ОПРЕДЕЛЕНИЕ

Мышьяк - тридцать третий элемент Периодической таблицы. Обозначение - As от латинского «arsenicum». Расположен в четвертом периоде, VA группе. Относится к полуметаллам. Заряд ядра равен 33.

Мышьяк встречается в природе большей частью в соединениях с металлами или серой и лишь изредка в свободном состоянии. Содержание мышьяка в земной коре составляет 0,0005%.

Обычно мышьяк получают из мышьяковистого колчедана FeAsS.

Атомная и молекулярная масса мышьяка

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии мышьяк существует в виде одноатомных молекул As, значения его атомной и молекулярной масс совпадают. Они равны 74,9216.

Аллотропия и аллотропные модификации мышьяка

Подобно фосфору мышьяк существует в виде нескольких аллотропических форм. При быстром охлаждении пара (состоящего из молекул As 4) образуется неметаллическая фракция - желтый мышьяк (плотность 2,0 г/см 3), изоморфный белому фосфору и подобно ему растворимый в сероуглероде. Эта модификация менее устойчива, чем белый фосфор, и при действии света или при слабом нагревании легко переходит в металлическую модификацию - серый мышьяк (рис. 1). Он образует серо-стальную хрупкую кристаллическую массу с металлическим блеском на свежем изломе. Плотность равна 5,75 г/см 3 . При нагревании под нормальным давлением он сублимируется. Обладает металлической электрической проводимостью.

Рис. 1. Серый мышьяк. Внешний вид.

Изотопы мышьяка

Известно, что в природе мышьяк может находиться в виде единственного стабильного изотопа 75 As. Массовое число равно 75, ядро атома содержит тридцать три протона и сорок два нейтрона.

Существует около 33-х искусственных не стабильных изотопов мышьяка, а также десять изомерных состояний ядер, среди которых наиболее долгоживущим является изотоп 73 As с периодом полураспада равным 80,3 дня.

Ионы мышьяка

На внешнем энергетическом уровне атома мышьяка имеется пять электронов, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 3 .

В результате химического взаимодействия мышьяк отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

As 0 -3e → As 3+ ;

As 0 -5e → As 5+ .

Молекула и атом мышьяка

В свободном состоянии мышьяк существует в виде одноатомных молекул As. Приведем некоторые свойства, характеризующие атом и молекулу мышьяка:

Примеры решения задач

ПРИМЕР 1

Задание Мышьяк образует два оксида. Массовая доля мышьяка в них равна 65,2% и 75,7%. Определите эквивалентные массы мышьяка в обоих оксидах.
Решение Примем массу каждого оксида мышьяка за 100 г. Поскольку содержание мышьяка указано в массовых процентах, то в составе первого оксида находится 65,2 г мышьяка и 34,8 г кислорода (100 - 65,2 = 34,8); в 100 г второго оксида на мышьяк приходится 75,7 г, а на кислород - 24,3 г (100 - 75,7 = 24,3).

Эквивалентная масса кислорода равна 8. Применим закон эквивалентов для первого оксида:

M eq (As) = 65,2 / 34,8 × 8 = 15 г/моль.

Расчет для второго оксида проводим аналогично:

m (As) / m(O) = M eq (As) / M eq (O);

M eq (As) = m (As) / m(O) × M eq (O);

M eq (As) = 75,7 / 24,3 × 8 = 25 г/моль.

