С поезда меня встретил Дмитрий Афанасьев, заведующий отделом по связям с общественностью и рекламе в ИЦ Бреслер. Мы пешком дошли до офиса ИЦ Бреслер. Первое впечатление, которое сложилось, когда мы подходили ко входу в офис было примерно таким: «ого, какое большое здание, а у ИЦ Бреслер маленькое крылечко». Как выяснилось позже, оно было ошибочным. Это становится понятно сразу после того, как пройдя мимо охраны, попадаешь на второй этаж, где коридор с кабинетами направо и налево уходит далеко в глубь. Административная часть офиса во всех компаниях более-менее одинаковая: бухгалтерия сидит в своих кабинетах, менеджеры по продажам и пиарщики в опенспейсе. Я сразу обратил внимание на большой конференц-зал справа. За полупрозрачными стёклами я узнал силуэт Ивана Голикова, он руководитель направления МЭК 61850 в ИЦ Бреслер, и мы уже достаточно давно знакомы. Иван проводил для сотрудников компании семинар на тему МЭК 61850, в зале было человек 30-40, наверно. Мне показалось, что это очень здорово. Вообще внутрикорпоративные семинары - это полезная штука: очевидно, что во всём разобраться не всегда можно, а когда кто-то, разобравшись, готов рассказать об этом другим - это крайне полезно для развития компании. Позднее, я поговорил с Иваном, он сказал, что это уже не первая лекция по стандарту, которую он проводит в компании - их целый цикл.

Со второго этажа мы сразу отправились на четвёртый, где размещается производство и склад готовой продукции. Собственно, на этом этаже и совершаются чудеса: набор плат, металлоконструкий и проводов превращается в терминалы и шкафы РЗА. Здесь мы прошли по всей производственной цепочке за исключением, правда, монтажа компонентов на печатных платах - он производится в отдельном цеху.

В левом крыле четвертого этажа осуществляется сборка терминалов релейной защиты: готовые платы с размещенными на них компонетами собираются на каркасах и устанавливаются в корпуса вместе с блоками питания, элементами управления и индикации, производится весь электромонтаж.

Здесь же осуществляется тестирование. Готовые терминалы помещают в «печки», где они стоят под нагрузкой при температуре 55 градусов в течение суток. Это позволяет выявить все скрытые дефекты, которые не были выявлены на ранних этапах. После «печки» все терминалы вновь проходят сквозную проверку работоспособности.

В правом крыле этого же этажа собираются шкафы релейной защиты. В подготовленные металлоконструкции устанавливаются уже готовые терминалы РЗА, производится весь электромонтаж в соответствии с рабочими проектами и в завершение - тестирование готового шкафа.

Как рассказал Дмитрий, шкафы покупают только Rittal. Был опыт взаимодействия с другими производителями, но качество подводило - в итоге решили не экономить и сделать ставку на качество. Наряду со стандартными шкафами РЗА для крупных объектов я заметил и съемные релейные отсеки ячеек КРУ-2008Н.

В своё время я делал интервью с одним из идеологов этого КРУ - Юрием Ивановичем Непомнящим - так что съёмный релейный отсек узнал сразу. Тогда эта идея мне показалась странной, однако увидев их наряду со шкафами РЗА для «больших» объектов смысл идеи стал яснее.

Готовые шкафы и релейные отсеки отправляются на участок упаковки, где они помещаются в упаковку в соответствии с требованиями ГОСТ. Здесь Дмитрий рассказал про один случай, когда автомобиль с готовой продукцией попал в аварию, перевернулся и лег на крышу.

Все шкафы вернули на завод для проведения проверок. Когда всю упаковку вскрыли обнаружили, что только у одного шкафа лопнуло стекло. При сквозной проверке никаких неисправностей в части работоспособности не обнаружили.

Часть четвертого этажа занимает отдел разработки программного обеспечения для автоматизации подстанций. Продукты «Бреслер МиКРА» и АСУ Энергообъекта родом отсюда. Как оказалось позднее, это лишь малая часть разработчиков компании.

С четвёртого этажа мы спустились в святая-святых ИЦ Бреслер - в отдел разработок, занимающий почти весь третий этаж. Разработчики сидят в огромном опенспейсе.

На расписанных колоннах по центру висят разные абстрактные изображения. Их историю я не уточнил, но почти уверен, что обстановка здесь создавалась для того, чтобы творить, и, по-моему, она к этому действительно располагает.

Почти у каждого сотрудника рядом со столом стоит терминал релейной защиты, а то ещё и не один. В дополнение к терминалу у некоторых стоят испытательные установки, осциллографы и ещё какое-нибудь оборудование - чего только нет. Как мне сказал Дмитрий, стоимость рабочего места разработчика может превышать миллион рублей, а то и больше…

Разработчики очень молодые - и это отдельная гордость ИЦ Бреслер, о которой мне позднее рассказал технический директор компании Владимир Сергеевич Шевелёв. В разработках принимают участие множество студентов, но даже постоянно работающие в компании разработчики весьма молоды. Это навело меня на мысль, что, конечно, ИЦ Бреслер мы ещё во всей красе не видели: лет через 5 – 10 молодёжи станет тесно в пределах традиционных защит, которые они на тот момент уже все освоят в совершенстве, вот тогда будет совсем интересно.

ИЦ Бреслер, безусловно, можно отнести к пионерам в части разработки оборудования и решений для цифровых подстанций, и я уверен, что во многом обусловлено именно наличием большого количества молодых разработчиков. При этом мне показалось, что внедрение различных инноваций здесь делается очень взвешенно и обдуманно: в ИЦ Бреслер понимают для чего внедряется та или иная технология, какой от неё будет эффект.

Мы прошли по опенспейсу туда и обратно, я был действительно поражен масштабами: по 10 блоков в каждую сторону от коридора, в каждом блоке рабочие места человек для 5-6. Очень много разработчиков.

С третьего этажа мы снова спустились на второй, где помимо всего прочего располагается учебный центр Бреслер. По сравнению с тем, сколько места занимают разработчики, он имеет достаточно скромные размеры, тем не менее, оборудован всем необходимым: досками, проекторами, терминалами и шкафами защит, разумеется.

Я был несколько удивлён, когда увидел на информационных стендах, размещенных на стенах, описание различных принципов релейной защиты: дистанционной, дифференциальной, максимальной токовой даже. Мне на это сказали, что при обучении современной технике нередко приходится начинать с самых азов, которые обычно уже основательно подзабылись. Недавно учебный центр Бреслер получил лицензию на осуществление образовательной деятельности, так что сотрудники энергокомпаний могут проходить там курсы повышения квалификации, получая при этом все необходимые документы. Нельзя сказать, что это что-то уникальное, скорее, это необходимое условие работы современной компании-производителя релейной защиты.

