Четырехугольником ABCD называется фигура, которая состоит из четырех точек А, В, С, D по три, не лежащих на одной прямой, и четырех отрезков AB, BC, CD и AD, соединяющих эти точки.

На рисунках изображены четырехугольники.

Точки А, В, С и D называются вершинами четырехугольника , а отрезки AB, BC, CD и AD - сторонами . Вершины А и С, В и D называются противолежащими вершинами . Стороны AB и CD, BC и AD называются противолежащими сторонами .

Четырехугольники бывают выпуклые (на рисунке - левый) и невыпуклые (на рисунке - правый).

Каждая диагональ выпуклого четырехугольника разделяет его на два треугольника (диагональ АС разделяет ABCD на два треугольника ABC и ACD; диагональ BD - на BCD и BAD). У невыпуклого четырехугольника только одна из диагоналей разделяет его на два треугольника (диагональ AC разделяет ABCD на два треугольника ABC и ACD; диагональ BD - не разделяет).

Рассмотрим основные виды четырехугольников, их свойства, формулы площади:

Параллелограмм

Параллелограммом называется четырехугольник, у которого противоположные стороны попарно параллельны.

Свойства:

Признаки параллелограмма:

1. Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник - параллелограмм.
2. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник – параллелограмм.
3. Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник – параллелограмм.

Площадь параллелограмма:

Трапеция

Трапецией называется четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны.

Основаниями называются параллельные стороны, а две другие стороны - боковыми сторонами .

Средней линией трапеции называется отрезок, соединяющий середины ее боковых сторон.

ТЕОРЕМА.

Средняя линия трапеции параллельна основаниям и равна их полусумме.

Площадь трапеции:

Ромб

Ромбом называется параллелограмм, у которого все стороны равны.

Свойства:

Площадь ромба:

Прямоугольник

Прямоугольником называется параллелограмм, у которого все углы равны.

Свойства:

Признак прямоугольника:

Если в параллелограмме диагонали равны, то этот параллелограмм – прямоугольник.

Площадь прямоугольника:

Квадрат

Квадратом называется прямоугольник, у которого все стороны равны.

Свойства :

Квадрат обладает всеми свойствами прямоугольника и ромба (прямоугольник является параллелограммом, поэтому и квадрат является параллелограммом, у которого все стороны равны, т.е. ромбом).

Площадь квадрата:

Одна из наиболее интересных тем по геометрии из школьного курса - это «Четырехугольники» (8 класс). Какие виды таких фигур существуют, какими особыми свойствами они обладают? В чем уникальность четырехугольников с углами по девяносто градусов? Давайте разберемся во всем этом.

Какая геометрическая фигура называется четырехугольником

Многоугольники, которые состоят из четырех сторон и, соответственно, из четырех вершин (углов), называются в евклидовой геометрии четырехугольниками.

Интересна история названия этого вида фигур. В российском языке существительное «четырехугольник» образовано от словосочетания «четыре угла» (точно так же, как «треугольник» - три угла, «пятиугольник» - пять углов и т. п.).

Однако на латыни (через посредничество которой пришли многие геометрические термины в большинство языков мира) он называется quadrilateral. Это слово образовано из числительного quadri (четыре) и существительного latus (сторона). Так что можно сделать вывод, что у древних этот многоугольник именовался не иначе как "четырехсторонник".

Кстати, такое название (с упором на наличие у фигур этого вида четырех сторон, а не углов) сохранилось в некоторых современных языках. Например, в английском - quadrilateral и в французском - quadrilatère.

При этом в большинстве славянских языков рассматриваемый вид фигур идентифицируют все так же по количеству углов, а не сторон. Например, в словацком (štvoruholník), в болгарском («четириъгълник»), в белорусском («чатырохкутнік»), в украинском («чотирикутник»), в чешском (čtyřúhelník), но в польском четырехугольник именуют по количеству сторон - czworoboczny.