МЫШЬЯК
As (arsenicum) ,
химический элемент VA подгруппы периодической системы элементов, относится к семейству азота N, P, As, Sb, Bi. Мышьяк наиболее известен из-за использования его и его соединений в качестве яда. В рудах встречается в виде сульфидов, арсенидов, арсенитов и арсенатов. Наибольшее распространение среди мышьяксодержащих минералов имеет арсенопирит (мышьяковый колчедан) FeAsS - основное сырье для получения мышьяка, содержащее до 46% As. Лидерами по производству мышьяка являются Франция, Мексика, Швеция и США. Соединения мышьяка известны с античных времен, наиболее ранние сведения встречаются в работах древнегреческого философа Теофраста (372-287 до н.э.). Открытие элемента обычно приписывают Альберту Великому (Магнусу, 1206-1280), немецкому философу и автору работ по физике. В 1733 Г. Брандт установил, что белый мышьяк в действительности является оксидом мышьяка, а в 1817 шведский химик и минеролог Й. Берцелиус определил относительную атомную массу мышьяка.
Свойства и соединения. Мышьяк относится к неметаллам, хотя из трех его аллотропных модификаций (желтой, черной и металлической, или серой) серая представляет собой кристаллическую массу с металлическим блеском на свежем изломе и, в отличие от других модификаций, обладает металлической электрической проводимостью. Серая форма наиболее стабильна при комнатной температуре и свойства в таблице приведены для нее. СВОЙСТВА СЕРОГО МЫШЬЯКА
Атомный номер 33 Атомная масса 74,9216 Изотопы

стабильные 75


нестабильные 70-74, 76-79, 81


Температура плавления, ° С 817 (при 37 атм) Температура кипения, ° С 615 (сублимация) Плотность, г/см3 5,73 Твердость (по Моосу) 3,5 Содержание в земной коре, % (масс.) 0,0005 Степени окисления -3, +3, +5 Мышьяк и все его соединения очень ядовиты. Мышьяк не растворяется в воде, на воздухе медленно окисляется, при сильном нагревании сгорает с образованием оксида As2O3 ("белый мышьяк" с характерным чесночным запахом, плохо растворяется в воде, но взаимодействует с ней с образованием амфотерного гидроксида мышьяка(III) As(OH)3, или ортомышьяковой кислоты H3AsO3, которая в свободном состоянии не получена, а известна лишь в водном растворе, где находится в равновесии с метамышьяковистой кислотой:

При взаимодействии As2O3 со щелочами образуются соли мышьяковистой кислоты - арсениты). Соединения мышьяка(III) - восстановители; окисляясь, они переходят в соединения мышьяка(V). Мышьяковая кислота H3AsO4 - твердое, хорошо растворимое в воде вещество, более сильная кислота, чем мышьяковистая. При прокаливании образует белую стеклообразную массу - As2O5 (оксид мышьяка(V), или мышьяковый ангидрид). Соли мышьяковой кислоты - арсенаты (средние) и гидро- и дигидроарсенаты (кислые). Мышьяковая кислота и ее соли - окислители. Гидрид мышьяка, или арсин, AsH3 - бесцветный газ с чесночным запахом, малорастворимый в воде. Образуется при восстановлении соединений мышьяка. При нагревании разлагается с выделением свободного мышьяка, который, оседая на холодной поверхности, образует черный блестящий налет ("мышьяковое зеркало"). С некоторыми металлами мышьяк образует арсениды, например Cu3As, Ca3As2.
Применение. В промышленности элементный мышьяк применяют для производства сплавов различного назначения. При добавлении мышьяка к сплавам на основе меди получают мышьяковые латуни и бронзы (в том числе зеркальную бронзу) и тугоплавкие сплавы. Сплавы на основе свинца с добавками мышьяка используются для изготовления аккумуляторных пластин, подшипников, защитной оболочки кабеля, а добавки мышьяка к свинцу применяются для повышения прочности дроби. Однако наибольшее применение находят соединения мышьяка. Растворимые в воде соединения мышьяка применяются в малых дозах в медицине - в стоматологии, для лечения кожных болезней и органов дыхания. Соединения мышьяка используются также в производстве стеклянных изделий, инсектицидов, для уничтожения грызунов, сорняков, при дублении кож и защите кожаных изделий, для обработки музейных экспонатов от порчи.
ЛИТЕРАТУРА
Немодрук А.А. Аналитическая химия мышьяка. М., 1976 Гуревич Ю.Д., Гвоздев Н.В. Переработка мышьякосодержащего сырья. М., 1983

Энциклопедия Кольера. - Открытое общество . 2000 .