Из учебного центра мы пошли на первый этаж, где располагается линия по монтажу печатных плат. Эта линия была запущена в компании около 2,5 лет назад, раньше монтаж делали по заказу в других организациях. Мелкие компоненты на схемы «набивает» автомат. Платы подаются в машину автоматически, все компоненты - из рулонов. Далее плата «переезжает» в автомат для пайки.

Близко подойти к этому оборудованию нельзя - на полу жёлтая линия, за которую «простым смертным» заходить не положено, что и понятно: микросхемы дело тонкое: лишняя пылинка - повышение вероятности отказа. После автоматической пайки располагается линия установки и пайки больших корпусных компонентов.

Они традиционно устанавливаются специалистами вручную. После того, как все компоненты установлены и припаяны на автоматической линии, платы отправляются на отмывку - в автомат, похожий на большую посудомоечную машину. Далее - термоциклирование и выходной контроль.

Контроль качества продукции в ИЦ Бреслер, кстати, очень жесткий и делается на каждом этапе производства. Компоненты закупаются только у официальных поставщиков и делается полный сквозной входной контроль. После монтажа печатных плат производится сплошная проверка их работоспособности. На следующем этапе проверяется собранный терминал релейной защиты. В конце концов проверяется готовый шкаф. Для того, чтобы выявлять контрафактые компоненты в ИЦ Бреслер также принята процедура изготовления сначала нескольких образцов на базе новой партии компонентов. Изготовленные образцы проверяют «с пристрастием» и только после того, как убеждаются в качестве полученной продукции на базе этих компонентов запускают серию. Такой подход позволяет свести к минимуму количество брака в продукции, а даже если какие-то проблемы случаются, то в ИЦ Бреслер их не стесняются признавать. Как мне рассказал Владимир Сергеевич, ИЦ Бреслер был одним из первых коммерческих производителей РЗА, кто ввёл практику рассылки информационных писем о потенциальных неисправностях в оборудовании. Если в одном из устройств партии выявляют неисправность, то заказчикам, получившим устройства из той же партии отправляется информационной письмо и предлагается за счёт производителя произвести замену «рискованных» блоков. Такие ситуации, впрочем, благодаря поставленной системе контроля качества, случаются достаточно редко.

Из цеха по монтажу печатных плат мы с Дмитрием прямиком отправились к Владимиру Сергеевичу Шевелёву, который рассказал мне о прошлом, настоящем и будущем компании, об успехах и надеждах, а ещё он рассказал о своём любимом виде спорта и о том почему не любит фотографироваться. Это было насыщенное интервью, которое мы опубликуем в ближайшее время.

По меркам рынка электротехнического оборудования ИЦ Бреслер ещё совсем молодая компания, но, думаю, никто не поспорит с тем, что она уже вполне серьезно заявила о себе. После этой поездки у меня появилась уверенность в том, что к ним стоит присмотреться по-пристальнее: думаю, мы увидим ещё много всего интересного в их исполнении.

Новые технологии производства современных систем управления перешли из стадии научных исследований и экспериментов в стадию практического использования. Разработаны и внедряются современные коммуникационные стандарты обмена информацией. Широко применяются цифровые устройства защиты и автоматики. Произошло существенное развитие аппаратных и программных средств систем управления. Появление новых международных стандартов и развитие современных информационных технологий открывает возможности инновационных подходов к решению задач автоматизации и управления энергообъектами, позволяя создать подстанцию нового типа - цифровую подстанцию (ЦПС). Отличительными характеристиками ЦПС являются: наличие встроенных в первичное оборудование интеллектуальных микропроцессорных устройств, применение локальных вычислительных сетей для коммуникаций, цифровой способ доступа к информации, её передаче и обработке, автоматизация работы подстанции и процессов управления ею. В перспективе цифровая подстанция будет являться ключевым компонентом интеллектуальной сети (Smart Grid).

Термин «Цифровая подстанция» до сих пор трактуется по-разному разными специалистами в области систем автоматизации и управления. Для того чтобы разобраться, какие технологии и стандарты относятся к цифровой подстанции, проследим историю развития систем АСУ ТП и РЗА. Внедрение систем автоматизации началось с появления систем телемеханики. Устройства телемеханики позволяли собирать аналоговые и дискретные сигналы с использованием модулей УСО и измерительных преобразователей. На базе систем телемеханики развивались первые АСУ ТП электрических подстанций и электростанций. АСУ ТП позволяли не только собирать информацию, но и производить её обработку, а также представлять информацию в удобном для пользователя интерфейсе. С появлением первых микропроцессорных релейных защит информация от этих устройства также стала интегрироваться в системы АСУ ТП. Постепенно количество устройств с цифровыми интерфейсами увеличивалось (противоаварийная автоматика, системы мониторинга силового оборудования, системы мониторинга щита постоянного тока и собственных нужд и т.д.). Вся эта информация от устройств нижнего уровня интегрировалась в АСУ ТП по цифровым интерфейсам. Несмотря на повсеместное использование цифровых технологий для построения систем автоматизации, такие подстанции не являются в полной мере цифровыми, так как вся исходная информация, включая состояния блок-контактов, напряжения и токи, передаётся в виде аналоговых сигналов от распределительного устройства в оперативный пункт управления, где оцифровывается отдельно каждым устройством нижнего уровня. Например, одно и то же напряжение параллельно подаётся на все устройства нижнего уровня, которые преобразовывают его в цифровой вид и передают в АСУ ТП. На традиционных подстанциях различные подсистемы используют различные коммуникационные стандарты (протоколы) и информационные модели. Для функций защиты, измерения, учёта, контроля качества выполняются индивидуальные системы измерений и информационного взаимодействия, что значительно увеличивает как сложность реализации системы автоматизации на подстанции, так и её стоимость.

Переход к качественно новым системам автоматизации и управления возможен при использовании стандартов и технологий цифровой подстанции, к которым относятся:

1. стандарт МЭК 61850:
модель данных устройств;
унифицированное описание подстанции;
протоколы вертикального (MMS) и горизонтального (GOOSE) обмена;
протоколы передачи мгновенных значений токов и напряжений (SV);

2. цифровые (оптические и электронные) трансформаторы тока и напряжения;
3. аналоговые мультиплексоры (Merging Units);
4. выносные модули УСО (Micro RTU);
5. интеллектуальные электронные устройства (IED).

