1.Методы измерения:прямые и косвенные.Прямые -когда измеряется непосредственно сама измеряемая величина.(измерение темп ртутным термометром)Косвенное -когда измеряется не сама изм.вел. а величины функционально связанные с нею.(измеряют U и R а затем рассчитывают I) По принципу методы измерения делят на: 1Метод непосредственной оценки (измерение длины метром).2Метод сравнения с мерой (измерение массы груза с помощью образцовых гирь)Мера -тех.средство высокой точности измерения. 3Дифференциальный метод -при этом методе измеряется не сама изм.вел R x а ее отклонение от заданной величины R 0 .Для измерения используется специальная мостовая схема кот состоит из 4плеч: R x, R 0 , R 1 , R 2 . В схеме всегда R 1 =R 2 .Балластные сопротивления для повышения точности измерения: СД-диаганаль питания, АВ-измерительная диаганаль.Измерит схема находится в равновесии т.е потенциалы точек АиВ равны(φ А = φ В)Если выполняется условие R x R 2 =R 0 R 1 если R x =R 0 схема находится в равновесии.Если Rx отличается от R 0 то потенциал т.А отличается от потенциала т.В разность потенциалов= ∆φ= φ А -φ В (измеряется прибором).R 0 может состоять из нескольких последовательно включенных сопротивлений разной величины.Такое устройство наз магазином сопротивлений. 4Нулевой метод -при этом методе в качестве изм.прибора используется гальванометр,кот определяет разность потенциалов в изм.диаганале.Если измеряемой сопротивление R x отличается от R 0 то появляется разность потенциалов и перемещая ползунок R 0 добиваются чтобы гальванометр показывал 0.по положению ползунка и шкале определяют значение R x .5Компенсационные метод (является разновидностью нулевого и еще наз методом силовой компенсации)Разность потенциалов усиливается электронным усилителем и постоупает на реверсивный электродвигатель кот начинает перемещать ползунок R 0 и стрелку ук-теля до тех пор пока не сравняются потенциалы точек АиВ.

2.Погрешность измерения делится на Абсалютную,Относительную, Приведенную.1.Абсалютная погрешность -разность между значениями измеряемой величины и ее действит.значением.За дествит.значение принимается показания образцового прибора. ∆ абс =±(А изм -А дейст).2Приведенная -отношениеабсалютной погрешности к нормированному значению,выражается в %. ∆ прив = ∆ абс /N*100.3.Относительная -отношение абсолютной погрешности к измеренной величине,выражается в %.Погрешности могут систематич (обусловлена конструкцией прибора и не зависит от внешних факторов)случайная (зависит от условий измерения,изменение параметров окр.среды,питания)промах (вызвана неправильными действиями оператора)Допустимые погрешности ограничиваются классом точности прибора.Он определяетяс заводом изготовителем и указывается на шкале прибора или в его паспорте. Класс точности-обощенная хар-ка прибора,ограничивающая систематич и случайные погрешности.(1;1,5;2;2,5;3;4)10 n .n-ук-тель степени,единица илиотриц число..Чем не выше цифра класса точности,тем ниже точность измерения(ртутный термометр показвает темп 21,5 а показание образцового термометра-21,9. = ∆ абс /А изм *100%-относительная погрешность.К=∆ абс /N*100%-приведенная погрешность.

3.Автоматич контроль (АК)-задачей является измерение параметров техпроцесса и отображение инфы о текущем значении параметра показывающими и регистрирующими приборами.При автоматич контроле средства автоматизации не вмешиваются в управление техпроцессом даже при создании аварийной ситуации..АК может быть местным и дистанционным.При местном АК датчики и первич. Преобразователи устанавливаются непосредственно на тех.оборудовании.Показывающин приборы могут находиться на оборудовании а регистрирующие на местных щитах кот размещены на раб.месте ОТП. Дистанционный контроль упрощает управлениетехпроцессом.На раб.месте ОТП на щите расположены средства ДУ регулирующими органами(GLE-c этой панели оператор может изменить положение регулирующего органа и по прибору на этой панели контролировать насколько % открылся/закрылся регулирующий орган а по вторичному прибору наблюдать как изменилось значение контролируемого параметра. Автоматич сигнализация- предназначена для сигнализации отклонений значений параметра от заданного значения.Бывает световая и звуковая.Световая(выполняется пневматич или электрич лампами) Звуковая(электрич звонками,сиренами и ревунами).Сигнализация может быть технологич и аварийной.Технологич-предупреждает ОТП что параметр отклонился от нормы.Аварийная-техпроцесс приближается к аварийному состоянию.Используют сирены и ревуны.

