Общая характеристика мкротрубочек

Одним из обязательных компонентов цитоскелета эукариот являются микротрубочки (рис. 265). Это нитчатые неветвящиеся структуры, толщиной 25 нм, состоящие из белков-тубулинов и ассоциированных с ними белков. Тубулины микротрубочек при полимеризации образуют полые трубки, откуда и их название. Длина их может достигать нескольких мкм; самые длинные микротрубочки встречаются в составе аксонемы хвостов спермиев.

Микротрубочки встречаются в цитоплазме интерфазных клеток, где они располагаются поодиночке или небольшими рыхлыми пучками, или в виде плотноупакованных микротрубочек в составе центриолей, базальных телец и в ресничках и жгутиках. При делении клеток большая часть микротрубочек клетки входит в состав веретена деления.

В морфологическом отношении микротрубочки представляют собой длинные полые цилиндры с внешним диаметром 25 нм (рис. 266). Стенка микротрубочек состоит из полимеризованных молекул белка тубулина. При полимеризации молекулы тубулина образуют 13 продольных протофиламентов, которые скручиваются в полую трубку (рис. 267). Размер мономера тубулина составляет около 5 нм, равного толщине стенки микротрубочки, в поперечном сечении которой видны 13 глобулярных молекул.

Молекула тубулина представляет собой гетеродимер, состоящий из двух разных субъедниц, из –тубулина и – тубулина, которые при ассоциации образуют собственно белок тубулин, изначально поляризованный. Обе убъединицы мономера тубулина связаны с ГТФ, однако на -субъдинице ГТФ не подвергается гидролизу, в отличие от ГТФ на -субъединице, где при полимеризации происходит гидролиз ГТФ до ГДФ. При полимеризации молекулы тубулина объединяются таким образом, что с -субъединицей одного белка ассоциирует –субъединица следующего белка и т.д. Следовательно, отдельные протофибриллы возникают как полярные нити, и соответственно вся микротрубочка тоже является полярной структурой, имеющей быстро растущий (+)-конец и медленно растущий (-) конец (рис. 268).

При достаточной концентрации белка полимеризация происходит спонтанно. Но при спонтанной полимеризации тубулинов происходит гидролиз одной молекулы ГТФ, связанной с -тубулином. Во время наращивания длины микротрубочки связывание тубулинов происходит с большей скоростью на растущем (+)-конце. Но при недостаточной концентрации тубулина микротрубочки могут разбираться с обоих концов. Разборке микротрубочек способствует понижение температуры и наличие ионов Са ++ .

Существует ряд веществ, которые влияю на полимеризацию тубулина. Так, алкалоид колхицин, содержащийся в безвременнике осеннем (Colchicum autumnale) , связывается с отдельными молекулами тубулина и предотвращает их полимеризацию. Это приводит к падению концентрации свободного тубулина, способного к полимеризации, что вызывает быструю разборку цитоплазматических микротрубочек и микротрубочек веретена деления. Таким же действие обладают колцемид и нокодозол, при отмывании которых происходит полное восстановление микротрубочек.

Стабилизирующим действие на микротрубочки обладает таксол, который способствует полимеризации тубулина даже при его низких концентрациях.

Все это показывает, что микротрубочки являются очень динамичными структурами, которые могут достаточно быстро возникать и разбираться.

В составе выделенных микротрубочек обнаруживаются ассоциированные с ними дополнительные белки, т.н. МАР-белки (МАР- microtubule accessory proteins). Эти белки, стабилизируя микротрубочки, ускоряют процесс полимеризации тубулина (рис. 269).

В последнее время процесс сборки и разборки микротрубочек стали наблюдать в живых клетках. После введения в клетку меченых флуорохромами антител к тубулину и при использовании электронных систем усиления сигнала в световом микроскопе, можно видеть, что в живой клетке микротрубочки растут, укорачиваются, исчезают, т.е. постоянно находятся в динамической нестабильности. Оказалось, что среднее время полужизни цитоплазматических микротрубочек составляет всего лишь 5 минут. Так за 15 минут около 80% всей популяции микротрубочек обновляется. При этом отдельные микротрубочки могут на растущем конце медленно (4-7 мкм\мин) удлиняться, а затем достаточно быстро (14-17 мкм\мин) укорачиваться. В живых клетках микротрубочки в составе веретена деления имеют время жизни около 15-20 сек. Считается, что динамическая нестабильность цитоплазматических микротрубочек связана с задержкой гидролиза ГТФ, это приводит к тому, что на (+)-конце микротрубочки образуется зона, содержащая негидролизованные нуклеотиды (“ГТФ-колпачок”). В этой зоне молекулы тубулина связываются с большим сродством друг к другу, и, следовательно, скорость роста микротрубочки возрастает. Наоборот, при потере этого участка, микротрубочки начинают укорачиваться.

Однако 10-20% микротрубочек остаются относительно стабильными достаточно долгое время (до нескольких часов). Такая стабилизация наблюдается в большой степени в дифференцированных клетках. Стабилизация микротрубочек связана или с модификацией тубулинов или с их связыванием с дополнительными (МАР) белками микротрубочек и с другими клеточными компонентами.

Ацетилирование лизина в составе тубулинов значительно увеличивает стабильность микротрубочек. Другим примером модификации тубулинов может быть удаление терминального тирозина, что также характерно для стабильных микротрубочек. Эти модификации обратимы.

Сами микротрубочки не способны к сокращению, однако они являются обязательными компонентами многих движущихся клеточных структур, таких как реснички и жгутики, как веретено клетки во время митоза, как микротрубочки цитоплазмы, которые обязательны для целого ряда внутриклеточных транспортов, таких как экзоцитоз, движение митохондрий и др.