Основной особенностью и отличием стандарта МЭК 61850 от других стандартов является то, что в нём регламентируются не только вопросы передачи информации между отдельными устройствами, но и вопросы формализации описания схем - подстанции, защиты, автоматики и измерений, конфигурации устройств. В стандарте предусматриваются возможности использования новых цифровых измерительных устройств вместо традиционных аналоговых измерителей (трансформаторов тока и напряжения). Информационные технологии позволяют перейти к автоматизированному проектированию цифровых подстанций, управляемых цифровыми интегрированными системами. Все информационные связи на таких подстанциях выполняются цифровыми, образующими единую шину процесса. Это открывает возможности быстрого прямого обмена информацией между устройствами, что в конечном счёте даёт возможность сокращения числа медных кабельных связей, и числа устройств, а также более компактного их расположения.
СТРУКТУРА ЦИФРОВОЙ ПОДСТАНЦИИ

Рассмотрим подробнее структуру цифровой подстанции, выполненную в соответствии со стандартом МЭК 61850 (рис.). Система автоматизации энергообъекта, построенного по технологии «Цифровая подстанция», делится на три уровня:
полевой уровень (уровень процесса);
уровень присоединения;
станционный уровень.

Полевой уровень состоит из:
первичных датчиков для сбора дискретной информации и передачи команд управления на коммутационные аппараты (micro RTU);
первичных датчиков для сбора аналоговой информации (цифровые трансформаторы тока и напряжения).

Уровень присоединения состоит из интеллектуальных электронных устройств:
устройств управления и мониторинга (контроллеры присоединения, многофункциональные измерительные приборы, счётчики АСКУЭ, системы мониторинга трансформаторного оборудования и т.д.);
терминалов релейной защиты и локальной противоаварийной автоматики.

Станционный уровень состоит из:
серверов верхнего уровня (сервер базы данных, сервер SCADA, сервер телемеханики, сервер сбора и передачи технологической информации и т.д., концентратор данных);
АРМ персонала подстанции.

Из основных особенностей построения системы в первую очередь необходимо выделить новый «полевой» уровень, который включает в себя инновационные устройства первичного сбора информации: выносные УСО, цифровые измерительные трансформаторы, встроенные микропроцессорные системы диагностики силового оборудования и т.д.

Цифровые измерительные трансформаторы передают мгновенные значения напряжения и токов по протоколу МЭК 61850-9-2 устройствам уровня присоединения. Существует два вида цифровых измерительных трансформаторов: оптические и электронные. Оптические измерительные трансформаторы являются наиболее предпочтительными при создании систем управления и автоматизации цифровой подстанции, так как используют инновационный принцип измерений, исключающий влияние электромагнитных помех. Электронные измерительные трансформаторы базируются на базе традиционных трансформаторов и используют специализированные аналогово-цифровые преобразователи.

Данные от цифровых измерительных трансформаторов, как оптических, так и электронных, преобразуются в широковещательные Ethernet-пакеты с использованием мультиплексоров (Merging Units), предусмотренных стандартом МЭК 61850-9. Сформированные мультиплексорами пакеты передаются по сети Ethernet (шине процесса) в устройства уровня присоединения (контроллеры АСУ ТП, РЗА, ПА и др.) Частота дискретизации передаваемы данных не хуже 80 точек на период для устройств РЗА и ПА и 256 точек на период для АСУ ТП, АИИС КУЭ и др.

Данные о положении коммутационных аппаратов и другая дискретная информация (положение ключей режима управления, состояние цепей обогрева приводов и др.) собираются с использованием выносных модулей УСО, установленных в непосредственной близости от коммутационных аппаратов. Выносные модули УСО имеют релейные выходы для управления коммутационными аппаратами и синхронизируются с точностью не ниже 1 мс. Передача данных от выносных модулей УСО осуществляется по оптоволоконной связи, являющейся частью шины процесса по протоколу МЭК 61850-8-1 (GOOSE). Передача команд управления на коммутационные аппараты также осуществляется через выносные модули УСО с использованием протокола МЭК 61850-8-1 (GOOSE).

Силовое оборудование оснащается набором цифровых датчиков. Существуют специализированные системы для мониторинга трансформаторного и элегазового оборудования, которые имеют цифровой интерфейс для интеграции в АСУ ТП без использования дискретных входов и датчиков 4-20 мА. Современные КРУЭ оснащаются встраиваемыми цифровыми трансформаторами тока и напряжения, а шкафы управления в КРУЭ позволяют устанавливать выносные УСО для сбора дискретных сигналов. Установка цифровых датчиков в КРУЭ производится на заводе-изготовителе, что позволяет упростить процесс проектирования, а также монтажные и наладочные работы на объекте.

Другим отличием является объединение среднего (концентраторов данных) и верхнего (сервера и АРМ) уровня в один станционный уровень. Это связано с единством протоколов передачи данных (стандарт МЭК 61850-8-1), при котором средний уровень, ранее выполнявший работу по преобразованию информации из различных форматов в единый формат для интегрированной АСУ ТП, постепенно теряет своё назначение. Уровень присоединения включает в себя интеллектуальные электронные устройства, которые получают информацию от устройств полевого уровня, выполняют логическую обработку информации, передают управляющие воздействия через устройства полевого уровня на первичное оборудование, а также осуществляют передачу информации на станционный уровень. К этим устройствам относятся контроллеры присоединения, терминалы МПРЗА и другие многофункциональные микропроцессорные устройства.

Следующим отличием в структуре является её гибкость. Устройства для цифровой подстанции могут быть выполнены по модульному принципу и позволяют совмещать в себе функции множества устройств. Гибкость построения цифровых подстанций позволяет предложить различные решения с учётом особенностей энергообъекта. В случае модернизации существующей подстанции без замены силового оборудования для сбора и оцифровки первичной информации можно устанавливать шкафы выносных УСО. При этом выносные УСО помимо плат дискретного ввода/вывода будут содержать платы прямого аналогового ввода (1/5 А), которые позволяют собрать, оцифровать и выдать в протоколе МЭК 61850-9-2 данные от традиционных трансформаторов тока и напряжения. В дальнейшем полная или частичная замена первичного оборудования, в том числе замена электромагнитных трансформаторов на оптические, не приведёт к изменению уровней присоединения и подстанционного. В случае использования КРУЭ имеется возможность совмещения функций выносного УСО, Merging Unit и контроллера присоединения. Такое устройство устанавливается в шкаф управления КРУЭ и позволяет оцифровать всю исходную информацию (аналоговую или дискретную), а также выполнить функции контроллера присоединения и функции резервного местного управления.

С появлением стандарта МЭК 61850 ряд производителей выпустили продукты для цифровой подстанции. В настоящее время во всём мире выполнено уже достаточно много проектов, связанных с применением стандарта МЭК 61850, показавших преимущества данной технологии. К сожалению, уже сейчас, анализируя современные решения для цифровой подстанции, можно заметить достаточно свободную трактовку требований стандарта, что может привести в будущем к несогласованности и проблемам в интеграции уже современных решений в области автоматизации.

