриметрического анализа

Результаты титриметрического анализа не рекомендуется рассчитывать непосредственно по уравнению реакции, например, с помощью пропорций. Такой «школьный» способ решения расчетных задач нерационален и, как правило,не дает требуемой точности. Результаты титриметрического анализа рассчитывают по одной из несколькихготовых алгебраических формул, выведенных на основании закона эквивалентов. Исходными данными будут oбъем затраченного титранта (в миллилитрах) и концентрация титранта (в моль/литр), их надо установить с необходимой точностью.

Способ расчета не зависит от типа химическойреакции, протекающейв ходе титрования, и способа контроляточки эквивалентности (индикатор, прибор и т.п.). Выбор расчетной формулы определяется тем,какойспособ титрования(прямое, обратное, заместительное) применяютв ходе анализа.Выбираяформулу, следует различать два случая:а) расчетконцентрациираствора Х;б) определениемассовой доли компонента (процентного содержанияХ в пробе).

Наиболее просто выглядят расчетные формулы, если концентрацииопределяемогокомпонента и титранта выражают числоммолей их эквивалентов в литре соответствующих растворов, т.е. используют концентрации определяемого компонента (N x ) и титранта (N T ), выраженные числом молей эквивалента в литре раствора. Ранее эти концентрации называли нормальными. Теперь этот термин применять не рекомендуется, но на практике его используют весьма широко, особенно в редоксметрии. А вот в комплексонометрии и в некоторых других методах, где 1 моль определяемого вещества Х всегда реагирует с 1 молем титранта, нормальные концентрации совпадают с обычными молярными концентрациями (C x и С Т ), а поэтому при расчете результатов нормальные концентрации и эквиваленты применять незачем.

В отличие от обычных молярных концентраций, нормальная концентрация определяется с учетом химизма реакции, протекающей в ходе титрования. Полезно запомнить, чтонормальная концентрация Х в растворе либо равнаего молярной концентрации,либо превосходит ее в несколько (2,3,4....)раз,смотря по тому, сколько протонов (или электронов) участвует в реакции, в расчете на одну частицу Х. При записи уравнения реакции, определенииэквивалентов и расчете нормальных концентраций следуетучитывать условия, в которых протекает титрование, и даже выбор индикатора.

Масса оттитрованного Xпри прямомтитровании равна (в мг):

m x =N T . V T . Э x , (1),

где Э x - молярная масса эквивалента Х, соответствующая одному протону (в кислотно-основных реакциях),одному электрону (в окислительно-восстановительных реакциях),одномулиганду (в реакциях комплексообразования), и т.п. V T – объем титранта (в мл). В комплексонометриимассу определяемого вещества (в мг) лучше рассчитывать по формуле, в которую входит величина М х -молярная масса Х:

m x = С T . V T . М x (2).

Из (4.11) следует, что массовая доля Х в навеске пробы, выраженная в %, равна:

%X = N T . V T . Э x . 100 % / m S , (3),

где m S - масса навески в мг.Обычно результат титрования не зависит от того, в какомобъеме воды растворили навеску пробы перед титрованием, и этот объем в расчетах не учитывают. Если же титруют невсю навеску, анекоторую ее часть (аликвоту), то надо учесть дополнительный коэффициент К , равныйотношению V 0 -объема раствора,в который перевелиэту навеску и из которого отбирали аликвоты,к V aliq - объемуодной аликвоты:

m x = К. N T . V T . Э x , (4).

При расчете концентрации по способу прямого (или заместительного) титрованияприменяютпростую формулу, непосредственно следующую из закона эквивалентов:

N х . V х =N T . V T (5).

анализа, однако в заводских лабораториях пользуются и другими способами расчета.