В целом же роль цитоплазматических микротрубочек может быть сведена к двум функциям: скелетной и двигательной. Скелетная, каркасная, роль заключается в том, что расположение микротрубочек в цитоплазме стабилизирует форму клетки; при растворении микротрубочек клетки, имевшие сложную форму, стремятся приобрести форму шара. Двигательная роль микротрубочек заключается не только в том, что они создают упорядоченную, векторную, систему движения. Микротрубочки цитоплазмы в ассоциации со специфическими ассоциированными моторными белками образуют АТФ-азные комплексы, способные приводить в движение клеточные компоненты.

Практически во всех эукариотических клетках в гиалоплазме можно видеть длинные неветвящиеся микротрубочки. В больших количествах они обнаруживаются в цитоплазматических отростках нервных клеток, в отростках меланоцитов, амеб и других изменяющих свою форму клетках (рис. 270). Они могут быть выделены сами или же можно выделить их образующие белки: это те же тубулины со всеми их свойствами.

Центры организации микротрубочек.

Рост микротрубочек цитоплазмы происходит полярно: наращивается (+)-конец микротрубочки. Так как время жизни микротрубочек очень коротко, то должно постоянно происходить образование новых микротрубочек. Процесс начала полимеризации тубулинов, нуклеация , происходит в четко ограниченных участках клетки, в т.н. центрах организации микротрубочек (ЦОМТ). В зонах ЦОМТ происходит закладка коротких микротрубочек, обращенных своими (-)-концами к ЦОМТ. Считается, что в зонах ЦОМТ (--)-концы заблокированы специальными белками, предотвращающими или ограничивающими деполимеризацию тубулинов. Поэтому при достаточном количестве свободного тубулина будет происходить наращивание длины микротрубочек, отходящих от ЦОМТ. В качестве ЦОМТ в клетках животных участвуют главным образом клеточные центры, содержащие центриоли, о чем будет сказано позже. Кроме того в качестве ЦОМТ может служить ядерная зона, и во время митоза полюса веретена деления.

Наличие центров организации микротрубочек доказывается прямыми экспериментами. Так, если в живых клетках полностью деполимеризовать микротрубочки или с помощью колцемида или путем охлаждения клеток, то после снятия воздействия первые признаки появления микротрубочек будут появляться в виде радиально расходящихся лучей, отходящих от одного места (цитастер). Обычно у клеток животного происхождения цитастер возникает в зоне клеточного центра. После такой первичной нуклеации микротрубочки начинают отрастать от ЦОМТ и заполнять всю цитоплазму. Следовательно, растущие периферические концы микротрубочек будут всегда (+)-концами, а (-)-концы будут располагаться в зоне ЦОМТ (рис. 271, 272).

Цитоплазматические микротрубочки возникают и расходятся от одного клеточного центра, с которым многие теряют связь, могут быстро разбираться, или, наоборот, могут стабилизироваться при ассоциации с дополнительными белками.

Одно из функциональных назначений микротрубочек цитоплазмы заключается в создании эластичного, но одновременно устойчивого внутриклеточного скелета, необходимого для поддержания формы клетки. Найдено, что у дисковидных по форме эритроцитов амфибий по периферии клетки лежит жгут циркулярно уложенных микротрубочек; пучки микротрубочек характерны для различных выростов цитоплазмы (аксоподии простейших, аксоны нервных клеток и т.д.).

Действие колхицина, вызывающего деполимеризацию тубулинов, сильно меняет форму клетки. Так, если отросчатую и плоскую клетку в культуре фибробластов обработать колхицином, то она теряет полярность. Точно таким же образом ведут себя другие клетки: колхицин прекращает рост клеток хрусталика, отростков нервных клеток, образование мышечных трубок и т.д. Так как при этом не исчезают элементарные формы присущего клеткам движения, такие, как пиноцитоз, ундулирующие движения мембран, образование мелких псевдоподий, то, роль микротрубочек заключается в образовании каркаса для поддержания клеточного тела, для стабилизации и укрепления клеточных выростов. Кроме того, микротрубочки участвуют в процессах роста клеток. Так, у растений в процессе растяжения клеток, когда за счет увеличения центральной вакуоли происходит значительный рост объема клеток, большие количества микротрубочек появляются в периферических слоях цитоплазмы. В этом случае микротрубочки, так же как и растущая в это время клеточная стенка, как бы армируют, механически укрепляют цитоплазму.

Создавая такой внутриклеточный скелет, микротрубочки могут быть факторами ориентированного движения внутриклеточных компонентов, задавать своим расположением пространства для направленных потоков разных веществ и для перемещения крупных структур. Так, в случае меланофоров (клетки, содержащие пигмент меланин) рыб при росте клеточных отростков гранулы пигмента передвигаются вдоль пучков микротрубочек. Разрушение микротрубочек колхицином приводит к нарушению транспорта веществ в аксонах нервных клеток, к прекращению экзоцитоза и блокаде секреции. При разрушении микротрубочек цитоплазмы происходит фрагментация и разбегание по цитоплазме аппарата Гольджи, разрушение митохондриального ретикулума.

Долгое время считалось, что участие микротрубочек в движении цитоплазматических компонентов заключается лишь в том, что они создают систему упорядоченного движения. Иногда в популярной литературе цитоплазматические микротрубочки сравнивают с железнодорожными рельсами, без которых движение поездов невозможно, но которые сами по себе ничего не двигают. Одно время предполагали, что двигателем, локомотивом, может быть система актиновых филаментов, но оказалось, что механизм внутриклеточного перемещения различных мембранных и немембранных компонентов связан с группой иных белков.