Синонимы :

Смотреть что такое "МЫШЬЯК" в других словарях:

    МЫШЬЯК - (Arsenum, Arsenium, Arseni cum), твердый металлоид, симв. As; ат. в. 74,96. В периодической системе элементов занимает по порядку 33 е место, в 5 м ряду V группы. Природные соединения М. с серой (реальгар и аурипигмент) были известны еще в… … Большая медицинская энциклопедия

    МЫШЬЯК - см. МЫШЬЯК (As). Поскольку мышьяк и его соединения широко применяются в народном хозяйстве, он содержится в сточных водах различных отраслей промышленности металлургической, химико фармацевтической, текстильной, стекольной, кожевенной, химической … Болезни рыб: Справочник

    Мышьяк - (неочищенный мышьяк) представляет собой твердое вещество, извлекаемое из природных арсенопиритов. Он существует в двух основных формах: а) обыкновенный, так называемый металлический мышьяк, в виде блестящих кристаллов стального цвета, хрупких, не … Официальная терминология

    - (символ As), ядовитый полуметаллический элемент пятой группы периодической таблицы; вероятно, был получен в 1250 г. Соединения, содержащие мышьяк, используют как отраву для грызунов, насекомых и как средство против сорняков. Они также применяются … Научно-технический энциклопедический словарь

    - (Arsenium), As, химический элемент V группы периодической системы, атомный номер 33, атомная масса 74,9216; неметалл серого, желтого или черного цвета, tпл 817 шC, возгоняется при 615 шC. Мышьяк используют для получения полупроводниковых… … Современная энциклопедия

    Мышьяк - (Arsenium), As, химический элемент V группы периодической системы, атомный номер 33, атомная масса 74,9216; неметалл серого, желтого или черного цвета, tпл 817 °C, возгоняется при 615 °C. Мышьяк используют для получения полупроводниковых… … Иллюстрированный энциклопедический словарь

    МЫШЬЯК - хим. элемент, символ As (лат. Arsenicum), ат. н. 33, ат. м. 74,92; неметалл, существует в нескольких аллотропных модификациях, плотность 5720 кг/м3. При обычных условиях наиболее химически стоек так называемый металлический, или серый, мышьяк.… … Большая политехническая энциклопедия

    - (лат. Arsenicum) As, химический элемент V группы периодической системы, атомный номер 33, атомная масса 74,9216. Русское название от мышь (препараты мышьяка применялись для истребления мышей и крыс). Образует несколько модификаций. Обычный мышьяк … Большой Энциклопедический словарь

    МЫШЬЯК, мышьяка, мн. нет, муж. 1. Химический элемент, твердое вещество, в больших дозах ядовитое, обычно входящее в состав разных минералов, употр. для химических, технических и медицинских целей. 2. Препарат этого вещества, прописываемый при… … Толковый словарь Ушакова

    Арсеник(ум) Словарь русских синонимов. мышьяк сущ., кол во синонимов: 12 арсеник (2) арсеникум … Словарь синонимов

    As (лат. Arsenicum, от греч. arsen, arren сильный, мощный; pyc. назв., возможно, от мышь, связано c применением препаратов M. для истребления мышей и крыс * a. arsenic; н. Arsen; ф. arsenic; и. arsenico), хим. элемент V группы периодич.… … Геологическая энциклопедия

Книги

  • Мышьяк к чаю , Стивенс Робин , С момента ужасного происшествия, а точнее убийства, в школе для девочек Дипдин прошло немало времени. Весенний семестр для неутомимых Дейзи и Хэзел, основательниц "Детективного агентства… Категория:
Мышьяк - химический элемент с атомным номером 33 в периодической системе, обозначается символом As. Представляет собой хрупкий полуметалл стального цвета.

Нахождение в природе мышьяка

Мышьяк - рассеянный элемент. Содержание в земной коре 1,7 10-4% по массе. Это вещество может встречаться в самородном состоянии, имеет вид металлически блестящих серых скорлупок или плотных масс, состоящих из маленьких зернышек. Известно около 200 мышьяк-содержащих минералов. В небольших концентрациях часто содержится в свинцовых, медных и серебряных рудах. Довольно часто встречаются два природных соединения мышьяка с серой: оранжево-красный прозрачный реальгар AsS и лимонно-желтый аурипигмент As2S3. Минерал, имеющий промышленное значение - арсенопирит (мышьяковый колчедан) FeAsS или FeS2 FeAs2, также добывают мышьяковистый колчедан - лёллингит (FeAs2).