Сегодня в России активно ведётся работа по развитию технологии «Цифровая подстанция». Запущен ряд пилотных проектов, ведущие российские фирмы приступили к разработке отечественных продуктов и решений для цифровой подстанции. На наш взгляд, при создании новых технологий, ориентированных на цифровую подстанцию, необходимо строго следовать стандарту МЭК 61850, не только в части протоколов передачи данных, но и в идеологии построения системы. Соответствие требованиям стандарта позволит в будущем упростить модернизацию и обслуживание объектов на базе новых технологий.

В 2011 году ведущими российскими компаниями (ООО НПП «ЭКРА», ООО «ЭнергопромАвтоматизация», ЗАО «Профотек» и ОАО «НИИПТ») было подписало генеральное соглашение об организации стратегического сотрудничества с целью объединения научно-технических, инженерных и коммерческих усилий для создания цифровой подстанции на территории РФ.

В соответствии с МЭК 61850, разработанная система состоит из трёх уровней. Шина процесса представлена оптическими трансформаторами (ЗАО «Профотек») и выносным УСО (microRTU) NPT Expert (ООО «ЭнергопромАвтоматизация»). Уровень присоединения - микропроцессорные защиты ООО НПП «ЭКРА» и контроллер присоединения NPT BAY-9-2 ООО «ЭнергопромАвтоматизация». Оба устройства принимают аналоговую информацию по МЭК 61850-9-2 и дискретную информацию по МЭК 61850-8-1(GOOSE). Станционный уровень реализован на базе SCADA NPT Expert с поддержкой МЭК 61850-8-1(MMS).

В рамках совместного проекта была разработана также система автоматизированного проектирования ЦПС - SCADA Studio, проработана структура сети Ethernet для различных вариантов построения, собран макет цифровой подстанции и проведены совместные испытания, в том числе на испытательном стенде в ОАО «НИИПТ».

Действующий прототип цифровой подстанции был представлен на выставке «Электрические сети России-2011». Внедрение пилотного проекта и выход на полномасштабное производство оборудования цифровой подстанции запланирован на 2012 год. Российское оборудование для «Цифровой подстанции» прошло полномасштабное тестирование, подтверждена также его совместимость по стандарту МЭК 61850 с оборудованием различных зарубежных (Omicron, SEL, GE, Siemens и др.) и отечественных (ООО «Прософт-Системы», НПП «Динамика» и др.) компаний.

Разработка собственного российского решения по цифровой подстанции позволит не только развивать отечественное производство и науку, но и повысить энергобезопасность нашей страны. Проведённые исследования технико-экономических показателей позволяют сделать вывод, что стоимость нового решения при переходе на серийный выпуск продукции не будет превышать стоимости традиционных решений построения систем автоматизации и позволит получить ряд технических преимуществ, таких как:
значительное сокращение кабельных связей;
повышение точности измерений;
простота проектирования, эксплуатации и обслуживания;
унифицированная платформа обмена данными (МЭК 61850);
высокая помехозащищённость;
высокая пожаро-взрывобезопасность и экологичность;
снижение количества модулей ввода/вывода на устройства АСУ ТП и РЗА, обеспечивающее снижение стоимости устройств.

Ещё ряд вопросов требует дополнительных проверок и решений. Это относится к надёжности цифровых систем, к вопросам конфигурирования устройств на уровне подстанции и энергообъединения, к созданию общедоступных инструментальных средств проектирования, ориентированных на разных производителей микропроцессорного и основного оборудования. Для обеспечения требуемого уровня надёжности в рамках пилотных проектов должны быть решены следующие задачи.

1. Определение оптимальной структуры цифровой подстанции в целом и её отдельных систем.
2. Гармонизация международных стандартов и разработка отечественной нормативной документации.
3. Метрологическая аттестация систем автоматизации, в том числе и системы АИИСКУЭ, с поддержкой МЭК 61850-9-2.
4. Накопление статистики по надёжности оборудования цифровой подстанции.
5. Накопление опыта внедрения и эксплуатации, обучение персонала, создание центров компетенции.

В настоящее время в мире началось массовое внедрение решений класса «цифровая подстанция», основанных на стандартах серии МЭК 61850, реализуются технологии управления Smart Grid, вводятся в эксплуатацию приложения автоматизированных систем технологического управления. Применение технологии «Цифровой подстанции» должно позволить в будущем существенно сократить расходы на проектирование, пуско-наладку, эксплуатацию и обслуживание энергетических объектов.

Алексей Данилин, директор по АСДУ ОАО «СО ЕЭС»,Татьяна Горелик, заведующая отделом АСУ ТП, к.т.н., Олег Кириенко, инженер, ОАО «НИИПТ» Николай Дони, заведующий отделом перспективных разработок НПП «ЭКРА»

В.М. Зинин (ОАО “НИПОМ”)
А.М. Подлесный (ООО “ИнСАТ”)
В.Г. Карантаев (ОАО “ИнфоТеКС”)


Используемые технологические решения единой энергетической сети (ЕЭС), созданной более 60 лет назад, по многим параметрам подходят к границе эксплуатационных возможностей. Согласно концепции развития ЕЭС, разработанной в 2011 году , следующим шагом может стать интеллектуальная система с активно-адаптивной сетью (ААС), в зарубежной терминологии – Smart Grid. Процесс повышения уровня автоматизации объектов ЕЭС уже идет, привнося новые технологии, применение которых порождает не только всевозможные сложности чисто технологической реализации, но и риски информационной безопасности.

Одной из важнейших составных частей концепции Smart Grid является цифровая подстанция (ЦПС). Под ЦПС понимается подстанция с высоким уровнем автоматизации управления, в которой практически все процессы информационного обмена как между элементами ЦПС, так и с внешними системами, а также управления работой ЦПС осуществляются в цифровом виде на основе протоколов МЭК, в частности по открытому объектно-ориентированному стандарту МЭК 61850. В соответствии с данным стандартом устройства должны поддерживать (рис. 1): возможность приема выборок мгновенных значений (Simpled Values), аналоговых сигналов токов/напряжений, возможность публикации/подписки на GOOSE-сообщения, возможность информационного обмена по технологии “клиент-сервер” по протоколу MMS. MMS работает поверх стека TCP, что влияет на скорость передачи данных, поэтому MMS зачастую используется для решения задач по передаче не критичных к задержкам данных, например передачи команд телеуправления, сбора данных телеизмерений и телесигнализации и их передаче в верхний уровень – SCADA-системы. В отличие от MMS-протокола, GOOSE, наоборот, может использоваться для передачи “быстрых сигналов”, например команд отключения выключателя от защиты, за счет того, что данные в этом протоколе назначаются непосредственно в кадр Ethernet в обход стека TCP .