Прогресс был достигнут при изучении т.н. аксонального транспорта в гигантских нейронах кальмара. Аксоны, отростки нервных клеток, могут иметь большую длину и заполнены большим числом микротрубочек и нейрофиламентов. В аксонах живых нервных клеток можно наблюдать перемещение различных мелких вакуолей и гранул, которые двигаются как от тела клетки к нервному окончанию (антероградный транспорт), так и в противоположном направлении (ретроградный транспорт). Если аксон перетянуть тонкой лигатурой, то такой транспорт приведет к скоплению мелких вакуолей по обе стороны от перетяжки. Вакуоли, двигающиеся антероградно, содержат различные медиаторы, в том же направлении могут двигаться и митохондрии. Ретроградно двигаются вакуоли, образовавшиеся в результате эндоцитоза при рециклировании мембранных участков. Эти движения происходят с относительно высокой скоростью: от тела нейрона – 400 мм в сутки, в направлении к нейрону –200-300 мм в сутки (рис. 273).

Оказалось, что из отрезка гигантского аксона кальмара можно выделить аксоплазму, содержимое аксона. В капле выделенной аксоплазмы продолжается движение мелких вакуолей и гранул. С помощью видеоконтрастного устройства можно видеть, что движение мелких пузырьков происходит вдоль тонких нитчатых структур, вдоль микротрубочек. Из этих препаратов были выделены белки, ответственные за движение вакуолей. Один из них кинезин , белок с молекулярным весом около 300 тыс. Он состоит из двух сходных тяжелых полипептидных цепей и нескольких легких. Каждая тяжелая цепь образует глобулярную головку, которая при ассоциации с микротрубочкой обладает АТФ-азной активностью, в то время как легкие цепи связываются с мембраной пузырьков или других частиц (рис. 274). При гидролизе АТФ изменяется конформация молекулы кинезина и генерируется перемещение частицы в направлении к (+)-концу микротрубочки. Оказалось возможным приклеить, иммобилизовать молекулы кинезина на поверхности стекла; если к такому препарату в присутствии АТФ добавить свободные микротрубочки, то последние начинают двигаться. Наоборот, можно иммобилизовать микротрубочки, но добавить к ним мембранные пузырьки, связанные с кинезином – пузырьки начинают двигаться вдоль микротрубочек.

Существует целое семейство кинезинов, обладающих сходными моторными головками, но отличающихся хвостовыми доменами. Так, цитозольные кинезины участвуют в транспорте по микротрубочкам везикул, лизосом и других мембраных органелл. Многие из кинезинов связываются специфически со своими грузами. Так некоторые участвуют в переносе только митохондрий, другие – только синаптических пузырьков. Кинезины связываются с мембранами через мембранные белковые комплексы – кинектины. Кинезины веретена деления участвуют в образовании этой структуры и в расхождении хромосом.

За ретроградный транспорт в аксоне отвечает другой белок – цитоплазматический динеин (рис. 275).

Он состоит из двух тяжелых цепей – головок, взаимодействующих с микротрубочками, нескольких промежуточных и легких цепей, которые связываются с мембранными вакуолями. Цитоплазматический динеин является моторным белком, переносящим грузы к минус-концу микротрубочек. Динеины также делятся на два класса: цитозольные – участвующие в переносе вакуолей и хромосом, и аксонемные – отвечающие за движение ресничек и жгутиков.

Цитоплазматические динеины и кинезины были обнаружены практически во всех типах клеток животных и растений.

Таким образом, и в цитоплазме движение осуществляется по принципу скользящих нитей, только вдоль микротрубочек перемещаются не нити, а короткие молекулы – движетели, связанные с перемещающимися клеточными компонентами. Сходство с актомиозиновым комплексом этой системы внутриклеточного транспорта заключается в том, что образуется двойной комплекс (микротрубочка + движетель), обладающий высокой АТФ-азной активностью.

Как мы видим, микротрубочки образуют в клетке радиально расходящиеся поляризованные фибриллы, (+)-концы которых направлены от центра клетки к периферии. Наличие же (+) и (-)-направленных моторные белков (кинезинов и динеинов) создает возможность для переноса в клетке её компонентов как от периферии к центру (эндоцитозные вакуоли, рециклизация вакуолей ЭР и аппарата Гольджи и др), так и от центра к периферии (вакуоли ЭР, лизосомы, секреторные вакуоли и др) (рис. 276). Такая полярность транспорта создается за счет организации системы микротрубочек, возникающих в центрах их организации, в клеточном центре.

Полярны: на одном конце происходит самосборка микротрубочки, на другом - разборка. В клетках микротрубочки играют роль структурных во многих клеточных процессах.

Строение

Микротрубочки - это структуры, в которых 13 протофиламентов, состоящих из гетеродимеров α- и β-тубулина, уложены по окружности полого цилиндра. Внешний диаметр цилиндра около 25 нм, внутренний - около 15.

Один из концов микротрубочки, называемый плюс-концом, постоянно присоединяет к себе свободный тубулин. От противоположного конца - минус-конца - тубулиновые единицы отщепляются.

β-тубулин

В образовании микротрубочки выделяют три фазы:

  • Замедленная фаза, или нуклеация. Это этап зарождения микротрубочки, когда молекулы тубулина начинают соединяться в более крупные образования. Такое соединение происходит медленнее, чем присоединение тубулина к уже собранной микротрубочке, поэтому фаза и называется замедленной.
  • Фаза полимеризации, или элонгация. Если концентрация свободного тубулина высока, его полимеризация происходит быстрее, чем деполимеризация на минус-конце, за счёт чего микротрубочка удлиняется. По мере её роста концентрация тубулина падает до критической, и скорость роста замедляется вплоть до вступления в следующую фазу.
  • Фаза стабильного состояния. Деполимеризация уравновешивает полимеризацию, и рост микротрубочки останавливается.

Лабораторные исследования показывают, что сборка микротрубочек из тубулинов происходит только в присутствии гуанозинтрифосфата и ионов магния .