Получение мышьяка

Существует множество способов получения мышьяка: сублимацией природного мышьяка, способом термического разложения мышьякового колчедана, восстановлением мышьяковистого ангидрида и др. В настоящее время для получения металлического мышьяка чаще всего нагревают арсенопирит в муфельных печах без доступа воздуха. При этом освобождается мышьяк, пары которого конденсируются и превращаются в твердый мышьяк в железных трубках, идущих от печей, и в особых керамиковых приемниках. Остаток в печах потом нагревают при доступе воздуха, и тогда мышьяк превращается в As2O3. Металлический мышьяк получается в довольно незначительных количествах, и главная часть мышьякосодержащих руд перерабатывается в белый мышьяк, то есть в триоксид мышьяка - мышьяковистый ангидрид As2О3.

Применение мышьяка

  • Применение Мышьяка в металлургии - используется для легирования сплавов свинца, идущих на приготовление дроби, так как при отливке дроби башенным способом капли сплава мышьяка со свинцом приобретают строго сферическую форму, и кроме того, прочность и твёрдость свинца возрастают.
  • Применение в электротехнике - Мышьяк особой чистоты (99,9999 %) используется для синтеза ряда практически очень ценных и важных полупроводниковых материалов - арсенидов и сложных алмазоподобных полупроводников.
  • Применение в качестве красителя - сульфидные соединения мышьяка - аурипигмент и реальгар - используются в живописи в качестве красок.
  • Применение в кожевенной отрасли промышленности - используется в качестве средств для удаления волос с кожи.
  • Применение в пиротехнике - реальгар употребляется для получения «греческого», или «индийского», огня, возникающего при горении смеси реальгара с серой и селитрой (ярко-белое пламя).
  • Применение в медицине - многие из мышьяковых соединений в очень малых дозах применяются в качестве лекарств для борьбы с малокровием и рядом тяжелых заболеваний, так как оказывают клинически значимое стимулирующее влияние на ряд функций организма, в частности, на кроветворение. Из неорганических соединений мышьяка мышьяковистый ангидрид может применяться в медицине для приготовления пилюль и в зубоврачебной практике в виде пасты как некротизирующее лекарственное средство (тот самый «мышьяк», который закладывают в канал зуба перед удалением нерва и пломбированием). В настоящее время препараты мышьяка применяются в зубоврачебной практике редко из-за токсичности и возможности проведения безболезненной денервации зуба под местной анестезией.
  • Применение в производстве стекла - трехокись мышьяка делает стекло «глухим», т.е. непрозрачным. Однако небольшие добавки этого вещества, напротив, осветляют стекло. Мышьяк и сейчас входит в рецептуры некоторых стекол, например, «венского» стекла для термометров и полухрусталя.
Для определения концентраций мышьяка в промышленности часто используется рентгено-флуоресцентный метод анализа состава веществ,что позволяет добиться результатов высокой точности в кратчайшие сроки. Для проведения рентгенофлуоресцентного анализа мышьяка требуются меры предосторожности. Т.к. Мышьяк является отравляеющим веществом.

Самая перспективная область применения мышьяка, несомненно, полупроводниковая техника. Особое значение приобрели в ней арсениды галлия GaAs и индия InAs. Арсенид галлия нужен также для важного направления электронной техники – оптоэлектроники, возникшей в 1963...1965 гг. на стыке физики твердого тела, оптики и электроники. Этот же материал помог создать первые полупроводниковые лазеры.

Почему арсениды оказались перспективными для полупроводниковой техники? Чтобы ответить на этот вопрос, напомним коротко о некоторых основных понятиях физики полупроводников: «валентная зона», «запрещенная зона» и «зона проводимости».