Вновь создаваемые программно-аппаратные комплексы, такие как цифровая подстанция, должны соответствовать действующим нормативно-правовым актам РФ, а также учитывать лучшие мировые практики построения систем киберзащиты.

Удовлетворяющая сформулированным требованиям ЦПС должна иметь высокотехнологичные средства защиты от кибератак, поскольку она в первую очередь является объектом критической информационной инфраструктуры (КИИ), о чем свидетельствует проект Федерального закона № 47571-7 “О безопасности КИИ Российской Федерации”, рекомендованный Комитетом Государственной Думы по энергетике и принятый в первом чтении 27 января 2017 года. Этот законопроект определяет основные принципы госрегулирования в сфере защиты КИИ страны в целях ее устойчивого функционирования при компьютерных атаках. Он был разработан с целью реализации “Доктрины информационной безопасности
Российской Федерации”, утвержденной Президентом России 5 декабря 2016 года, в рамках которой защита КИИ определяется как одна из стратегических целей. Согласно законопроекту “к критической инфраструктуре относятся информационные системы и телекоммуникационные сети госорганов, автоматизированные системы управления технологическими процессами, функционирующие в оборонной промышленности, области здравоохранения, транспорта, связи, кредитно-финансовой сфере, энергетике, топливной, атомной, ракетнокосмической, горнодобывающей, металлургической и химической промышленности”.

Детализируя указанные требования, создаваемая ЦПС должна обладать следующими характеристиками, обеспечивающими киберзащиту объекта:

  • создаваться на российской доверенной аппаратно-программной платформе с основными компонентами (операционная система, микропроцессор, контроллер периферийных интерфейсов, базовая система ввода/вывода), разработанными в РФ силами российских специалистов и имеющими
  • полную конструкторскую документацию;
  • учитывать положения стандартов, разработанных группой IEC TC57: IEC 61850, IEC60870, IEC 62351, в части безопасности коммуникационных протоколов, а также требования стандарта INL Cyber Security Procurement Language 2008, серии стандартов ISO/IEC 27000 в части общих принципов
  • обеспечения безопасности цифровых систем управления и ГОСТ-Р МЭК 62443-3-2013;
  • использовать российские гостированные криптографические алгоритмы, которые встраиваются в каждый элемент или каждую подсистему цифровой подстанции.

Еще одной отличительной особенностью построения технологических систем управления в электроэнергетике является то, что применение криптографических средств защиты информации (СКЗИ) в них не должно снижать производительность, так как длительность переходных (аварийных) процессов составляет десятки микросекунд. Во многих применяемых сегодня микроконтроллерах встраивание элементов кибербезопасности либо изначально не предусмотрено разработчиком, либо невозможно, так как их встраивание не позволит обеспечить требуемое быстродействие.


Опираясь на многолетний опыт работы и знания в своих предметных областях, специалисты компаний ОАО “НИПОМ”, ООО “ИнСАТ”, ОАО “ИнфоТеКС” и ПАО “ИНЭУМ им. И.С. Брука” разработали цифровую подстанцию, отвечающую всем указанным требованиям. “Нижний” уровень ЦПС базируется на инновационных терминалах релейной защиты (РЗА) компании ОАО “НИПОМ”. Разработанный терминал РЗА (рис. 2) выполнен в виде кассеты блочной конструкции с задним присоединением внешних проводов и оборудован системой тестового контроля, служащей
для проверки работоспособности основных узлов и блоков.

В корпусе терминала РЗА расположены платы дискретных входов/выходов, плата аналоговых входов для подачи измеряемых токов и напряжений, кросс-плата, служащая для согласования кабельной части универсальных плат (AI, DO/DI), блок питания и компьютер в промышленном исполнении с микропроцессором Эльбрус, поскольку функционирование КСЗИ ОС Эльбрус обеспечивает требуемый уровень защиты информации от несанкционированного доступа (НСД) и не влияет на быстродействие системы. Каждая плата DO/DI содержит 11 каналов DI и 10 каналов DO. Таким

Образом, в одном корпусе можно выполнить от 33 до 66 каналов DI и от 30 до 60 каналов DO, что позволяет использовать разработанные терминалы РЗА как на объектах с небольшим количеством сигналов, так и на сложных, с большим числом присоединений. Для реализации функций передачи сигналов дифференциальной токовой продольной защиты линии (ДЗЛ) с использованием протокола SV (МЭК 61850) количество портов Ethernet может быть увеличено добавлением стандартной Ethernet-карты в промышленный компьютер без изменения его конструкции. Полное разделение логики терминала и его аппаратного исполнения позволило предоставить широкие возможности для свободно конфигурируемой логики схем защиты. К особенностям терминала, повышающим его киберзащищеность, можно отнести механизмы строгой двухфакторной аутентификации, реализованные ОАО “НИПОМ” совместно с ОАО “ИнфоТеКС”.

“Верхний” уровень разработанной системы, как уже было сказано ранее, представляет собой сервер на базе отечественного процессора Эльбрус с одноименной операционной системой, который при необходимости может быть зарезервирован. Кроме того, в зависимости от требований того или иного объектав решении также может быть использована ОС AstraLinux. В качестве среды сбора и обработки данных используется российская SCADA-система MasterSCADA 4D производства компании ООО “ИнСАТ”. MasterSCADA 4D является кроссплатформенной, вертикально-нтегрированной программной платформой с объектно-ориентированными методами программирования, в том числе на языках стандарта МЭК 61131-3, и единственной на сегодня SCADA-системой, работающей на ОС Эльбрус. MasterSCADA 4D осуществляет сбор информации с терминала РЗА через встроенный драйвер протокола МЭК 61850 (MMS) и предоставляет данные в виде мнемосхем, отчетов и трендов на автоматизированное рабочее место оператора подстанции. На стартовой (основной) мнемосхеме оператора (рис. 3) отображается однолинейная схема подстанции, присоединения и состояния первичного оборудования.


Кроме того, оператор всегда располагает информацией о работоспособности сетевой топологии ЦПС в виде сигнализации состояний (включая АРМы, SCADA-серверы и вторичное коммуникационное оборудование) с фиксацией полного списка тревог в журнале событий. Встроенные механизмы защиты MasterSCADA 4D обеспечивают аутентификацию и идентификацию пользователей в системе, а также разграничение их прав доступа по заранее определенной разработчиком ролевой модели, регистрацию всех действий пользователей от момента идентификации до выхода из системы.


В целях защиты электронного периметра подстанции и реализации принципа многоуровневой защиты были использованы шлюзы безопасности разработки компании ОАО “ИнфоТеКС”, – ViPNetCoordinator HW 1000. Локально-вычислительная сеть подстанции была разделена/сегментирована на несколько доменов безопасности, т. е. зон подстанции с разными требованиями по обеспечению ИБ.