Видео по теме

Динамическая нестабильность

Микротрубочки являются динамическими структурами и в клетке постоянно полимеризуются и деполимеризуются. Центросома , локализованная вблизи ядра , выступает в клетках животных и многих протистов как центр организации микротрубочек (ЦОМТ): они растут от неё к периферии клетки. В то же время микротрубочки могут внезапно прекратить свой рост и укоротиться обратно по направлению к центросоме вплоть до полного разрушения, а затем вырасти снова. При присоединении к микротрубочке молекулы тубулина, несущие ГТФ , образуют «шапочку», которая обеспечивает рост микротрубочки. Если локальная концентрация тубулина падает, связанная с бета-тубулином ГТФ постепенно гидролизуется. Если полностью гидролизуется ГТФ «шапочки» на +-конце, это приводит к быстрому распаду микротрубочки. Таким образом, сборка и разборка микротрубочек связана с затратами энергии ГТФ.

Динамическая нестабильность микротрубочек играет важную физиологическую роль. Например, при делении клетки микротрубочки растут очень быстро и способствуют правильной ориентации хромосом и образованию митотического веретена .

Функция

Микротрубочки в клетке используются в качестве «рельсов» для транспортировки частиц. По их поверхности могут перемещаться мембранные пузырьки и митохондрии. Транспортировку по микротрубочкам осуществляют белки, называемые моторными . Это высокомолекулярные соединения, состоящие из двух тяжёлых (массой около 300 кДа) и нескольких лёгких цепей. В тяжёлых цепях выделяют головной и хвостовой домены. Два головных домена связываются с микротрубочками и являются собственно двигателями, а хвостовые - связываются с органеллами и другими внутриклеточными образованиями, подлежащими транспортировке.

Выделяют два вида моторных белков:

  • цитоплазматические динеины ;

Организация и динамика

Микротрубочки чрезмерно чувствительны к биотическим и абиотическим факторам окружающей среды (холоду, освещению, засухе, засолению, влиянию гербицидов и пестицидов , затоплению, сжатию, воздействию электрического поля , давлению и силе тяжести), а также к фитогормонам , антимитотическим препаратам и ряду других биологически активных соединений . Микротрубочки являются полыми полярными цилиндрическими филаментами диаметром свыше 24 нм, которые собираются из гетеродимеров α-и β-тубулина , которые в положении «голова-к-хвосту» формируют 13 протофиламентов.

В клетках высших растений присутствуют четыре типа построений микротрубочек:

Белки, ассоциированные с микротрубочками

Все компоненты цитоскелета и другие органеллы связаны между собой рядом специфических белков, ассоциированных с микротрубочками (БАМ ). В животных клетках наиболее исследованными БАМ является tau и БАМ2 , которые стабилизируют микротрубочки и присоединяют их к другим клеточным структурам, а также транспортные белки динеин и кинезин . Функционирование различных групп растительных микротрубочек зависит от наличия изоформ БАМ из семьи БАМ 65 и регуляторных киназ и фосфатаз . В частности, высококонсервативный животный гомолог семьи БАМ65 важен для получения микротрубочками определенных конфигураций на протяжении развития растения . Ориентация и организация различных популяций и типов построений микротрубочек является ткане- и органоспецифической .

Построение корня Резуховидки Таля Arabidopsis thaliana L. типично для двудольных растений . Ближайшим к поверхности корня является эпидермальный слой, клетки которого в зрелой зоне в зависимости от способности инициировать развитие корневых волосков являются трихобластами или атрихобластами . Глубже расположены накопительный безхлоропластный кортикальный слой с многочисленными межклетниками и плазмодесмами и слой эндодермальных клеток с поясками Каспари на антиклинальных поверхностях . Центральный цилиндр корня формируют паренхимные клетки перицикла , которые способны к быстрому делению, и элементы ксилемы и флоэмы . Присутствует и функциональное разграничение корневых зон: зоны деления, элонгации, созревания, а также переходная зона на границе зон инициации и элонгации . С перициклом формируются боковые корни, а с трихобластами эпидермального слоя - корневые волоски . Кончик корня покрыт корневым чехликом со специфической морфологией клеток колумеллы.

Кортикальные микротрубочки

Ацентросомальные кортикальные микротрубочки (КМТ ) важны для морфогенеза растений, регуляции клеточного деления и элонгации . Высокодинамическая популяция мембраносвязанных коротких КМТ быстро реориентуется из интерфазного поперечного положения в продольное при элонгации клетки . Ацентросомальные кортикальные микротрубочки имеют неупорядоченное размещение плюс-концов и обнаруживают динамическую нестабильность, а свободные минус-концы КМТ медленно деполимеризируются, то есть КМТ самоорганизуются гибридным механизмом динамической нестабильности и тредмилинга . Энуклеация происходит по всей поверхности плазматической мембраны . Белок SPR1 регулирует динамику и организацию плюс-конца КМТ растений, что сказывается на анизотропном росте клетки . Ацентросомальные кортикальные микротрубочки располагаются параллельно целлюлозным микрофибриллам

Цитоскелет состоит из полимеров белковой природы. Каждый полимер состоит из нескольких тысяч идентичных субъединиц, связанных вместе с образованием филаментов

Цитоскелет обеспечивает движение клеток и их механическую поддержку

Клеточный цитоскелет состоит из трех типов полимеров: актиновые филаменты, промежуточные филаменты и микротрубочки

Все полимеры имеют динамическую природу; они постоянно наращивают и теряют субъединицы

Микротрубочки представляют собой полимеры субъединиц тубулина

Микротрубочки почти всегда функционируют вместе с молекулярными моторами, которые генерируют усилия, осуществляя движение везикул и других комплексов по поверхности микротрубочек

Реснички и жгутики представляют собой специализированные органеллы, состоящие из и моторных белков, которые обеспечивают движение клеток в жидкой среде или движение жидкости вдоль клеточной поверхности

Химические соединения, разрушающие микротрубочки, применяются в медицине и в сельском хозяйстве

Фотография представляет собой кадр видеоизображения.
Виден небольшой участок цитоплазмы клетки млекопитающих.
Слева внизу виден край клетки; ядро находится справа вверху и не видно в кадре.
Видеосъемка показывает, что большая часть везикул находится в постоянном движении.