Какие виды четырехугольников изучаются в школьной программе

В современной геометрии выделяются 4 вида многоугольников с четырьмя сторонами.

Однако из-за слишком сложных свойств некоторых из них на уроках геометрии школьников знакомят только с двумя видами.

  • Параллелограмм (parallelogram). Противолежащие стороны четырехугольника такого попарно параллельны между собой и, соответственно, равны также попарно.
  • Трапеция (trapezium или trapezoid). Этот четырехугольник состоит из двух противолежащих сторон, параллельных между собой. Однако другая пара сторон не имеет такой особенности.

Не изучаемые в школьном курсе геометрии виды четырехугольников

Помимо вышеперечисленных, существуют еще два вида четырехугольников, с которыми школьников не знакомят на уроках геометрии, из-за их особой сложности.

  • Дельтоид (kite) - фигура, в которой каждая из двух пар смежных сторон равна по длине между собою. Свое название такой четырехугольник получил из-за того, что по внешнему виду он довольно сильно напоминает букву греческого алфавита - «дельта».
  • Антипараллелограмм (antiparallelogram) - эта фигура так же сложна, как и ее название. В ней две противоположные стороны равны, но при этом они не параллельны между собою. Кроме того, длинные противоположные стороны этого четырехугольника пересекаются между собой, как и продолжения двух других, более коротких сторон.

Виды параллелограмма

Разобравшись с основными видами четырехугольников, стоит обратить внимание на его подвиды. Так, все параллелограммы, в свою очередь, тоже делятся на четыре группы.

  • Классический параллелограмм.
  • Ромб (rhombus) - четырехугольная фигура с равными сторонами. Ее диагонали пересекаются под прямым углом, деля ромб на четыре равных прямоугольных треугольника.
  • Прямоугольник (rectangle). Название это говорит само за себя. Так как это четырехугольник с прямыми углами (каждый из них равен девяноста градусам). Противоположные стороны его не только параллельны между собою, но и равны.
  • Квадрат (square). Как и прямоугольник, это четырехугольник с прямыми углами, но у него все стороны равны между собой. Этим данная фигура близка к ромбу. Так что можно утверждать, что квадрат - это нечто среднее между ромбом и прямоугольником.

Особые свойства прямоугольника

Рассматривая фигуры, в которых каждый из углов между сторонами, равен девяноста градусам, стоит более внимательно остановиться на прямоугольнике. Итак, какими особенными он обладает признаками, отличающими его от других параллелограммов?

Чтобы утверждать, что рассматриваемый параллелограмм - прямоугольник, его диагонали должны быть равны между собою, а каждый из углов - прямыми. Кроме того, квадрат его диагоналей должен соответствовать сумме квадратов двух смежных сторон этой фигуры. Иными словами, классический прямоугольник состоит из двух прямоугольных треугольников, а в них, как известно, В роли гипотенузы выступает диагональ рассматриваемого четырехугольника.

Последний из перечисленных признаков этой фигуры является также ее особенным свойством. Помимо этого, есть и другие. Например, то, что все стороны изучаемого четырехугольника с прямыми углами - это одновременно и его высоты.

Кроме того, если вокруг любого прямоугольника начертить круг, его диаметр будет равен диагонали вписанной фигуры.

Среди других свойств четырехугольника этого, то, что он является плоским и в неевклидовой геометрии не существует. Это связано с тем, что в такой системе отсутствуют четырехугольные фигуры, сумма углов которых равна трехстах шестидесяти градусам.

Квадрат и его особенности

Разобравшись с признаками и свойствами прямоугольника, стоит обратить внимание на второй известный науке четырехугольник с прямыми углами (это квадрат).

Являясь по факту тем же прямоугольником, но с равными сторонами, эта фигура обладает всеми его свойствами. Но в отличие от него, квадрат присутствует в неевклидовой геометрии.