Приготовление рабочих растворов в титриметрии

Применяемые в титриметрическом анализе рабочие растворы точно известной концентрации готовят несколькими способами:

· по точной навеске химического реактива , взятой на аналитических весах. Эту навеску растворяют в небольшом количестве растворителя, а затем в мерной колбе доводят объем полученного раствора до метки. Полученныерастворыназывают стандартными, а соответствующие реактивы – первичнымистандартами. Лишь немногие вещества могут быть первичными стандартами – они должны быть чистыми химическими веществами постоянного и точно известного состава, твердыми при комнатной температуре, устойчивыми на воздухе, не гигроскопичными и не летучими. Примерами могут бытьдихромат калия, комплексон III , щавелевая кислота. Напротив, по навеске нельзя приготовить стандартный раствор соляной кислоты (реактив «соляная кислота» - жидкость с неточно известным составом), хлорида двухвалентного железа (быстро окисляется на воздухе), едкого натра (гигроскопичен) и многих других веществ.

· из фиксаналов . Этим термином называют запаянную стеклянную ампулу, в которой содержится определенное количество реагента, обычно 0,1000 моль эквивалента. Фиксаналы готовят в заводских условиях. Если в лаборатории количественно перенести содержимое фиксанала в мерную колбу на 1000 мл и довести растворителем до метки, получится литр точно 0,1000 н раствора. Приготовление фиксанальных растворов не только экономит время аналитика, но ипозволяет готовить растворы с точно известной концентрацией из таких веществ, которые не обладаюткомплексом свойств, необходимых для первичных стандартов (например, фиксанальные растворы соляной кислоты,аммиака или иода).

· по приблизительно известной навеске химического реактива, взятой на технических весах. Эту навеску растворяют в приблизительно известном количестве растворителя. Затемпроводят дополнительную операцию – стандартизацию полученного раствора. Например, титруют полученным раствором точную навеску другого вещества (первичного стандарта). Можно поступить и по-другому: взять известный объем (аликвоту) приготовленного раствора и оттитровать его подходящим стандартным раствором.По объему, пошедшему на титрование, рассчитывают точную концентрацию приготовленного раствора. Такие растворы называют стандартизованными. Например, раствор КОН стандартизуют по навеске щавелевой кислоты или с помощью фиксанального раствора соляной кислоты. Если вещество в лабораторииимеется в виде концентрированного раствора приблизительно известной концентрации (например, соляная кислота), то вместо его взвешивания отмеривают некоторый, заранее рассчитанный объем концентрированного раствора. Это требует знания плотности исходного раствора. Затем, как и в предыдущем случае, стандартизуют полученный раствор.

Концентрация растворов не должна самопроизвольно изменяться при хранении. В этом случае заранее приготовленные (стандартные или стандартизованные) растворы можно будет использовать для проведения титрованийбез каких-либо дополнительных операций.Следует учесть, что чем более разбавлен раствор, тем, как правило, он менее устойчив при хранении (гидролиз растворенного вещества, его окисление кислородом воздуха, адсорбция на внутренней поверхности стеклянной посуды и др.). Поэтомурабочие растворыс низкой концентрацией, как правило, не готовят заранее. Их готовят лишь по мере надобности, в день употребления. Для этого разбавляют исходные (стандартные, фиксанальные или стандартизованные) растворы чистым растворителем в точно известное число раз (обычно за одну операцию раствор разбавляют в 5 или 10 раз). Если требуются еще более разбавленные растворы, то эту операцию повторяют. Например, из 0,1 М раствора готовят 0,01 М, из того - 0,001 М и т.д.

Приготовление растворов с точно известной концентрацией требует использованияцелого набора специальной мерной посуды, позволяющейизмерять объемы с требуемой точностью. Это мерные колбы, пипетки и бюретки. В руководствахклабораторным работам приводятся описания мерной посудыи правила работы с ней.

Методы титрования

Методотдельных навесок и метод аликвот . Дляуменьшениявлияния случайных погрешностей титрование обычно повторяют несколько раз, а затем усредняют результаты. Повторные анализыможно проводить двумя разными способами:по методу отдельных навесоки по методу аликвот. Оба способа используют и при стандартизации рабочих растворов, и непосредственнов анализереальных объектов.