4.Автоматич регулирование.САР предназначена для содержания регулируемого параметра на заданном уровне с заданной точностью длительное время.САР работает по след алгоритму:ПП получает онформацию о текущем значении регулируемого параметра и преобразует в унифиц сигнал.Тот поступает на ВП для отображения информации и на АР.АР сравнивает полученную инфу с заданием определяет величину и знак рассогласования и в соответствии с выбранным законом регулирования управляющее воздействие поступает на регулирующий орган кот изменяет энергетичи или технологич потоки и возвращает регулируемую величину к заданному значению.ОТП непосредственно не участчует в упралении а только наблюдает за ходом техпроцесса и при необходимости изменяет задание на АР

В зависимости от рода измеряемой величины,
условий проведения измерений и приемов
обработки экспериментальных данных
измерения могут классифицироваться с
различных точек зрения.
С точки зрения общих приемов получения
результатов они разделены на четыре класса:
прямые;
косвенные;
совокупные;
совместные.

Прямое измерение

Косвенное измерение

Косвенные измерения относятся к явлениям, которые непосредственно не
воспринимаются органами чувств и познание которых требует
экспериментальных устройств. Исторической предпосылкой косвенных
измерений было открытие закономерных связей и единства различных
явлений в отдельных областях природы и во всей природе в целом, что
привело к установлению закономерных связей между различными
физическими величинами.

Совокупные измерения

При этом для определения значений искомых
величин число уравнений должно быть не меньше
числа величин. Примером совокупных измерений
являются измерения, когда значение массы
отдельных гирь из набора определяют по
известному значению массы одной из гирь и по
результатам измерений масс различных сочетаний
гирь.

Совместные измерения

В настоящее время все измерения в соответствии с
физическими законами, используемыми при их
проведении, сгруппированы в 13 видов измерений. Им
в соответствии с классификацией были присвоены
двухразрядные коды видов измерений: геометрические
(27), механические (28), расхода, вместимости, уровня
(29), давления и вакуума (30), физико-химические (31),
температурные и теплофизические (32), времени и
частоты (33), электрические и магнитные (34),
радиоэлектронные (35), виброакустические (36),
оптические (37), параметров ионизирующих излучений
(38), биомедицинские (39).

10.

По физическому смыслу измерения можно было бы
делить на прямые и косвенные.
По числу измерений одной и той же величины
измерения делятся на однократные и
многократные. От числа измерений зависит
методика обработки экспериментальных данных.
При многократных наблюдениях для получения
результата измерений приходится прибегать к
статистической обработке результатов наблюдений.
По характеру изменения измеряемой величины в
процессе измерений они делятся на статические и
динамические (величина изменяется в процессе
измерений).

11.

По отношению к основным единицам измерения делятся на
абсолютные и относительные.
Абсолютное измерение – измерение, основанное на прямых
измерениях одной или нескольких основных величин и (или)
использовании значений физических констант. Например,
измерение силы F = mg основано на измерении основной
величины – массы m и использовании физической постоянной
g.
Относительное измерение – измерение отношения величины
к одноименной величине, играющей роль единицы, или
измерение изменения величины по отношению к одноименной
величине, принимаемой за исходную. Например, измерение
активности радионуклида в источнике по отношению к
активности радионуклида в однотипном источнике,
аттестованной в качестве эталонной меры активности.
Существуют и другие классификации измерений, например, по
связи с объектом (контактные и бесконтактные), по условиям
измерений (равноточные и неравноточные).