Кроме этого, у данной фигуры, есть и другие собственные отличительные черты. Например, то, что диагонали квадрата не просто равны между собою, но и пересекаются под прямым углом. Таким образом, как и ромб, квадрат состоит из четырех прямоугольных треугольников, на которые ее делят диагонали.

Помимо этого, данная фигура является самой симметричным среди всех четырехугольников.

Чему равна сумма углов четырехугольника

Рассматривая особенности четырехугольников евклидовой геометрии, стоит обратить внимание на их углы.

Так, в каждой из вышеперечисленных фигур, независимо от того, есть у нее прямые углы или нет, общая сумма их всегда одинакова - триста шестьдесят градусов. Это уникальная отличительная черта этого вида фигур.

Периметр четырехугольников

Разобравшись с тем, чему равна сумма углов четырехугольника и другими особенными свойствами фигур этого вида, стоит узнать, какими формулами лучше всего пользоваться, чтобы вычислить их периметр и площадь.

Чтобы определить периметр любого четырехугольника, нужно лишь сложить между собою длину всех его сторон.

Например, в фигуре KLMN ее периметр можно вычислить по формуле: Р = KL + LM + MN + KN. Если подставить сюда числа, получится: 6 + 8 + 6 + 8 = 28 (см).

В случае когда рассматриваемая фигура - это ромб или квадрат, для нахождения периметра можно упростить формулу, просто помножив длину одной из его сторон на четыре: Р = KL х 4. Например: 6 х 4=24 (см).

Формулы четырехугольников площади

Разобравшись с тем, как найти периметр любого фигуры с четырьмя углами и сторонами, стоит рассмотреть наиболее популярные и простые способы нахождения ее площади.


Другие свойства четырехугольников: вписанные и описанные окружности

Рассмотрев особенности и свойства четырехугольника как фигуры евклидовой геометрии, стоит обратить внимание на возможность описывать вокруг или вписывать внутри него круги:

  • Если суммы противолежащих углов фигуры составляют по сто восемьдесят градусов и попарно равны между собою, то вокруг такого четырехугольника можно свободно описать окружность.
  • Согласно теореме Птолемея, если снаружи многоугольника с четырьмя сторонами описан круг, то произведение его диагоналей равно сумме произведений противоположных сторон данной фигуры. Таким образом, формула будет выглядеть так: КМ х LN = KL х MN + LM х KN.
  • Если построить четырехугольник, в котором суммы противоположных сторон равны между собою, то в него можно вписать круг.

Разобравшись с тем, что такое четырехугольник, что за виды его существуют, какие из них имеют только прямые углы между сторонами и какими свойствами они обладают, стоит запомнить весь этот материал. В особенности формулы нахождения периметра и площади рассмотренных многоугольников. Ведь фигуры такой формы - одни из самых распространенных, и эти знания могут пригодиться для вычислений в реальной жизни.

Инструкция

Определим длину диагонали прямоугольника со сторонами 3 и 4 см.

Находим сумму квадратов сторон прямоугольника 32 + 42 = 9 + 16 = 25.

Извлечь из полученного результата квадратный корень – длина диагонали 5 см.

Видео по теме

Обратите внимание

Диагонали прямоугольника равны. Если найдена длина одной, то длина второй будет абсолютно такой же.

Источники:

  • как найти длину диагонали в прямоугольнике

Квадрат – красивая и простая плоская геометрическая фигура. Это прямоугольник с равными сторонами. Как же найти диагональ квадрата , если известна длина его стороны?

Инструкция

длина диагонали квадрата равна длине его стороны умноженной на из двух.

Видео по теме

Полезный совет

Если точность математического результата не очень важна, то вместо корня из двух можно использовать его приблизительное значение 1,41.