В отличие от свободного электрона, который может обладать любой энергией, электрон, заключенный в атоме, может обладать только некоторыми, вполне определенными значениями энергии. Из возможных значений энергии электронов в атоме складываются энергетические зоны. В силу известного принципа Паули, число электронов в каждой зоне не может быть больше некоего определенного максимума. Если зона пуста, то она, естественно, не может участвовать в создании проводимости. Не участвуют в проводимости и электроны целиком заполненной зоны: раз нет свободных уровней, внешнее электрическое поле не может вызывать перераспределения электронов и тем самым создать электрический ток. Проводимость возможна лишь в частично заполненной зоне. Поэтому тела с частично заполненной зоной относят к металлам, а тела, у которых энергетический спектр электронных состояний состоит из заполненных и пустых зон, – к диэлектрикам или полупроводникам.

Напомним также, что целиком заполненные зоны в кристаллах называются валентными зонами, частично заполненные и пустые – зонами проводимости, а энергетический интервал (или барьер) между ними – запрещенной зоной.

Основное различие между диэлектриками и полупроводниками состоит именно в ширине запрещенной зоны: если для преодоления ее нужна энергия больше 3 эВ, то кристалл относят к диэлектрикам, а если меньше – к полупроводникам.

По сравнению с классическими полупроводниками IV группы – германием и кремнием – арсениды элементов III группы обладают двумя преимуществами. Ширину запрещенной зоны и подвижность носителей заряда в них можно варьировать в более широких пределах. А чем подвижнее носители заряда, тем при больших частотах может работать полупроводниковый прибор. Ширину запрещенной зоны выбирают в зависимости от назначения прибора.

Так, для выпрямителей и усилителей, рассчитанных на работу при повышенной температуре, применяют материал с большой шириной запрещенной зоны, а для охлаждаемых приемников инфракрасного излучения – с малой.

Арсенид галлия приобрел особую популярность потому, что у него хорошие электрические характеристики, которые он сохраняет в широком интервале температур – от минусовых до плюс 500°C. Для сравнения укажем, что арсенид индия, не уступающий GaAs по электрическим свойствам, начинает терять их уже при комнатной температуре, германий – при 70...80, а кремний – при 150...200°C.

Мышьяк используют и в качестве легирующей добавки, которая придает «классическим» полупроводникам (Si, Ge) проводимость определенного типа. При этом в полупроводнике создается так называемый переходный слой, и в зависимости от назначения кристалла его легируют так, чтобы получить переходный слой на различной глубине. В кристаллах, предназначенных для изготовления диодов, его «прячут» поглубже; если же из полупроводниковых кристаллов будут делать солнечные батареи, то глубина переходного слоя – не более одного микрометра.

Мышьяк как ценную присадку используют и в цветной металлургии. Так, добавка к свинцу 0,2...1% As значительно повышает его твердость. Дробь, например, всегда делают из свинца, легированного мышьяком – иначе не получить строго шарообразной формы дробинок.

Добавка 0,15...0,45% мышьяка в медь увеличивает ее прочность на разрыв, твердость и коррозионную стойкость при работе в загазованной среде. Кроме того, мышьяк увеличивает текучесть меди при литье, облегчает процесс волочения проволоки.

Добавляют мышьяк в некоторые сорта бронз, латуней, баббитов, типографских сплавов.

И в то же время мышьяк очень часто вредит металлургам. В производстве стали и многих цветных металлов умышленно идут на усложнение процесса – лишь бы удалить из металла весь мышьяк. Присутствие мышьяка в руде делает производство вредным. Вредным дважды: во-первых, для здоровья людей; во-вторых, для металла – значительные примеси мышьяка ухудшают свойства почти всех металлов и сплавов.

Все соед. мышьяка, р-римые в воде и слабокислых средах (напр., желудочный сок), чрезвычайно ядовиты; ПДК в воздухе мышьяка и его соед. (кроме AsH3) в пересчете на мышьяк 0,5 мг/м3. Соед. As (III) более ядовиты, чем соед. As(V). Из неорг. соед. особенно опасны As2O3 и AsH3. При работе с мышьяком и его соед. необходимы: полная герметизация аппаратуры, удаление пыли и газов интенсивной вентиляцией, соблюдение личной гигиены (противопылевая одежда, очки, перчатки, противогаз), частый медицинский контроль; к работе не допускаются женщины и подростки. При остром отравлении мышьяком наблюдаются рвота, боли в животе, понос, угнетение центр. нервной системы. Помощь и противоядия при отравлении мышьяком: прием водных р-ров Na2S2O3, промывание желудка, прием молока и творога; специфич. противоядие - унитиол. Особая проблема состоит в удалении мышьяка из отходящих газов, технол. вод и побочных продуктов переработки руд и концентратов цветных и редких металлов и железа. Наиб. перспективен способ захоронения мышьяка путем перевода его в практически нерастворимые сульфидные стекла.