Таким образом, с использованием индустриального шлюза безопасности ViPNetCoordinator IG были разграничены права доступа между
уровнем станции и уровнями присоединения и шины процесса, что демонстрирует функциональная схема на рис. 5.

Реализация принципа многоуровневой защиты с применением межсетевых экранов является не только возможной, но и необходимой мерой защиты информации на подстанциях, находящихся в эксплуатации и подвергающихся частичной модернизации в соответствии с требованиями Приказа ФСТЭК России от 14 марта 2014 г. № 31 .

Применение наложенных средств ЗИ как на вновь создаваемых подстанциях, так и на подстанциях, подвергающихся глубокой модернизации, было бы неправильно признать достаточным, так как остаются высокие риски реализации компьютерных атак на незащищенные телекоммуникационные протоколы: MMS, GOOSE, SV.

В условиях необходимости удовлетворять комплексу требований по функциональной надежности, безопасности, быстродействию телекоммуникационных протоколов, а также по оптимальности затрат наиболее перспективно выглядит реализация концепции встраивания средств криптографической защиты информации в каждый элемент или в каждую подсистему цифровой подстанции.

ОАО “НИПОМ”, ООО “ИнСАТ”, ОАО “ИнфоТеКС” и ПАО “ИНЭУМ им. И.С. Брука” не останавливаются на достигнутом и продолжают совершенствовать разработанную ЦПС с использованием отечественных решений, которые позволяют реализовать киберзащищенное исполнение ЦПС для повышения надежности объектов высоковольтных электрических сетей.

Список литературы

  1. Основные положения концепции интеллектуальной энергосистемы с активноадаптивной сетью.
  2. International Electrotechnical Commission. Communication Networks and Systems for Power Utility Automation – Part 8-1: Specific Communication Service Mapping (SCSM)-Mappings to MMS (ISO 9506-1 and ISO 9506-2) and to ISO/IEC 8802-3; IEC 61850-8-1-2011; International Electrotechnical Commission (IEC): Geneva, Switzerland, 2011.
  3. Приказ ФСТЭК России от 14 марта 2014 г. № 31.

Зинин Владимир Михайлович – директор управления перспективных разработок ОАО “НИПОМ”,
Подлесный Андрей Михайлович – руководитель отдела продаж программного обеспечения ООО “ИнСАТ”,
Карантаев Владимир Геннадьевич – руководитель направления развития бизнеса ОАО “ИнфоТеКС”.

Сегодня идет много разговоров про технологию “Цифровая подстанция”. Когда-то это тема в России развивалась под эгидой ФСК ЕЭС для больших подстанций на сверхвысокие классы напряжения (220 кВ и выше), но сейчас ее можно найти и на более скромных объектах. Более того, самыми передовыми, в части применения цифровых технологий, являются несколько опытных подстанций 110 кВ, такие как ПС “Олимпийская” в Тюменьэнерго. Отчасти это связано с попыткой снизить затраты на опытные полигоны, отчасти попыткой снизить ущерб от возможной неправильной работы нового оборудования в реальной энергосистеме.

Вместе с тем не всегда понятно какую именно подстанцию можно считать полностью цифровой? Само внедрение цифровых технологий в энергетике началось более 20 лет назад с приходом первых микропроцессорных блоков РЗА, которые имели возможность интеграции в системы АСУ по цифровым каналам связи.

Но сегодня под цифровой подстанцией обычно понимается несколько другой объект.

С выходом в этом году измененных Норм технологического проектирования ПС 35-750 кВ ФСК (от 25.08.2017) можно разобраться с этим вопросом более подробно. Думаю, статья будет полезна не только интересующимся коммуникационными технологиями, но и простым релейщикам, многим из которых придется столкнуться с подобными объектами в будущем.

Начнем с определений НТП ФСК 2017 (здесь и дальше вырезки из документа с пояснениями)

Как мы видим, согласно позиции ФСК, цифровыми являются только те подстанции, где применено оборудование, поддерживающее стандарты МЭК-61850.

Стоит отметить, что стандарты МЭК-61850 изначально разрабатывались для работы внутри отдельно взятой подстанции, поэтому выдача информации на диспетчерский пункт производится другими протоколами (обычно МЭК-60870-5-104), что по всей видимости не противоречит термину “цифровая подстанция”

Самое важное на мой взгляд определение потому, что оно содержит требование применения оптических ТТ и электронных ТН, как самых передовых технологий из набора МЭК-61850 (SV). Получается, если подстанция не содержит этих элементов, то она не может считаться цифровой. Таким образом, в России пока нет ни одной цифровой подстанции потому, как ко всем существующим ОТТ и ЭТН подключена релейная защита, работающая только на сигнал (например, цифровой полигон Русгидро на Нижегородской ГЭС).

Таким образом, Цифровая подстанция – технология будущего.

Туда же. Все устройства должны поддерживать обмен по стандартам МЭК-61850-8-1 (MMS, GOOSE). Технология MMS предназначена для обмена с устройствами верхнего уровня (до сервера АСУ конкретной подстанции), а GOOSE – для горизонтального обмена между терминалами РЗА и контроллерами присоединений. Таким образом, дискретных входы и реле микропроцессорных устройств должны остаться в прошлом. Хорошая новость для тех, кто устал протягивать клеммы

А вот это очень интересная новость для проектировщиков – теперь не только строить, но и проектировать цифровые подстанции нужно согласно стандартам МЭК-61850.

По-сути, это означает, что вы должны проектировать не на бумаге или в Автокаде, с последующим переносом на бумагу, а сразу в цифровом виде. Т.е. на выходе у проектировщика должно получаться готовое задание на наладку РЗА и АСУ в цифровом виде (файл в формат языка описания SCL). Это позволит существенно сократить время на наладку, но возможно увеличит время на проектирование. Для того, чтобы время на разработку проекта не увеличилось нужно создать типовые проекты на каждое присоединение подстанции. Этим сейчас и занимается ФСК ЕЭС в рамках разработки национального профиля МЭК-61850.

Еще один момент – теперь для того, чтобы обеспечить работоспособность системы РЗА, нужно рассчитывать параметры локально-вычислительной сети (ЛВС). Т.е. РЗА избавиться от дискретных цепей, но будет зависеть от коммуникационной сети подстанции.

Все функции РЗА и АСУ на подстанции будут жестко стандартизированы и реализованы на совокупности логических узлов (logical node). Прочите еще раз абзац выше – думаю, в энергетике скоро начнет расти спрос на программистов и спецов по информационным технологиям) Как у вас дела с английским языком и абстрактным мышлением?

Теперь нужно будет внимательно следить за информационной безопасностью подстанции. Стандартизация имеет обратную сторону потому, как вирусы и другое вредоносное ПО пишется под наиболее популярные операционные системы.