Метод отдельных навесок , как ясно из его названия, предполагает, что для титрования берут несколько навесок анализируемого материала. Массы их должны быть приблизительно равны. Размер навески выбирают с учетом желаемого расхода титранта на одно титрования (не более объема бюретки) и с учетом концентрации титранта.

Пусть взяты три навески щавелевой кислоты,массы которыхуказаны в табл.2. По данным каждого титрования вычисляют (по отдельности!) концентрацию КОН. Затем усредняютконцентрации.Объемы, затраченные на титрование разных навесок,усреднять нельзя!

Таблица 2.Пример расчета результатов анализа по методу отдельных навесок

Номернавески

Массанавески,мг

Объемтитранта,мл

Найденная концентрацияКОН, моль/л

95,7

14,9

0,102

106,9

16,2

0,105

80,8

12,7

0,101

Средний результат анализаС КОН =0,103 моль/л

Метод титровпанияаликвот (или метод пипетирования) основан на титровании нсекольких отдельных аликвот – небольших объемов исследуемого раствора, отобранных с помощью пипеток.

Метод отдельных навесок и методтитрованияаликвотиспользуют не только при прямом титровании, как это показано в приведенных примерах, но и при обратном, и при заместительном титровании. Выбирая способ титрования, следует учесть, что метод отдельных навесок дает более точные результаты, но он более трудоемкий и требуетбольшего объема расчетов. Поэтому метод отдельных навесок лучше использоватьдля стандартизации рабочих растворов, а для серийно выполняемыханализов применять более экспрессный метод аликвот.

Форма кривых титрования

Логарифмические кривые титрования представляют графическую зависимостьлогарифмаравновеснойконцентрации одного из реагентов от объема добавленного титранта. Вместо логарифма концентрации на вертикальной оси обычно откладывают величину рН раствора (водородный показатель). Применяют и другие аналогичные показатели (например, pAg = - lg ), а также величину тех физико-химических свойств титруемого раствора, которые линейно зависят от логарифмов равновесных концентраций. Примером может быть электродный потенциал (E ).

Если в растворе содержитсятолько одно вещество, реагирующее с титрантом, причемреакция описывается единственным химическим уравнением (то есть проходит не ступенчато)- на логарифмической кривой наблюдается почти вертикальный участок, называемой скачком титрования . Напротив, участкикривой вдали от т.экв. близки к горизонтальным. Примером могут быть зависимости рН растворов от объема V добавленного титранта, показанные на рис.1

Рис.1. Вид кривых титрования

Чем выше высота скачка на кривой тирования, тем точнее можно зафиксировать точку эквивалентности.

Кислотно-основное титрование (метод нейтрализации)

Принцип метода

Метод нейтрализации основан на проведении кислотно-основных (протолитических) реакций. В ходе такого титрования меняетсязначение рН раствора. Кислотно-основные реакции подходят для титриметрического анализа в наибольшей степени: они протекают по строго определенным уравнениям, без побочных процессов и с очень высокой скоростью. Взаимодействие сильных кислот с сильными основаниями приводит к высоким константам равновесия. Для обнаружения к.т.т. существует удобный и хорошо изученный способ - применение кислотно-основных индикаторов. Можно использовать и инструментальные методы, они особенно важны при титровании неводных, мутныхили окрашенных растворов.

Метод нейтрализации включаетдва варианта – ацидиметрию (титрант – раствор сильной кислоты) и алкалиметрию (титрант – раствор сильного основания). Эти методы соответственно применяют для определения оснований и кислот, в том числе ионных и многопротонных. Возможность титрования сильных протолитов определяется их концентрацией; титрование возможно, если С х > 10 - 4 М .В ходе такого титрованияв водном растворе идет реакция:

H 3 O + +OH - ® 2 Н 2 О

Титрование слабых кислот и слабых оснований в водных растворах соответствует схемам:

НА+ОН - ® Н 2 О(алкалиметрия)