12.

13.

14.

Методы можно классифицировать по различным признакам.
1. Используемый физический принцип. По нему методы измерений
разделяют на оптические, механические, акустические,
электрические, магнитные и так далее.
2. Режим изменения во времени измерительного сигнала. В
соответствии с ним все методы измерений разделяют на статические
и динамические.
3. Способ взаимодействия средства и объекта измерений. По этому
признаку методы измерений разделяют на контактные и
бесконтактные.
4. Применяемый в средстве измерений вид измерительных сигналов.
В соответствии с ним методы разделяют на аналоговые и цифровые.

15.

Метод непосредственной оценки
Метод измерений, при котором значение величины
определяют непосредственно по показывающему
средству измерений.
Метод сравнения с мерой имеет ряд разновидностей:
метод замещения, метод дополнения, дифференциальный
метод и нулевой метод.

16.

17.

Исключение погрешности измерительного прибора из результата измерений
является новым достоинством метода замещения. Таким образом методом
замещения можно осуществить точное измерение, имея прибор с большой
погрешностью.

18.

Метод замещения является самым точным из всех
известных методов и обычно используется для
проведения наиболее точных (прецизионных)
измерений. Ярким примером метода замещения
является взвешивание с поочередным
помещением измеряемой массы и гирь на одну и
ту же чашку весов (вспомните - на один и тот же
вход прибора). Известно, что таким методом
можно правильно измерить массу тела, имея
неверные весы (погрешность прибора), но никак
не гири! (погрешность меры).

19.

Пример, иногда может быть более точным измерение
массы, при котором уравновешивают гирю, значение
которой известно с высокой точностью, измеряемой
массой и набором более легких гирь, помещенными на
другую чашку весов.

20.

Частным случаем дифференциального метода является нулевой метод
измерений - метод измерений, где в результате эффект действия
измеряемой величины и меры на компаратор доводят до нуля.
В дифференциальном методе погрешность представляет собой
погрешность измерения разности меры и измеряемой
величины. Для получения большой точности измерения
нулевым и дифференциальным методом необходимо, чтобы
погрешности измерительных приборов были невелики.

21.

Сравнивая между собой метод сравнения и метод
непосредственной оценки, мы обнаружим их
разительное сходство. Действительно, метод
непосредственной оценки по своей сути представляет
метод замещения. Почему он выделен в отдельный
метод? Все дело в том, что при измерении методом
непосредственной оценки мы выполняем только
первую операцию – определение показаний. Вторая
операция – градуировка (сравнение с мерой)
производится не при каждом измерении, а лишь в
процессе производства прибора и при его
периодических поверках. Между применением
прибора и его предыдущей поверкой может лежать
большой интервал времени, а погрешность
измерительного прибора за это время может
значительно измениться. Это и приводит к тому, что
метод непосредственной оценки дает обычно меньшую
точность измерения, чем метод сравнения.

22.

A
Градуировочная характеристика (зависимость оптической плотности от концентрации) строится по
стандартным образцам с известной концентрацией

23.

1
3
6 8
9
10
11
6
2
5
7
4
газовый тракт
Блок-схема ХЛ газоанализатора: 1 - заборный
патрубок; 2 - ротаметр, 3 - газовый
коммутатор, 4 - фильтр-поглотитель, 5 калибратор,6 - ХЛ-реактор, 7 - насос, 8 ФЭУ, 9 - усилитель, 10 - процессор, 11 индикатор.

24.

25. Стадии аналитического процесса - отбор пробы, подготовка пробы, измерение и обработка результатов - являются равнозначными

звеньями цепи, каждое из которых несет в себе объективные
и субъективные источники погрешности

Косвенное измерение

Прямое измерение

Прямое измерение - это измерение, при котором искомое значение физической величины находится непосредственно из опытных данных в результате сравнения измеряемой величины с эталонами.

  • измерение длины линейкой .
  • измерение электрического напряжения вольтметром .