Мышьяк известен с глубокой древности. Еще Аристотель упоминал его прир. сернистые соединения. Неизвестно, кто первый получил элементарный мышьяк, обычно это достижение приписывают Альберту Великому ок. 1250. Хим. элементом мышьяк признан А. Лавуазье в 1789.

Таков элемент №33, заслуженно пользующийся скверной репутацией, и тем не менее во многих случаях очень полезный.

Содержание мышьяка в земной коре всего 0,0005%, но этот элемент достаточно активен, и потому минералов, в состав которых входит мышьяк, свыше 120. Главный промышленный минерал мышьяка – арсенопирит FeAsS. Крупные медно-мышьяковые месторождения есть в США, Швеции, Норвегии и Японии, мышьяково-кобальтовые – в Канаде, мышьяково-оловянные – в Боливии и Англии. Кроме того, известны золото-ышьяковые месторождения в США и Франции. Россия располагает многочисленными месторождениями мышьяка в Якутии и на Кавказе, в Средней Азии и на Урале, в Сибири и на Чукотке, в Казахстане и в Забайкалье. Мышьяк – один из немногих элементов, спрос на которые меньше, чем возможности их производства. Мировое произ-во мышьяка (без социалистич. стран) в пересчете на As2O3 ок. 50 тыс. т (1983); из них получают ~11 т элементарного мышьяка особой чистоты для синтеза полупроводниковых соединений.

Рентгенофлуоресцентный метод анализа мышьяка довольно прост и безопасен, в отличии от химического метода. Чистый мяшьяк прессуется в таблетки и используется как эталон. ГОСТ 1293.4-83, ГОСТ 1367.1-83, ГОСТ 1429.10-77, ГОСТ 2082.5-81, ГОСТ 2604.11-85, ГОСТ 6689.13-92, ГОСТ 11739.14-99 Определение производится с помощью рентгенофлуоресцентного спектрометра. Наиболее зарекомендовавшими себя в данной области являютcя спектрометры edx 3600 B и edx 600.

Физические свойства
Атомный номер мышьяка 33, атомная масса 74,91. Мышьяк может существовать в трех модификациях:
1) металлической - кристаллической модификации от серебристо-серого до черного цвета. Эта модификация мышьяка, кристаллизующаяся в ромбоэдрической форме, образуется при охлаждении паров мышьяка из газовой смеси, перегретой до очень высокой температуры;
2) аморфной - черно-коричневого цвета или серого, которая образуется тогда, когда пары мышьяка, перегретые до очень высокой температуры, осаждаются (охлаждаются) на пластинке, нагретой до температуры испарения мышьяка;
3) желтого мышьяка, кристаллизующегося в кубической системе и отлагающегося при сублимации в водороде. Желтый мышьяк - наименее устойчивая модификация; она переходит в аморфный мышьяк черного цвета при нагревании до 270-280° С или же при обыкновенной температуре под действием света.
По своим физическим свойствам все три модификации мышьяка различны. Плотность металлического мышьяка 5,73; аморфного коричневого 4,7; кристаллического желтого 2,0 г/см3. Металлический мышьяк хрупок, при ударе рассыпается (разбивается). Твердость мышьяка этой модификации по минералогической шкале 3-4. Вследствие большой хрупкости обработка его давлением невозможна.
Температура плавления мышьяка лежит в пределах 817-868° С. Значительное испарение мышьяка при атмосферном давлении начинается при 554° С, но заметная упругость паров мышьяка наблюдается и при обыкновенной температуре. Поэтому мышьяк обычно хранят в отпаянных ампулах.
В вакууме возгонка мышьяка начинается уже при 90° С.
Величина упругости паров мышьяка в зависимости от температуры выражается следующими цифрами:

Электрические свойства
Удельное электросопротивление металлической модификации мышьяка при 0° С составляет 35*10- ом*см. Металлический мышьяк хорошо проводит электрический ток, в то время как две другие разновидности характеризуются высоким удельным электросопротивлением. Так, удельное электросопротивление при обыкновенной температуре черного (серого) аморфного мышьяка составляет 10в11-10в12 ом*см, а при более высоких температурах оно снижается, что можно видеть из нижеприведенных данных:

Выше 250° С сопротивление аморфного черного мышьяка значительно изменяется в зависимости от выдержки его при температуре перегрева. Так, например, мышьяк, нагретый до 260° С и выдержанный при этой температуре 20 мин, имеет сопротивление 3400 ом*см, выдержанный 70 мин 1000 ом*см; 90 мин 2500 ом*см, а выдержанный 170 мин 11 ом*см.
Химические свойства мышьяка и его соединений
Мышьяк обладает сравнительно невысокой химической активностью. При обыкновенной температуре на воздухе он окисляется очень медленно, однако в измельченном виде, а также при нагревании в компактном состоянии быстро сгорает в атмосфере воздуха, образуя AS2O3.
В воде мышьяк не растворим; азотная кислота и царская водка окисляют его в мышьяковую кислоту. Соляная кислота действует на мышьяк очень медленно и только в присутствии воздуха.
Мышьяк и кислород. Существуют два кислородных соединения мышьяка: трехокись As2O3 и пятиокись As2O5. Упругость пара As2O3 при 300° С составляет 89 мм рт. ст.
Водород и углерод относительно легко восстанавливают трехокись мышьяка по реакциям:

As2O3 + 3Н2 → 2As + 3Н2О;
As2O3+ 3С → 2As + 3CO.


При взаимодействии трехокиси мышьяка с металлами при нагревании происходит восстановление мышьяка и окисление металлов, которое для цинка, калия, натрия и алюминия сопровождается большим выделением тепла и света.
Пятиокись мышьяка (As2O5) восстанавливается до As2O3 при нагревании самыми различными восстановителями (фосфором, самим мышьяком, углеродом, сурьмой, висмутом, натрием, калием, кремнием, цинком, железом, медью, оловом, свинцом, марганцем, кобальтом и др.). Поэтому в процессах получения мышьяка пятиокись играет очень незначительную роль, так как, образуясь, она довольно быстро переходит в трехокись.
Мышьяк и водород. Мышьяк с водородом образует ряд соединений: As2H2; As4H2; AsH3. Соединение As2H2 при нагревании в вакууме разлагается на мышьяк и водород. На воздухе это соединение устойчиво при обыкновенной температуре, но при нагревании энергично окисляется.
Соединение As4H2 при нагревании разлагается на мышьяк, водород и AsH3. Соединение AsH3 (арсин) - бесцветный газ, очень ядовитый, мало растворимый в воде.
Непосредственным взаимодействием мышьяка и водорода в обычных условиях это соединение получить нельзя. Для его образования необходимы высокие давления и температура. Обычно мышьяковистый водород получают, действуя водяными парами на мышьяк:

4As + 3Н2O → As2O3 + 2AsH3.


Температура плавления арсина -113,5° С. Упругость пара при 0° C около 9 ат, а при 15° С 13 ат.
При пропускании AsH3 над нагретым металлом арсин разлагается, выделяя водород и образуя арсенид соответствующего металла, например арсенид калия, натрия и др.
Мышьяк и фосфор. При совместном нагревании мышьяка и фосфора (до красного каления) образуется соединение As2P. Это соединение неустойчиво - разлагается и окисляется на свету даже под водой.

С углеродом мышьяк не взаимодействует.
Галоидные соединения мышьяка. Мышьяк взаимодействует с галоидами при обыкновенной температуре. Некоторые свойства галогенидов мышьяка приведены в табл. 61.
Мышьяк и его соединения весьма ядовиты, поэтому при работе с ними требуется соблюдать особые меры безопасности.

15.07.2019

Девять лет назад были внесены определённые изменения в лицензирование определённых сфер в области обеспечения безопасности. С этого момента строительные и другие фирмы...