Цитоплазма эукариотических клеток находится в постоянном движении, поскольку органеллы все время перемещаются с места на место. Это движение особенно заметно в цитоплазме крупных клеток удлиненной формы, таких как нейроны.

Движение цитоплазмы отмечается также и в других клетках. Движение органелл необходимо для выполнения ряда функций. Секреторные везикулы выходят из аппарата Гольджи, который расположен в середине клетки, и транспортируются к плазматической мембране, где экскретируют свое содержимое в межклеточную среду. В то же время везикулы, интернализованные в мембрану, транспортируются в эндосомы. Митохондрии все время находятся в движении, а ЭПР постоянно растягивается и реорганизуется.

В митотических клетках хромосомы вначале выстраиваются в метафазную пластинку, а затем расходятся в противоположные стороны. Движение органелл и хромосом в правильном направлении и в надлежащее время обеспечивается цитоскелетом, который представляет собой белковые структуры, формирующие рельсовую транспортную систему клетки и моторных белков, двигающихся по ним.

Цитоскелет также обладает другими важными функциями : он обеспечивает подвижность клеток, а также необходим для организации и структурной поддержки формы всех клеток. Многие клетки движутся или самостоятельно, например находясь в организме (клетки животных), или перемещаясь с током окружающей среды (одноклеточные организмы и гаметы).

Клетки, подобные белым кровяным клеткам , которые находят и разрушают патогенные бактерии, способны перемещаться по плоской поверхности. Другие, например сперматозоиды, чтобы достигнуть места назначения, передвигаются в жидкой среде. Цитоскелет обеспечивает все формы такого движения клеток и его направление. Наряду с кинематической функцией, цитоскелет обеспечивает организацию внутренней структуры клетки и формирует верхнюю и нижнюю, левую и правую, а также переднюю и заднюю ее части.

Определяя общую характеристику цитоплазмы , цитоскелет задает общую форму клетки, образуя прямоугольные эпителиальные клетки, нейроны с длинными тонкими аксонами, и дендриты, которые у человека в длину могут достигать одного метра.

Три кадра видеоизображения аксона живого нейрона.
На верхнем кадре схематически изображена вся нервная клетка.
Три везикулы, помеченные красной, желтой и голубой стрелками, наблюдались на протяжении 6 с.
Две везикулы движутся в направлении конца аксона, а одна в направлении тела клетки.

Цитоскелет состоит из трех основных типов структурных элементов : микротрубочек, микрофиламентов. Эти три типа структур, представленные на рисунке ниже, имеют много общих свойств. Каждый белок функционирует не как самостоятельная молекула, а как полимер, состоящий из множества идентичных белковых субъединиц. Подобно тому, как бусины, нанизанные на нитку, образуют ожерелье, полимеры цитоскелета выстраиваются в цитоплазме, связывая между собой тысячи белковых субъединиц. Основная особенность всех полимеров цитоскелета состоит в том, что они не представляют собой статические структуры, а постоянно наращивают и теряют субъединицы. Такая динамичная природа полимеров цитоскелета позволяет осуществлять его реорганизацию, образовывать новые или способствовать функционированию существующих транспортных путей в соответствии с внутриклеточными нуждами.

Хотя все три типа структурных белков проявляют общие свойства, каждый из них обладает уникальностью, что делает его наиболее соответствующим выполнению определенных задач в клетке. Поэтому три типа полимеров будут рассмотрены отдельно, хотя они часто функционируют совместно.

Эта и следующие статьи на сайте посвящаются микротрубочкам. Основная субъединица, образующая микротрубочки, представляет собой белок тубулин. Соединяясь между собой, молекулы тубулина образуют полые трубочки около 25 нм в диаметре. Отсюда они получили свое название. Одна микротрубочка может содержать десятки и сотни тысяч молекул тубулина и в длину достигать нескольких микрон.

Таким образом, микротрубочки способны распространяться более чем на половину длины большинства эукариотических клеток. Обычно интерфазные клетки содержат сотни длинных микротрубочек, проходящих через цитоплазму и соединяющих различные области клетки.

Почти всегда функционируют совместно с молекулярными моторами, которые по ним продвигаются. Эти моторные белки присоединяются к различным грузам, включая органеллы и везикулы, и транспортируют их по поверхности микротрубочек, подобно тому, как грузовики движутся по шоссейным дорогам. Микротрубочки и моторные белки также функционируют вместе при разделении реплицированных хромосом в митозе и образуют основу подвижных структур, которые используются клеткой для перемещения в жидкости или для обеспечения движения жидкости вдоль ее поверхности. Микротрубочки и моторные белки даже используются вирусами, например ВИЧ и аденовирусами, для того чтобы они могли быстро достигнуть ядра и реплицироваться.

Небольшие молекулы органических соединений , которые нарушают полимеризацию микротрубочек, используются в медицине и в сельском хозяйстве. Вещества, в той или иной степени способные стабилизировать микротрубочки, блокируют митоз и применяются как средства для лечения рака. Одним из таких веществ является паклитаксел (Таксол™), формула которого представлена на рисунке ниже и который используется для лечения рака яичников и молочной железы. Таксол связывается с микротрубочками и стабилизирует их, предотвращая диссоциацию субъединиц тубулина. Колхицин представляет собой еще один яд, оказывающий на микротрубочки противоположный эффект, т. е. вызывает их диссоциацию.

Препарат используется для лечения подагры, поскольку разрушение микротрубочек блокирует миграцию белых кровяных клеток, ответственных за воспалительный процесс при этом заболевании. Низкомолекулярные вещества, влияющие на тубулин, находят важное применение в сельском хозяйстве. Например, Зоксамид™ является фунгицидом, который специфически связывается с тубулинами грибков, тем самым предотвращая их рост. Препарат используется для борьбы с поздним фузариозным увяданием картофеля, грибковым заболеванием, которое вызвало массовый неурожай картофеля в Ирландии в 1850 г В настоящее время активно проводится поиск новых препаратов, способных связываться с тубулином и могущих найти применение в медицине и сельском хозяйстве.