Косвенное измерение

Косвенное измерение - измерение, при котором искомое значение величины находится на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям.

  • сопротивление резистора находим на основании закона Ома подстановкой значений силы тока и напряжения, получаемых в результате прямых измерений.

Совместное измерение

Совместное измерение - одновременное измерение нескольких неодноименных величин, для нахождения зависимости между ними. При этом решается система уравнений.

  • определение зависимости сопротивления от температуры . При этом измеряются неодноименные величины, по результатам измерений определяется зависимость.

Совокупное измерение

Совокупное измерение - одновременное измерение нескольких одноименных величин, при котором искомые значения величин находятся решением системы уравнений, состоящих из результирующих прямых измерений различных сочетаний этих величин.

  • измерение сопротивления резисторов, соединённых треугольником. При этом измеряется значение сопротивления между вершинами. По результатам определяются сопротивления резисторов.

Wikimedia Foundation . 2010 .

Смотреть что такое "Косвенное измерение" в других словарях:

    косвенное измерение - Определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной. Пример. Определение плотности D тела цилиндрической формы по результатам прямых… … Справочник технического переводчика

    косвенное измерение - 3.6 косвенное измерение (indirect measurement): Измерение, посредством которого отдельные компоненты и/или группы компонентов, которые не присутствуют в рабочей эталонной газовой смеси, определяются, используя относительные коэффициенты… …

    косвенное измерение - netiesioginis matavimas statusas T sritis automatika atitikmenys: angl. indirect measurement vok. indirekte Messung, f; mittelbare Messung, f rus. косвенное измерение, n pranc. mesurage indirect, m; mesure indirecte, f … Automatikos terminų žodynas

    косвенное измерение - netiesioginis matavimas statusas T sritis Standartizacija ir metrologija apibrėžtis Dydžio vertės radimas netiesioginiu būdu, kai ieškomoji vertė randama naudojant kitų dydžių tiesioginių matavimų rezultatus. pavyzdys(iai) Vienalytės medžiagos… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    косвенное измерение - netiesioginis matavimas statusas T sritis fizika atitikmenys: angl. indirect measurement vok. indirekte Messung, f rus. косвенное измерение, n pranc. mesure indirecte, f … Fizikos terminų žodynas

    Косвенное измерение - 1. Измерение, при котором искомое значение величины определяют, исходя из результатов прямых измерений других величин, связанных с искомой величиной известной функциональной зависимостью Употребляется в документе: ОСТ 45.159 2000 Отраслевая… … Телекоммуникационный словарь

    Косвенное измерение (вычисление) отдельных комплексных показателей функционирования ТОУ - Косвенное автоматическое измерение (вычисление) выполняется путем преобразования совокупности частных измеряемых величин в результирующую (комплексную) измеряемую величину с помощью функциональных преобразований и последующего прямого измерения… … Словарь-справочник терминов нормативно-технической документации

    Косвенное измерение (вычисление) отдельных комплексных показателей Функционирования ТОУ - Кос во см ос автоматическое измерение (вычисление) выполняется путем преобразования совокупности частных измеряемых величии в результирукчцук» (комплексную) измеряем)» величину с помощью функциональных преобразований и последующего прямого… … Словарь-справочник терминов нормативно-технической документации

    Измерение совокупность операций для определения отношения одной (измеряемой) величины к другой однородной величине, принятой за единицу, хранящуюся в техническом средстве (средстве измерений). Получившееся значение называется числовым значением… … Википедия

    У этого термина существуют и другие значения, см. Измерение (значения). Измерение совокупность операций для определения отношения одной (измеряемой) величины к другой однородной величине, принятой за единицу, хранящуюся в техническом… … Википедия

Метод измерений - совокупность приемов использования принципов и средств измерений.

А).Метод непосредственной оценки заключается в определения значения физической величины по отсчетному устройству измерительного прибора прямого действия. Например – измерение напряжения вольтметром.Этот метод является наиболее распространенным, но его точность зависит от точности измерительного прибора.