В+Н 3 O + ® НВ + + Н 2 О(ацидиметрия)

Примеры практического применения кислотно-основного титрования:

· определение кислотности пищевых продуктов, почв и природных вод (алкалиметрическое титрованиеводных растворов с индикатором фенолфталеином);

· определение кислотности нефтепродуктов (алкалиметрическое титрование неводных растворов с инструментальным контролем к.т.т.);

· определение карбонатов и гидрокарбонатов в минералах и строительных материалах (ацидиметрическое титрование водных растворов с двумя индикаторами);

· определение азота в солях аммония и в органических веществах (метод Кьельдаля). В этом случае органические азотсодержащие вещества разлагают кипячением с концентрированной серной кислотой в присутствии солей ртути, аммонийный азот отгоняют действием щелочи при нагревании, аммиак поглощают стандартным раствором НСl , взятым в избытке. Затем титруют щелочью непрореагировавшую часть НСl в присутствии индикатора метилового оранжевого. В данной методике используют и принцип замещения, и способ обратного титрования.

Рабочие растворы. При ацидиметрическом титровании водных растворовв качестве титрантов используют растворы сильных кислот (НСl , реже НNO 3 или H 2 SO 4). В алкалиметрии титранты - растворы NaOH или КОН. Однако перечисленные реагенты не обладают свойствами, которые позволяли бы готовитьиз них стандартные растворыпросто по точной навеске. Так, твердые щелочи гигроскопичны и всегда содержат примеси карбонатов. В случае НСl и других сильных кислот исходный реактив представляет собой не чистое вещество, а раствор с неточно известной концентрацией. Поэтому в методе нейтрализации вначале готовят раствор с приблизительно известной концентрацией, а потомстандартизуют его. Растворы кислот стандартизуют по безводному карбонату натрия Na 2 CO 3 (соде) или по тетраборату натрия Na 2 B 4 O 7 . 10Н 2 О (буре). Бура при растворении взаимодействует с водой:

В 4 О 7 2– +3Н 2 О=2Н 3 ВО 3 + 2ВО 2 –

Образовавшийся метаборат - довольно сильное основание. Его титруют кислотой:

ВО 2 – + Н 3 О + = Н 3 ВО 3 .

Очевидно, что молярная масса эквивалента буры равна М (½Na 2 B 4 O 7 . 10Н 2 О) = 190.71 г/моль. Высокая молярная масса эквивалента – преимущество буры как первичного стандарта. Растворы щелочей стандартизуют по гидрофталату калия. Молекулагидрофталатасодержит подвижный протон и обладает свойствами слабой кислоты:

В качестве стандартов нередко используют бензойную кислоту С 6 Н 5 СООН, щавелевую кислоту H 2 C 2 O 4 . 2H 2 O и другие слабые органические кислоты (твердые, чистые устойчивые вещества). Стандартные 0,1000 М растворы кислот и оснований в лабораториях обычно готовят из фиксаналов. Приготовленный раствор кислоты можно использовать для стандартизации раствора щелочи, и наоборот. Стандартизованные растворы кислот устойчивы и могут храниться без изменения сколь угодно долго. Растворы щелочей менее устойчивы, рекомендуется хранить их в парафинированной или фторопластовой посуде, чтобы не допустить взаимодействия со стеклом. Необходимо учитывать, что растворы щелочей поглощают СО 2 из воздуха, при хранении их защищают с помощью трубки, заполненной негашеной или натронной известью.

Рис. 2. Кривые нейтрализации сильной кислоты.

1 - 0,1 М, 2 - 0,01 М, 3 – 0,001 М.

Для обнаружения к.т.т. с цветным индикатором необходимо, чтобы высота скачкабыла больше, чем ширина интервала перехода индикатора. Последняя обычно составляет около двух единиц рН.