Совет 6: Как найти диагональ параллелограмма, если даны стороны

Параллелограмм - это четырехугольник, противоположные стороны которого параллельны. Прямые, соединяющие его противоположные углы, называются диагоналями. Их длина зависит не только от длин сторон фигуры, но и от величин углов в вершинах этого многоугольника, поэтому без знания хотя бы одного из углов вычислить длины диагоналей можно только в исключительных случаях. Таковыми являются частные случаи параллелограмма - квадрат и прямоугольник.

Инструкция

Если длины всех сторон параллелограмма одинаковы (a), то эту фигуру можно назвать еще и квадратом. Величины всех его углов 90°, а длины диагоналей (L) одинаковы и могут быть рассчитаны по теореме Пифагора для прямоугольного треугольника. Умножьте длину стороны на корень из двойки - результат и будет длиной каждой из его диагоналей: L=a*√2.

Если о параллелограмме известно, что он прямоугольником с указанными в длиной (a) и шириной (b), то и в этом случае длины диагоналей (L) будут равны. И здесь тоже задействуйте теорему Пифагора для треугольника, в котором гипотенузой является диагональ, а катетами - две смежные стороны четырехугольника. Искомую величину рассчитайте извлечением корня из возведенных в квадрат и прямоугольника: L=√(a²+b²).

Для всех остальных случаев знания одних только длин сторон хватит лишь для величины, включающей в себя длины сразу обеих диагоналей - сумма их квадратов по определению равна удвоенной сумме квадратов длин сторон. Если же в к длинам двух смежных сторон параллелограмма (a и b) известен еще и угол между ними (γ), то это позволит рассчитать длины каждого отрезка, соединяющего противоположные углы . Длину диагонали (L₁), лежащей напротив известного угла, найдите по теореме косинусов - сложите квадраты длин смежных сторон, от результата отнимите произведение этих же длин на косинус угла между ними, а из полученной величины извлеките квадратный корень: L₁ = √(a²+b²-2*a*b*cos(γ)). Для нахождения длины другой диагонали (L₂) можно воспользоваться свойством параллелограмма, приведенным в начале этого шага - удвойте сумму квадратов длин двух сторон, от результата отнимите квадрат уже рассчитанной диагонали, а из полученного значения извлеките корень. В общем виде эту формулу можно записать так: L₂ = √(a²+b²- L₁²) = √(a²+b²-(a²+b²-2*a*b*cos(γ))) = √(a²+b²-a²-b²+2*a*b*cos(γ)) = √(2*a*b*cos(γ)).

Источники:

  • как найти длину диагонали параллелограмма

Можно назвать параллелограмм, диагонали которого делят пополам углы, лежащие в вершинах фигуры. Кроме этого свойства диагонали ромба примечательны тем, что являются осями симметрии многоугольника, пересекаются только под прямым углом, а единственная общая точка делит каждую из них на два равных отрезка. Эти свойства позволяют легко рассчитать длину одной из диагоналей, если известна длина другой и еще какой-нибудь параметр фигуры - размер стороны, угол в одной из вершин, площадь и т.д.

Инструкция

Если кроме длины одной из (l) о рассматриваемом четырехугольнике известно, что он частным случаем ромба - квадратом, никаких расчетов производить не придется. В этом случае длины обеих диагоналей - просто приравняйте искомую величину (L) к известной: L=l.

Знание длины стороны ромба (a) в дополнение к длине одной из диагоналей (l) позволит длину другой (L) по теореме Пифагора. Это потому, что две половины пересекающихся диагоналей образуют со стороной ромба прямоугольный треугольник. Половины диагоналей в нем являются катетами, а сторона - гипотенузой, поэтому равенство, вытекающее из теоремы Пифагора записать так: a² = (l/2)² + (L/2)². Для использования в расчетах преобразуйте его к такому виду: L = √(4*a²-l²).

При известной величине одного из углов (α) ромба и длине одной из диагоналей (l) для нахождения величины другой (L) рассмотрите тот же прямоугольный треугольник. Тангенс половины известного угла в нем отношению длины противолежащего катета - половины диагонали l - к прилежащему - половине диагонали L: tg(α/2) = (l/2)/(L/2) = l/L. Поэтому для искомой величины используйте формулу L = l/tg(α/2).