Участок фибробласта в электронном микроскопе (слева). Видны многочисленные филаменты.
На снимке справа три типа полимеров, из которых состоит цитоскелет эукариотической клетки, выделены различным цветом.
Микротрубочки в фибробласте. Для визуализации микротрубочек клетки обрабатывали красителем, флуоресцирующим зеленым цветом.
Микротрубочки организованы вокруг центральной точки (помеченной красным цветом) и распространяются в цитоплазму.
Большинство микротрубочек обладает достаточной длиной для того, чтобы проникнуть из одной части клетки в другую.
Строение трех небольших органических молекул, нарушающих процесс сборки или разборки микротрубочек.
Паклитаксел (Таксол™) и колхицин представляют собой природные продукты, образующиеся в некоторых растениях (тихоокеанский тис и безвременник осенний соответственно).
Зоксамид является синтетическим веществом, которое было обнаружено при скрининге большого числа различных низкомолекулярных соединений по тесту нарушения функционирования микротрубочек.

Время полужизни микротрубочки ~5 мин, во время первой половины митоза ~15c
Диаметр микротрубочки 25нм.

Образование микротрубочек

Структурной единицей микротрубочки является гетеродимер белка тубулина , состоящий из α- и β-субъединиц (53 и 55 кДа), не прибывающих по отдельности, схожие но не идентичные. Каждая из субъединиц имеет сайт для связывания нуклеотида. α-тубулин связывает молекулу GTP, которая не гидролизуется, β-тубулин может связывать GDP или GTP (рис.1). β-тубулин одного гетеродимера связывает GTP и соединяется с α-тубулином другого гетеродимера, при этом GTP гидролизуется до GDP. α-тубулин является GTP-активирующим белком и катализирует гидролиз GTP β-тубулина (рис.2). Таким образом гетеродимеры образуют линейные цепочки – протофиламенты, 13 протофиламентов образуют спиральный циклический комплекс, такие кольца полимеризуются в трубку (рис.3). Фосфорилирование тубулина усиливает полимеризацию.

Рис.1 Гетеродимер тубулина. α-тубулин (син.) с сайтом связывания GTP (голуб.). β-тубулин (зел.) с сайтами связывания GTP и GDP (красн.)
Микротрубочки - динамические полярные стр-ры. (+)-конец динамически нестабильный (β-тубулин) и (-)-конец стабилизируется, связываясь с центром организации микротрубочек (см. обзор Центросома).
Тредмиллинг - движение микротрубочек в результате одновременного наращивания одного конца и диссоциации другого конца микротрубочек.
ДНК тубулина в нуклеотид-связывающем домене имеет высококонсервативную последовательность GGGTG(T/S)G.
Бактериальный белок FtsZ - гомолог тубулина является компонентом бактериального цитоскелета и полимеризуется с образованием микротрубочек.

Микротрубочки

рис.2 Микротрубочки способны образовывать синглет, дублет и триплет.
A микротрубочка дублета или триплета состоит из 13 протофиламентов.
Трубочки B и C состоят из меньшего числа протофиламентов, обычно 10.

Белки соединяющиеся с микротрубочками.

С микротрубочками ассоциируют два вида белков: структурныерные
белки (MAP-microtubuls-associated proteins) и белки транслокаторы.

Присоединение MAP регулируется фосфорилированием, в результате
которого некоторые MAP отсоединяются от микротрубочек.

+TIPS - белки взаимодействующие с (+)-концом
микротрубочки, многие из которых являются моторными белками,
другие обеспечивают взавимодействие с микрофиламентами в
клеточном кортексе, присоединяя микротрубочки к плазматической
мембране. Некоторые +TIPS регулируют динамику микротрубочек
и стабильность (+)-конца, например, XMAP215
семейство белков стабилизирует (+)-конец предотвращая разрушение
и обеспечивая рост микротрубочек.

CLASP - белки обеспечивающие присоединение
димеров тубулина к (+)-концу и ингибируют катастрофины .
Они взаимодействуют с кинетохором - комплексом который соединяет
(+)-конец микротрубочки с хромосомой.

Катастрофины - +TIP белки связывающиеся с (+)-концом микротрубочек
и обепечивающие диссоциацию димеров тубулина. Они способны
активировать гидролиз GTP или изменение конформации протофиломентов
(MCAK - кинезин, располагающийся в кинетохоре
и обеспечивает диссоциацию (+)-конца во время анафазы митоза).

Стасмин - дестабилизирующий белок, находящийся
в раковых клетках. Присоединяется с тубулиновым гетеродимером
затрудняя их полимеризацию. Стасмины ингибируются фосфорилированием.

Катанин - разделяет микротрубочки образуя новый нестабильный
(+)-конец.

НекоторыеMAP соединяют микротрубочки
друг с другом, с мембраной или промежуточными филаментами.

Тип I MAP обнаружен в аксонах и дендритах нервных клеток
и некоторых других имеет несколько повторов KKEX (Lys-Lys-Glu-X)
которые связывают (-)-заряженные участки тубулина.

Тип II MAP также обнаружен в аксонах и дендритах нервных
клеток и некоторых других. Они имеют 3-4 повтора из 18 остатков
последовательности, которая присоединяет тубулин.

Белки взаимодействующие с (+)-концом микротрубочек

APC, Kar9 (Sc )*

APC (adenomatous polyposis coli) - опухолевый супрессор,
являющийся основой для белкового комплекса регулирующего
фосфорилирование b-катенинов.

EB1, Bim1 (Sc), Mal3 (Sp)

EB1 (end-binding protein 1) - белок взаимодействующий с
APC.