“Устаревшие” протоколы передачи данных применять будет можно, но только при серьезном обосновании.

Какие можно сделать выводы из данного документа?

Пожалуй, я в этот раз не буду делать никаких выводов потому, что не являюсь экспертом в этих технологиях.

А что думаете вы? Пойдет Цифровая подстанция “в массы”?

Цифровая подстанция - важный элемент интеллектуальной энергосистемы ОАО «НТЦ Электроэнергетики» ОАО «Институт «ЭНЕРГОСЕТЬПРОЕКТ» ЗАО «ИТЦ «Континуум ПЛЮС» Докладчик: Моржин Юрий Иванович, Директор по информационно – управляющим системам и системному моделированию д.т.н. ОАО «НТЦ электроэнергетики»




Цифровая подстанция 3 В настоящее время в отрасли существует большое разнообразие точек зрения и подходов к тому, что понимать под термином «цифровая подстанция». Для успешного развития автоматизации процессов передачи, преобразования и распределения электроэнергии в масштабах ЕНЭС, сейчас разрабатывается общая концепция программно-аппаратного комплекса цифровой подстанции. Со времени начала разработок в отечественной электроэнергетике проектов АСУ ТП ПС произошло существенное развитие аппаратных и программных средств систем управления для применения на электрических подстанциях. Появились высоковольтные цифровые трансформаторы тока и напряжения; разрабатывается первичное и вторичное электросетевое оборудование со встроенными коммуникационными портами; производятся микропроцессорные контроллеры, оснащенные инструментальными средствами разработки, на базе которых возможно создание надежного программно-аппаратного комплекса ПС; принят международный стандарт МЭК 61850, регламентирующий представление данных о ПС как объекте автоматизации, а также протоколы цифрового обмена данными между микропроцессорными интеллектуальными электронными устройствами (IED) ПС, включая устройства контроля и управления, релейной защиты и автоматики (РЗА), противоаварийной автоматики (ПА), телемеханики, счетчики электроэнергии и т.д. Все это создает предпосылки для построения подстанции нового поколения – цифровой подстанции (ЦПС), в которой организация всех потоков информации при решении задач мониторинга, анализа и управления осуществляется в цифровой форме.


Цифровая подстанция 4 Переход к передаче сигналов в цифровом виде на всех уровнях управления ПС позволит получить целый ряд преимуществ, в том числе: Существенно сократить затраты на кабельные вторичные цепи и каналы их прокладки, приблизив источники цифровых сигналов к первичному оборудованию; Повысить электромагнитную совместимость современного вторичного оборудования – микропроцессорных устройств и вторичных цепей благодаря переходу на оптические связи; Упростить и, в конечном итоге, удешевить конструкцию микропроцессорных интеллектуальных электронных устройств за счет исключения трактов ввода аналоговых сигналов; Унифицировать интерфейсы устройств IED, существенно упростить взаимозаменяемость этих устройств (в том числе замену устройств одного производителя на устройства другого производителя) и др.


ЦЕЛИ СОЗДАНИЯ, ОСНОВНЫЕ ПРИНЦИПЫ ЦЕЛИ СОЗДАНИЯ УМЕНЬШЕНИЕ КАПИТАЛЬНЫХ ЗАТРАТ - уменьшение затрат на кабельную продукцию и кабельные сооружения - уменьшение стоимости терминалов (унификация аппаратной части, замена модулей ввода на цифровые интерфейсы) - уменьшение площади земельных участков, необходимых для обустройства ПС (применение оптических цифровых ТТ и ТН, современного микропроцессорного вторичного оборудования даст возможность уменьшить); - увеличение срока службы силового электрооборудования (расширенная диагностика); - уменьшение затрат на проектирование, монтаж и пусконаладку (уменьшение кол-ва кабелей, уменьшение кол-ва оборудования, расширение возможностей по типизации проектных решений в части шкафного оборудования и цифровых связей).


ЦЕЛИ СОЗДАНИЯ, ОСНОВНЫЕ ПРИНЦИПЫ ЦЕЛИ СОЗДАНИЯ УМЕНЬШЕНИЕ ЭКСПЛУАТАЦИОННЫХ ЗАТРАТ (на техобслуживание) - упрощение эксплуатации и обслуживания (постоянная расширенная диагностика в режиме реального времени, в т.ч. – метрологических характеристик; сбор и отображение исчерпывающей информации о состоянии и функционировании ПС); - увеличение точности измерений (особенно при токах менее 10-15%Iн) и увеличение благодаря этому точности учета электроэнергии и точности ОМП; - сокращение возможности появления дефектов типа «земля в сети постоянного тока» (сокращение размерности СОПТ ввиду использования цифровых оптических связей); - сокращение кол-ва внезапных отказов основного электрооборудования и связанных с ними штрафов за недоотпуск электроэнергии и нарушений производственного цикла (расширенная диагностика всего комплекса технических средств ЦПС);


ЦЕЛИ СОЗДАНИЯ, ОСНОВНЫЕ ПРИНЦИПЫ ЦЕЛИ СОЗДАНИЯ УМЕНЬШЕНИЕ ЭКСПЛУАТАЦИОННЫХ ЗАТРАТ (на техобслуживание) - уменьшение количества сбоев, неправильной работы, отказов РЗА (применение оптических кабелей вместо медных повысит электромагнитную совместимость современного вторичного оборудования – микропроцессорных устройств РЗ и автоматики); - повышение алгоритмической надежности функционирования РЗА (отсутствие насыщения и возможность измерения апериодической составляющей у оптических цифровых ТТ позволит упростить и усовершенствовать алгоритмы РЗА); - уменьшение потребления по цепям переменного тока и напряжения (в результате применения оптических ТТ и ТН)


ЦЕЛИ СОЗДАНИЯ, ОСНОВНЫЕ ПРИНЦИПЫ ОСНОВНЫЕ ПРИНЦИПЫ СОЗДАНИЯ Переход на цифровые (в основном – оптические) технологии съема информации и передачи команд управления - возможность «замены на ходу» источника сигнала и тем самым – повышение надежности функционирования релейных защит; - увеличение быстродействия (не требуется защита «от дребезга», уменьшение времени срабатывания исполнительной части – за счет оптических IGBT-модулей, уменьшения времени выявления аварийного режима*). - улучшение условий в части безопасного производства работ и электромагнитной совместимости (благодаря оптическим связям нет выноса потенциала с ОРУ) Увеличение интеллектуальной составляющей в оборудовании ЦПС - развитие средств и методов непрерывной диагностики (контроль деградации характеристик, контроль готовности к выполнению операций, контроль метрологических характеристик), - расширение количества функций, реализуемых в каждом терминале; - перенос части расчетно-диагностических задач в интерфейсные модули (Smart-IED).