Б).Метод сравнения с мерой – в этом случае измеряемая величина сравнивается с величиной, воспроизводимой мерой. Точность измерения может быть выше, чем точность непосредственной оценки.

Различают следующие разновидности метода сравнения с мерой:

Метод противопоставления , при котором измеряемая и воспроизводимая величина одновременно воздействуют на прибор сравнения, с помощью которого устанавливается соотношение между величинами. Пример: измерение веса с помощью рычажных весов и набора гирь.

Дифференциальный метод , при котором на измерительный прибор воздействует разность измеряемой величины и известной величины, воспроизводимой мерой. При этом уравновешивание измеряемой величины известной производится не полностью. Пример: измерение напряжения постоянного тока с помощью дискретного делителя напряжения, источника образцового напряжения и вольтметра.

Нулевой метод , при котором результирующий эффект воздействия обеих величин на прибор сравнения доводят до нуля, что фиксируется высокочувствительным прибором – нуль-индикатором. Пример: измерение сопротивления резистора с помощью четырехплечевого моста, в котором падение напряжения на резисторе с неизвестным сопротивлением уравновешивается падением напряжения на резисторе известного сопротивления.

Метод замещения , при котором производится поочередное подключение на вход прибора измеряемой величины и известной величины, и по двум показаниям прибора оценивается значение измеряемой величины, а затем подбором известной величины добиваются, чтобы оба показания совпали. При этом методе может быть достигнута высокая точность измерений при высокой точности меры известной величины и высокой чувствительности прибора. Пример: точное точное измерение малого напряжения при помощи высокочувствительного гальванометра, к которому сначала подключают источник неизвестного напряжения и определяют отклонение указателя, а затем с помощью регулируемого источника известного напряжения добиваются того же отклонения указателя. При этом известное напряжение равно неизвестному.

Метод совпадения , при котором измеряют разность между измеряемой величиной и величиной, воспроизводимой мерой, используя совпадение отметок шкал или периодических сигналов. Пример: измерение частоты вращения детали с помощью мигающей лампы стробоскопа: наблюдая положение метки на вращающейся детали в моменты вспышек лампы, по известной частоте вспышек и смещению метки определяют частоту вращения детали.

К видам измерений (если не разделять их по видам измеряемых физических величин на линейные, оптические, электрические и др.) можно отнести измерения:

  • прямые и косвенные,
  • совокупные и совместные,
  • абсолютные и относительные,
  • однократные и многократные,
  • технические и метрологические,
  • равноточные и неравноточные,
  • равнорассеянные и неравнорассеянные,
  • статические и динамические.

Прямые и косвенные измерения различают в зависимости от способа получения результата измерений.

При прямых измерениях искомое значение величины определяют непосредственно по устройству отображения измерительной информации применяемого средства измерений. Формально без учета погрешности измерения они могут быть описаны выражением

где Q – измеряемая величина,

Косвенные измерения – измерения, при которых искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. Формальная запись такого измерения

Q = F (X, Y, Z,…),

где X, Y, Z,… – результаты прямых измерений.

Измерение некоторого множества физических величин классифицируется в соответствии с однородностью (или неоднородностью) измеряемых величин.

При совокупных измерениях осуществляется измерение нескольких одноименных величин.

Совместные измерения подразумевают измерение нескольких неодноименных величин, например, для нахождения зависимости между ними.

При измерениях для отображения результатов могут быть использованы разные оценочные шкалы, в том числе градуированные либо в единицах измеряемой физической величины, либо в различных относительных единицах, включая и безразмерные. В соответствии с этим принято различать абсолютные и относительные измерения.

По числу повторных измерений одной и той же величины различают однократные и многократные измерения, причем многократные неявно подразумевают последующую математическую обработку результатов.

В зависимости от точности измерения делят на технические и метрологические, а также на равноточные и неравноточные, равнорассеянные и неравнорассеянные.

Технические измерения выполняют с заранее установленной точностью, иными словами, погрешность технических измерений не должна превышать заранее заданного значения.