Nud (An)

Nud (nuclear distribution) - белок регулирующий динеины.

Lis1/NUDF (An), Pac1 (Sc )

Lis (lissencephaly) - нарушение развития человеческого мозга
(гладкий мозг). Белок взаимодействует с динеином регулируя
его функцию.

NUDE (An), R011 (Neurospora
crassa)/Ndl1 (Sc); Nde1, Ndel1
(млекопитающие).

Эти белки взаимодействуют с Lis1 и денеинами и обеспечивают
их функционирование.

Kar3 (Sc)

Kar3 - кинезин, имеющий C-концевой моторный домен и пренадлежит
к семейству Kinesin-14.

Kip2 (Sc ), Tea2
(Sp ), KipA (An )

Кинезины грибов принадлежащие семейству Kinesin-7 включающее
CENP-E - центромерный белок млекопитающих, Kip2 , Tea2 and
KipA

Klp10A (Dm), Klp59C, MCAK

Члены семейства Kinesin-13. Klp10A - предполагаемый гомолог
Kif2A млекопитающих. Klp59C (Dm) - предпоплагаемый гомолог
MCAK млекопитающих. KLP10A и другие члены Kin I
субсемейства кинезинов взаимодействующих с некепированным
(-)-концом микротрубочек веретена деления во время митоза.
Они обеспечивают диссоциацию тубулиновых димеров полюсов
клетки, способствуя тедмиллингу (движению
микротрубочек к полюсам и укорочение микротрубочек во время
анафазы митоза).

Dynactin

Комплекс белков включающий белок p150glued. Динактин связывает
динеин и регулирует его свойства, а такжи присоединяет везикулы
к динеину. p150glued - гомолог NUDMA. nidulans.

CLIP-170, Bik1 (Sc ), Tip
(Sp )

CLIP-170 обеспечивает стабилизацию и рост микротрубочек,
а так же регулирует локализацию динеина.

СLIP-170 - обеспечивает посадку комплекса динеин-динактин,
участвующего в транспорте везикул, на конец микротрубочки.
LIP-170 находится в цитоплазме в неактивной конформации
в которой N-конец связывающийся с микротрубочкой связан
с С-концом той же молекулы. При связывании N-конца с тубулином
или (+)-концом микротрубочки, C-конец освобождается и связывается
с комплексом динеин-динактин через молекулу p150Glued, микротрубочка
стабилизируется. Диненин-динактин освобождается и начинает
движение вдоль микротрубочки (рис.3)

Некоторые токсины и лекарства, некоторые из которых нарушают митоз влияют на полимеризацию и деполимеризацию тубулина:
таксол - противоопухолевое лекарство, стабилизирует микротрубочки.
колхицин связывает тубулин блокируя полимеризацию. Микротрубочки деполимеризуются при высокой концентрации колхицина.
винбластин - усиливает деполимеризацию образуя паракристаллы винбластин-тубулин.
нокодазол - обеспечивает деполимеризацию микротрубочек.
Ассоциация подавляется винбластин, винкристин, колхицин, усиливается – таксол.
Гамма-сома – центр организующий микротрубочки на внешней поверхности ядра.

Общая характеристика микротрубочек. К обязательным компонентам цитоскелета относятся микротрубочки (рис. 265), нитчатые неветвящиеся структуры, толщиной 25 нм, состоящие из белков-тубулинов и ассоциированных с ними белков. Тубулины при полимеризации образуют полые трубки (микротрубочки), длина которых может достигать нескольких мкм, а самые длинные микротрубочки встречаются в составе аксонемы хвостов спермиев.

Микротрубочки располагаются в цитоплазме интерфазных клеток поодиночке, небольшими рыхлыми пучками, или в виде плотноупакованных образований в составе центриолей, базальных телец в ресничках и жгутиках. При делении клеток большая часть микротрубочек клетки входит в состав веретена деления.

По строению микротрубочки представляют собой длинные полые цилиндры с внешним диаметром 25 нм (рис. 266). Стенка микротрубочек состоит из полимеризованных молекул белка тубулина. При полимеризации молекулы тубулина образуют 13 продольных протофиламентов, которые скручиваются в полую трубку (рис. 267). Размер мономера тубулина составляет около 5 нм, равного толщине стенки микротрубочки, в поперечном сечении которой видны 13 глобулярных молекул.

Молекула тубулина представляет собой гетеродимер, состоящий из двух разных субъедниц, из a–тубулина и b– тубулина, которые при ассоциации образуют собственно белок тубулин, изначально поляризованный. Обе субъединицы мономера тубулина связаны с ГТФ, однако на a-субъдинице ГТФ не подвергается гидролизу, в отличие от ГТФ на b-субъединице, где при полимеризации происходит гидролиз ГТФ до ГДФ. При полимеризации молекулы тубулина объединяются таким образом, что с b-субъединицей одного белка ассоциирует a–субъединица следующего белка и т.д. Следовательно, отдельные протофибриллы возникают как полярные нити, и соответственно вся микротрубочка тоже является полярной структурой, имеющей быстро растущий (+)-конец и медленно растущий (-) конец (рис. 268).

При достаточной концентрации белка полимеризация происходит спонтанно. Но при спонтанной полимеризации тубулинов происходит гидролиз одной молекулы ГТФ, связанной с b-тубулином. Во время наращивания длины микротрубочки связывание тубулинов происходит с большей скоростью на растущем (+)-конце. Но при недостаточной концентрации тубулина микротрубочки могут разбираться с обоих концов. Разборке микротрубочек способствует понижение температуры и наличие ионов Са ++.

Микротрубочки являются очень динамичными структурами, которые могут достаточно быстро возникать и разбираться. В составе выделенных микротрубочек обнаруживаются ассоциированные с ними дополнительные белки, т.н. МАР-белки (МАР- microtubule accessory proteins). Эти белки, стабилизируя микротрубочки, ускоряют процесс полимеризации тубулина (рис. 269).