Высота скачка на кривой нейтрализации слабых кислот зависит отсилы кислоты(величины ее кислотной константы, или рK a ). А именно, чем слабее кислота (чем больше величина рК а), тем меньше при прочих равных условиях должны быть высота скачка.разной силы

1 -соляная кислота,2 – уксусная кислота (рК а = 4,8),3 – синильная кислота (pK a = 9,2).

Высота скачка должна быть большеширины зоны перехода индикатора, которая, как правило, составляет 2 единицы рН. Поэтому,как и в случае сильных электролитов, критерий возможностититрования слабого протолита с 1 %-ной ошибкой можно вывести из условия ∆p Н ±1% ≥ 2. Для водного раствора слабой кислоты получаем искомый критерий в следующей форме:

рК a + рС ≤ 8

Приp С = 2критическое значение рК а равно 6. Иными словами, если кислота очень слабая, и ее рК а больше 6, то точно оттитровать ее с цветными индикаторами нельзя.

Титрование смесей протолитов и многопротонных протолитов. В смешанных растворахсильные кислоты подавляют протолиз более слабых. То же наблюдается в растворах, содержащих смесь оснований разной силы.При добавлении к такой смеси титранта прежде всего оттитровывается более сильный протолит, а уже затем с титрантом реагирует более слабый. Однако число скачков, наблюдаемых на кривой титрования смеси, зависитне только от числа присутствующих протолитов, но и от абсолютных значений соответствующих констант кислотности (основности), а также от их соотношения. Константы кислотности (или основности) компонентов смеси должны различаться более чем в 10 4 ,раз, только в этом случае на кривой титрования будутраздельно наблюдатьсяотчетливо выраженные скачки титрования, а относительная ошибка определения каждого компонентане превысит 1 %. Критерием возможности раздельного титрования протолитов является так называемое «правило четырех единиц»:

(6)

Многопротонные протолиты реагируют с титрантамиступенчато, сначала по первой ступени, затем по второй и т.д., если соответствующие константы кислотности различаются в соответствии с условием (6).При расчете кривых нейтрализации многопротонные протолиты можно рассматривать каксмесиразных электролитов.

В качестве примера проанализируем возможность

Рис.5. Кривая титрования смеси карбонат- и гидрокарбонат-ионов раствором HCl .

Указаны значения рН, при которых наблюдаются переходы окраски индикаторов.

При титровании смеси двух сильных кислот, смеси двух одинаково слабых кислот или смеси двух оснований с близкими рК b двух раздельных скачков на кривой титрования нет. Однако определить концентрацию компонентов таких смесей по отдельности все же вполне возможно. Эти задачи успешно решают, используя дифференцирующие неводные растворители.

Кислотно-основные индикаторы и их выбор

Для обнаружения к.т.т. в методе нейтрализации традиционно используют кислотно-основные индикаторы – синтетические органические красители, являющиеся слабыми кислотами или основаниями и меняющие видимую окраску в зависимости от рН раствора.Примеры некоторых (наиболее часто применяемых в лабораториях) кислотно-основных индикаторов приведены в таблице 3. Строение и свойства индикаторов приведены в справочниках. Важнейшими характеристиками каждого кислотно-основного индикатора являются интервал перехода и показатель титрования (pT ). Интервал перехода – это зона между двумя значениями рН, соответствующими границам зоны, внутри которой наблюдается смешанная окраска индикатора. Так водный раствор метилового оранжевого наблюдатель охарактеризует как чисто желтый – при рН< 3,1 и как чисто красный при рН > 4,4, а между этими граничными значениями наблюдается смешанная, розово-оранжевая окраска разных оттенков. Ширина интервала перехода обычно составляет 2 единицы рН. Экспериментально определенные интервалы перехода индикаторов в некоторых случаях меньше или больше двух единиц рН. Это, в частности, объясняется различной чувствительностью глаза к разным участкам видимой области спектра. Для одноцветных индикаторов ширина интервала зависит и от концентрациииндикатора.