Метрологические измерения выполняют с максимально достижимой точностью, добиваясь минимальной погрешности измерения.

Оценка равноточности и неравноточности, равнорассеянности и неравнорассеянности результатов нескольких серий измерений зависит от выбранной предельной меры различия погрешностей или их случайных составляющих, конкретное значение которой определяют в зависимости от задачи измерения.

Статические и динамические измерения правильнее характеризовать в зависимости от соизмеримости режима восприятия входного сигнала измерительной информации и его преобразования. При измерении в статическом (квазистатическом) режиме скорость изменения входного сигнала несоизмеримо ниже скорости его преобразования в измерительной цепи и все изменения фиксируются без дополнительных динамических искажений. При измерении в динамическом режиме появляются дополнительные (динамические) погрешности, связанные со слишком быстрым изменением самой измеряемой физической величины или входного сигнала измерительной информации от постоянной измеряемой величины.

Метрологией называется наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Измерением называется нахождение значения физической величины опытным путем с помощью специальных технических средств . Результатом измерения является количественная характеристика физической величины в виде числа единиц измеряемой величины и погрешность, с которой получено данное число.

Виды измерений. В зависимости от способа получения числового значения измеряемой величины измерения делятся на прямые, косвенные и совокупные измерения.

Прямыми называются измерения, при которых искомое значение величины получают из опытных данных. При прямых измерениях экспериментальные операции производятся над самой измеряемой величиной. Числовое значение измеряемой величины получают в экспериментальном сравнении с мерой или по показаниям приборов. Например, измерение тока амперметром, напряжения вольтметром, температуры термометром, массы на весах.

Косвенными называют такие измерения, при которых числовое значение измеряемой величины определяется по известной функциональной зависимости через другие величины, которые можно прямо измерить. При косвенных измерениях числовое значение измеряемой величины получают с участием оператора на основе прямых измерений – решением одного уравнения. К косвенным измерениям прибегают в тех случаях, когда неудобно или невозможно осуществить автоматическое вычисление известной зависимости между одной или несколькими входными величинами и измеряемой величиной. Например, мощность в цепях постоянного тока определяет оператор, умножая напряжение на ток, измеренные прямым измерением с помощью амперметра и вольтметра.

Отклонение результата измерения от истинного значения измеряемой величины называют погрешностью измерения .

Абсолютная погрешность измерения равна разности между результатом измерения и истинным значением измеряемой величины : .

Относительная погрешность измерения представляет собой отношение абсолютной погрешности измерения к истинному значению измеряемой величины. Обычно относительная погрешность выражается в процентах %.

25. Основные понятия и определения: информация, алгоритм, программа, команда, данные, технические устройства.

Информация - от латинского слова "information", что означает сведения, разъяснения, изложение.

Применительно к компьютерной обработке данных под информацией понимают некоторую последовательность символических обозначений (букв, цифр, закодированных графических образов и звуков и т.п.), несущую смысловую нагрузку и представленную в понятном компьютеру виде. Каждый новый символ в такой последовательности символов увеличивает информационный объём сообщения.

Алгоритм - последовательность чётко определенных действий, выполнение которых ведёт к решению задачи. Алгоритм, записанный на языке машины, есть программа решения задачи.

Свойства алгоритмов: дискретность, понятность, результативность, определенность, массовость.

Программа - последовательность действий, инструкций, предписаний для некоторого вычислительного устройства; файл, содержащий эту последовательность действий.

Команда - это указание компьютерной программе действовать как некий интерпретатор для решения задачи. В более общем случае, команда - это указание некоему интерфейсу командной строки.

Данные - информация, представленная в формализованном виде, что обеспечивает возможность ее хранения, обработки и передачи.

Технические устройства (средства информатизации) – это совокупность систем, машин, приборов, механизмов, устройств и прочих видов оборудования, предназначенных для автоматизации различных технологических процессов информатики, причем таких, выходным продуктом которых является именно информация (сведения, знания) или данные, используемые для удовлетворения информационных потребностей в разных областях предметной деятельности общества.