Роль цитоплазматических микротрубочек сводится к выполнению двух функций: скелетной и двигательной. Скелетная, каркасная, роль заключается в том, что расположение микротрубочек в цитоплазме стабилизирует форму клетки; при растворении микротрубочек клетки, имевшие сложную форму, стремятся приобрести форму шара. Двигательная роль микротрубочек заключается не только в том, что они создают упорядоченную, векторную, систему движения. Микротрубочки цитоплазмы в ассоциации со специфическими ассоциированными моторными белками образуют АТФ-азные комплексы, способные приводить в движение клеточные компоненты.

Практически во всех эукариотических клетках в гиалоплазме можно видеть длинные неветвящиеся микротрубочки. В больших количествах они обнаруживаются в цитоплазматических отростках нервных клеток, в отростках меланоцитов, амеб и других изменяющих свою форму клетках (рис. 270). Они могут быть выделены сами или же можно выделить их образующие белки: это те же тубулины со всеми их свойствами.

Центры организации микротрубочек. Рост микротрубочек цитоплазмы происходит полярно: наращивается (+)-конец микротрубочки. Время жизни микротрубочек очень коротка, поэтому постоянно происходит образование новых микротрубочек. Процесс начала полимеризации тубулинов, нуклеация, происходит в четко ограниченных участках клетки, в т.н. центрах организации микротрубочек (ЦОМТ). В зонах ЦОМТ происходит закладка коротких микротрубочек, обращенных своими (-)-концами к ЦОМТ. Считается, что в зонах ЦОМТ (--)-концы заблокированы специальными белками, предотвращающими или ограничивающими деполимеризацию тубулинов. Поэтому при достаточном количестве свободного тубулина будет происходить наращивание длины микротрубочек, отходящих от ЦОМТ. В качестве ЦОМТ в клетках животных участвуют главным образом клеточные центры, содержащие центриоли, о чем будет сказано далее. Кроме того в качестве ЦОМТ может служить ядерная зона, и во время митоза полюса веретена деления.

Одним из назначений микротрубочек цитоплазмы заключается в создании эластичного, но одновременно устойчивого внутриклеточного скелета, необходимого для поддержания формы клетки. У дисковидных по форме эритроцитов амфибий по периферии клетки лежит жгут циркулярно уложенных микротрубочек; пучки микротрубочек характерны для различных выростов цитоплазмы (аксоподии простейших, аксоны нервных клеток и т.д.).

Роль микротрубочек заключается в образовании каркаса для поддержания клеточного тела, для стабилизации и укрепления клеточных выростов. Кроме того, микротрубочки участвуют в процессах роста клеток. Так, у растений в процессе растяжения клеток, когда за счет увеличения центральной вакуоли происходит значительный рост объема клеток, большие количества микротрубочек появляются в периферических слоях цитоплазмы. В этом случае микротрубочки, так же как и растущая в это время клеточная стенка, как бы армируют, механически укрепляют цитоплазму.

Создавая внутриклеточный скелет, микротрубочки являются факторами ориентированного движения внутриклеточных компонентов, задавая своим расположением пространства для направленных потоков разных веществ и для перемещения крупных структур. Так, в случае меланофоров (клетки, содержащие пигмент меланин) рыб при росте клеточных отростков гранулы пигмента передвигаются вдоль пучков микротрубочек.

В аксонах живых нервных клеток можно наблюдать перемещение различных мелких вакуолей и гранул, которые двигаются как от тела клетки к нервному окончанию (антероградный транспорт), так и в противоположном направлении (ретроградный транспорт).

Были выделены белки, ответственные за движение вакуолей. Один из них кинезин, белок с молекулярным весом около 300 тыс.

Существует целое семейство кинезинов. Так, цитозольные кинезины участвуют в транспорте по микротрубочкам везикул, лизосом и других мембраных органелл. Многие из кинезинов связываются специфически со своими грузами. Так некоторые участвуют в переносе только митохондрий, другие – только синаптических пузырьков. Кинезины связываются с мембранами через мембранные белковые комплексы – кинектины. Кинезины веретена деления участвуют в образовании этой структуры и в расхождении хромосом.

За ретроградный транспорт в аксоне отвечает другой белок – цитоплазматический динеин (рис. 275). Он состоит из двух тяжелых цепей – головок, взаимодействующих с микротрубочками, нескольких промежуточных и легких цепей, которые связываются с мембранными вакуолями. Цитоплазматический динеин является моторным белком, переносящим грузы к минус-концу микротрубочек. Динеины также делятся на два класса: цитозольные – участвующие в переносе вакуолей и хромосом, и аксонемные – отвечающие за движение ресничек и жгутиков.

Цитоплазматические динеины и кинезины были обнаружены практически во всех типах клеток животных и растений.

Таким образом, и в цитоплазме движение осуществляется по принципу скользящих нитей, только вдоль микротрубочек перемещаются не нити, а короткие молекулы – движетели, связанные с перемещающимися клеточными компонентами. Сходство с актомиозиновым комплексом этой системы внутриклеточного транспорта заключается в том, что образуется двойной комплекс (микротрубочка + движетель), обладающий высокой АТФ-азной активностью.

Как видно, микротрубочки образуют в клетке радиально расходящиеся поляризованные фибриллы, (+)-концы которых направлены от центра клетки к периферии. Наличие же (+) и (-)-направленных моторные белков (кинезинов и динеинов) создает возможность для переноса в клетке её компонентов как от периферии к центру (эндоцитозные вакуоли, рециклизация вакуолей ЭР и аппарата Гольджи и др), так и от центра к периферии (вакуоли ЭР, лизосомы, секреторные вакуоли и др) (рис. 276). Такая полярность транспорта создается за счет организации системы микротрубочек, возникающих в центрах их организации, в клеточном центре.