ЦЕЛИ СОЗДАНИЯ, ОСНОВНЫЕ ПРИНЦИПЫ ОСНОВНЫЕ ПРИНЦИПЫ СОЗДАНИЯ Двухэтапность реализации ЦПС: Этап 1: - использование существующего основного оборудования, к которому добавляется интерфейсный цифровой интеллектуальный модуль (как правило, размещаемый в помещении) на базе IEC и IEC Возможно корректировка состава и типа применяемых датчиков. Получение опыта эксплуатации. - разработка всей номенклатуры устройств РЗА, ПА, измерений с интерфейсами IEC и IEC Этап 2: - существенная модернизация основного электрооборудования с интеграцией в него специализированных цифровых необслуживаемых датчиков, полевых контроллеров, твердотельных исполнительных модулей. Расширение объема задач, выполняемых интерфейсным модулем. Доработка всех компонентов ЦПС с учетом опыта эксплуатации.




КОМПОНЕНТЫ ЦИФРОВОЙ ПОДСТАНЦИИ Цифровые измерительные трансформаторы Измерение гармонических составляющих Расширенный динамический и частотный диапазон Синхронность измерений Снижение метрологических потерь Устранено влияние электромагнитных эффектов (влияние помех, остаточной намагниченности и т.д.) Безопасность эксплуатации, простота обслуживания Отсутствие феррорезонансных явлений Повышение точности измерений (особенно при малых токах), повышение точности ОМП. Самодиагностика Упрощение монтажа (меньше вес) Ниже стоимость (для класса напряжения кВ)


КОМПОНЕНТЫ ЦИФРОВОЙ ПОДСТАНЦИИ (подстанционный координационный центр - ПКЦ) ПКЦ - программно–аппаратное ядро ЦПС, коорди- нирующее основные информационные потоки в ЦПС и автоматизирующее процессы принятия и реализа- ции решений по управлению оборудованием ПС. С этой целью ПКЦ должен обеспечивать: ведение актуализируемой модели технологических процессов подстанции, как основы для построения алгоритмов контроля, анализа, достоверизации информации и управления функционированием ПС; работу подсистем анализа технологических ситуаций, в т.ч. поддержки процессов принятия решений по управлению в сложных / аварийных ситуациях на основе актуальной модели; организацию и ведение БД состояния оборудования ЦПС; отслеживание его предаварийных состояний и выдачу предупредительных или аварийных сигналов и сообщений; взаимодействие с центрами управления в качестве «представителя» ЦПС в высших уровнях иерархии управления в ЭЭС; телеуправление оборудованием ЦПС с обеспече- нием контроля его возможности, допустимости и безопасности (с учетом реального состояния оборудования ПС), а также успешности выполнения команд управления


Метрологическое обеспечение Новые качества измерений Потери во вторичных цепях (для всех устройств разные); Многократные АЦ преобразования (в каждом устройстве); Не синхронность измерений; Большое влияние ЭМ эффектов; и т.д. Отсутствие потерь при передаче информации; Неограниченное тиражирование информации; Единожды выполняемое АЦ преобразование (первичное измерение) и т.д. Традиционная подстанцияЦифровая подстанция


ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ (инструментальные средства, ЕСКК) ИНСТРУМЕНТАЛЬНЫЕ ПРОГРАММНЫЕ СРЕДСТВА - поддержка полного жизненного цикла ПАК ЦПС (при проектировании, пусконаладке, в процессе эксплуатации) - поддержка единого информационного пространства (единая система классификации и кодирования, следование международным стандартам IEC при работе с данными) - поддержка «самодокументирования» ПАК ЦПС (автоматизированное формирование документации в электронном виде, согласованные формы доступа к документам из ЦУС, МЭС, ПМЭС); - поддержка конфигурирования и обслуживания Smart IED (технологическое ПО, актуальные конфигурационные файлы, эксплуатационная документация); - постоянный контроль и диагностика сетей передачи данных. ЕДИНАЯ СИСТЕМА КЛАССИФИКАЦИИ И КОДИРОВАНИЯ -единая система обозначений для всех видов электросетевых объектов; - единое обозначение объектов классификации и маркировки при проектировании, внедрении (сооружении), эксплуатации и модернизации (реконструкции) энергообъектов; - децентрализация процесса идентификации оборудования; - уникальность кода идентификации; - устойчивость кода идентификации к области применения; - однозначность и корректность выполнения запросов для получения различных данных и документов при машинной обработке (на этапе проектирования и в процессе эксплуатации); - возможность гармонизации с другими системами классификации (в частности – CIM); - обеспечение возможности сохранения действующих локальных обозначений оборудования


ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ (общая информационная модель – CIM) CIM-представление является единым языком описания данных и, соответственно, интерфейса в общей интегрированной среде. CIM - общий язык для приложений при работе в единой АСТУ ОАО «ФСК ЕЭС». Исходными данными для построения информационной модели являются: - электрическая схема нормального режима ПС; - классификационные таблицы и методика построения уникальных идентификаторов объектов, оборудования, измерений, сигналов и документов; -профиль модели, определяющий: 1) классы, атрибуты и отношения между ними в схеме информационной модели; 2) стандарты в области информационных технологий (с точностью до версий), следование которым является обязательным в процессе проектирования, внедрения и эксплуатации системы управления.
ОБЕСПЕЧЕНИЕ НАДЕЖНОСТИ (диагностика и тестирование) Самодиагностика аппаратных средств: - модули Smart IED основного электрооборудования - микропроцессорные терминалы - цифровые сети Внешняя автоматическая диагностика специализированными программно – техническими средствами: - без вывода из работы (сравнение мгновенных значений токов от разных ЦТТ одного присоединения, сравнение напряжений электрически связанных ТН, контроль суммы токов/мощностей в узле). - с кратковременным выводом из работы (эмуляция тестовых сигналов для терминалов и сравнение полученной реакции терминала с тестовой)






Цифровая подстанция 20 ОАО «НТЦ электроэнергетики» В рамках пилотного проекта ОАО «ФСК ЕЭС» «Цифровая подстанция» координирует следующие направления: 1.Разработка «Концепции программно-аппаратного комплекса «Цифровая подстанция» - декабрь 2010 г. 2.Преобразование реконструируемой подстанции ОАО «НТЦ электроэнергетики» 110/10 кВ в «Цифровую подстанцию» в составе: Оптические трансформаторы тока и напряжения; Станционная шина, шина процесса; Многофункциональные электронные приборы измерений и учета; Система для отображения информации и управления подстанцией (SCADA); -декабрь 2010 г. В 2011 г. микропроцессорная защита подстанции. 3. Создание в ОАО «НТЦ электроэнергетики» опытного полигона «Цифровая подстанция» г.