Если в условиях задачи приведена длина периметра (P) ромба и размер его диагонали (l), формулу вычисления длины второй (L) можно свести к равенству, использованному во втором шаге. Для этого разделите периметр на четверку и замените этим выражением длину стороны в : L = √(4*(P/4)²-l²) = √(P²/4-l²).

В исходных условиях кроме длины одной из диагоналей (l) может быть приведена и площадь (S) фигуры. Тогда для вычисления длины второй диагонали ромба (L) используйте очень простой алгоритм - удвойте площадь и разделите полученное значение на длину известной диагонали: L = 2*S/l.

Сегодня рассмотрим геометрическую фигуру - четырехугольник. Из названия этой фигуры уже становится понятно, что у этой фигуры есть четыре угла. А вот остальные характеристики и свойства этой фигуры мы рассмотрим ниже.

Что такое четырех угольник

Четырёхугольник - многоугольник, состоящий из четырех точек (вершин) и четырёх отрезков (сторон), попарно соединяющих эти точки. Площадь четырехугольника равна полупроизведению его диагоналей и угла между ними.

Четырехугольник - это многоугольник с четырьмя вершинами, три из которых не лежат на одной прямой.

Виды четырехугольников

  • Четырехугольник, у которого противоположные стороны попарно параллельны, называется параллелограммом.
  • Четырехугольник, у которого две противоположные стороны параллельны, а две другие − нет, называется трапецией.
  • Четырехугольник, у которого все углы прямые, является прямоугольником.
  • Четырехугольник, у которого все стороны равны, является ромбом.
  • Четырехугольник, у которого все стороны равны и все углы прямые, называется квадратом.
Четырехугольник может быть:


Самопересекающимся


Невыпуклым


Выпуклым

Самопересекающийся четырехугольник - это четырехугольник, у которого любые из его сторон имеют точку пересечения (на рисунке синим цветом).

Невыпуклый четырехугольник - это четырехугольник, в котором один из внутренних углов более 180 градусов (на рисунке обозначен оранжевым цветом).

Сумма углов любого четырехугольника, который не является самоперсекающимся всегда равна 360 градусов.

Особые виды четырехугольников

Четырехугольники могут обладать дополнительными свойствами, образуя особые виды геометрических фигур:

  • Параллелограмм
  • Прямоугольник
  • Квадрат
  • Трапеция
  • Дельтоид
  • Контрпараллелограмм

Четырехугольник и окружность

Четырехугольник, описанный вокруг окружности (окружность, вписанная в четырехугольник).

Главное свойство описанного четырехугольника:

Четырехугольник можно описать вокруг окружности тогда и только тогда, когда суммы длин противоположных сторон равны.

Четырехугольник, вписанный в окружность (окружность, описанная вокруг четырехугольника)

Главное свойство вписанного четырехугольника:

Четырехугольник можно вписать в окружность тогда и только тогда, когда суммы противоположных углов равны 180 градусов.

Свойства длин сторон четырехугольника

Модуль разности любых двух сторон четырёхугольника не превосходит суммы двух других его сторон.

|a - b| ≤ c + d

|a - c| ≤ b + d

|a - d| ≤ b + c

|b - c| ≤ a + d

|b - d| ≤ a + b

|c - d| ≤ a + b

Важно . Неравенство верно для любой комбинации сторон четырехугольника. Рисунок приведен исключительно для облегчения восприятия.

В любом четырёхугольнике сумма длин трёх его сторон не меньше длины четвёртой стороны .

Важно . При решении задач в пределах школьной программы можно использовать строгое неравенство (<). Равенство достигается только в случае, если четырехугольник является "вырожденным", то есть три его точки лежат на одной прямой. То есть эта ситуация не попадает под классическое определение четырехугольника.


В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.