Таблица 3

Важнейшие кислотно-основные индикаторы

Индикатор

Интервалперехода ΔрН Ind

рК a (HInd )

Изменение окраски

Метиловый оранжевый

Красная - желтая

Бромкрезоловый зеленый

Желтая - синяя

Метиловый красный

Красная - желтая

Бромкрезоловый пурпурный

Желтая - фиолетовая

Бромтимоловый синий

Желтая - синяя

Феноловый красный

Желтая - красная

Тимоловый синий

Фенолфталеин

Бесцветная - красная

Зная характеристики разных индикаторов, можно теоретически обоснованно подбирать их,чтобы получить правильные результаты анализа.Придерживаются следующего правила: интервал перехода индикатора должен лежать в области скачка на кривой титрования .

При выборе индикаторов для титрования слабых протолитов необходимо учитывать, что т.экв. и скачок титрования смещены в слабощелочную среду при титровании кислоты и в слабокислую среду – при титровании основания. Следовательно, для титрования слабых кислот подходят индикаторы, меняющие свою окраску в слабощелочной среде (например, фенолфталеин), а для титрования слабого основания – индикаторы, меняющие окраску в слабокислой среде (например, метиловый оранжевый

Существует ещё одна характеристика каждого кислотно-основного индикатора –это показатель титрования (рТ). Так называют значение рН, при котором наблюдатель наиболее отчетливо замечает изменение окраски индикатора и именно в этот момент считает титрование законченным. Очевидно, рТ = рН К.Т.Т. .Выбирая подходящий индикатор, надо стремиться к тому, чтобы величина рТ была бы как можно ближе ктеоретически рассчитанной величине рН Т.ЭКВ.. Обычно значение рТблизко к середине интервала перехода. Но рT – плохо воспроизводимая величина. Разные люди, проводящие одно и то же титрование с одним и тем же индикатором, получат существенно различные значения pT .К тому же величина рТ зависит от порядка титрования, то есть от направления изменения окраски.При титровании кислот и оснований с одним и тем же индикатором значения рТбудут несколько различаться. Для одноцветных индикаторов (фенолфталеин и т.п.) величина рТ зависит и от концентрации индикатора.

Заполненной титрантом до нулевой отметки. Титровать, начиная от других отметок, не рекомендуется, так как шкала бюретки может быть неравномерной. Заполнение бюреток рабочим раствором производят через воронку или с помощью специальных приспособлений, если бюретка полуавтоматическая. Конечную точку титрования (точку эквивалентности) определяют индикаторами или физико-химическими методами (по электропроводности, светопропусканию, потенциалу индикаторного электрода и т. д.). По количеству пошедшего на титрование рабочего раствора рассчитывают результаты анализа.

Виды титриметрического анализа

Титриметрический анализ может быть основан на различных типах химических реакций:

  • кислотно-основное титрование - реакции нейтрализации ;
  • окислительно-восстановительное титрование (перманганатометрия, иодометрия , хроматометрия) - окислительно-восстановительные реакции ;
  • осадительное титрование (аргентометрия) - реакции, протекающие с образованием малорастворимого соединения, при этом изменяются концентрации осаждаемых ионов в растворе;
  • комплексонометрическое титрование - реакции, основанные на образовании прочных комплексных соединений ионов металлов с комплексоном (обычно ЭДТА), при этом изменяются концентрации ионов металлов в титруемом растворе.

Типы титрования

Различают прямое, обратное титрование и титрование заместителя.

  • При прямом титровании к раствору определяемого вещества (аликвоте или навеске, титруемому веществу) добавляют небольшими порциями раствор титранта (рабочий раствор).
  • При обратном титровании к раствору определяемого вещества добавляют сначала заведомый избыток специального реагента и затем титруют его остаток, не вступивший в реакцию.
  • При заместительном титровании к раствору определяемого вещества добавляют сначала заведомый избыток специального реагента и затем титруют один из продуктов реакции между анализируемым веществом и добавленным реагентом.

См. также

Ссылки


Wikimedia Foundation . 2010 .