15.07.2019

На сегодняшний день тепловые карты, с помощью которых происходит отслеживание того, как пользователи ведут себя на веб-сайте либо же на лендинге, считаются одним из...

15.07.2019

В первые дни текущего месяца сразу несколько компаний из Китайской Народной Республики практически в одно время заключили договора на длительный период времени с...

14.07.2019

Вилочные погрузчики являются разновидностью складского транспорта, который применяется для погрузочно-разгрузочных работ, транспортировки и штабелирования поддонов,...

13.07.2019

Строительная арматура является тем каркасом, который обеспечивает прочность строений, возводимых с использованием бетонного раствора, а также кирпичной кладки. Как бы...

13.07.2019

Утилизация аккумуляторов автомобилей нужна для того, чтобы уменьшить объёмы токсичных веществ среди твёрдых бытовых отходов. Батареи аккумуляторов содержат тяжёлые...

13.07.2019

Крупнейшая горная металлургическая корпорация из Ирана IMIDRO и ещё пять металлургических заводов заключили договор о взаимодействии в ходе воплощения в жизнь программы,...

13.07.2019

На сегодняшний день методика плазменной резки нашла широчайшее применение в судостроительной отрасли, в машиностроительном секторе, в процессе создания металлических...

13.07.2019

Пескоструйную очистку применяют для подготовки поверхностей к покраске, вскрытию лаком, нанесению защитного слоя....

Природные соединения Мышьяка с серой (аурипигмент As 2 S 3 , реальгар As 4 S 4) были известны народам древнего мира, которые применяли эти минералы как лекарства и краски. Был известен и продукт обжигания сульфидов Мышьяка - оксид Мышьяка (III) As 2 O 3 ("белый Мышьяк"). Название arsenikon встречается уже у Аристотеля; оно произведено от греческого arsen - сильный, мужественный и служило для обозначения соединений Мышьяка (по их сильному действию на организм). Русское название, как полагают, произошло от "мышь" (по применению препаратов Мышьяка для истребления мышей и крыс). Получение Мышьяка в свободном состоянии приписывают Альберту Великому (около 1250 года). В 1789 году А. Лавуазье включил Мышьяк в список химических элементов.

Распространение Мышьяка в природе. Среднее содержание Мышьяк в земной коре (кларк) 1,7·10 -4 % (по массе), в таких количествах он присутствует в большинстве изверженных пород. Поскольку соединения Мышьяка летучи при высоких температурах, элемент не накапливается при магматических процессах; он концентрируется, осаждаясь из горячих глубинных вод (вместе с S, Se, Sb, Fe, Co, Ni, Cu и другими элементами). При извержении вулканов Мышьяк в виде своих летучих соединений попадает в атмосферу. Так как Мышьяк многовалентен, на его миграцию оказывает большое влияние окислительно-восстановительная среда. В окислительных условиях земной поверхности образуются арсенаты (As 5+) и арсениты (As 3+). Это редкие минералы, встречающиеся только на участках месторождений Мышьяка. Еще реже встречается самородный Мышьяк и минералы As 2+ . Из многочисленных минералов Мышьяка (около 180) основное промышленное значение имеет лишь арсенопирит FeAsS.

Малые количества Мышьяка необходимы для жизни. Однако в районах месторождений Мышьяка и деятельности молодых вулканов почвы местами содержат до 1% Мышьяка, с чем связаны болезни скота, гибель растительности. Накопление Мышьяка особенно характерно для ландшафтов степей и пустынь, в почвах которых Мышьяк малоподвижен. Во влажном климате Мышьяк легко вымывается из почв.

В живом веществе в среднем 3·10 -5 % Мышьяка, в реках 3·10 -7 %. Мышьяк, приносимый реками в океан, сравнительно быстро осаждается. В морской воде лишь 1·10 -7 % Мышьяка, но зато в глинах и сланцах 6,6·10 -4 %. Осадочные железные руды, железомарганцевые конкреции часто обогащены Мышьяком.

Физические свойства Мышьяка. Мышьяк имеет несколько аллотропических модификаций. При обычных условиях наиболее устойчив так называемых металлический, или серый, Мышьяк (α-As) - серостальная хрупкая кристаллическая масса; в свежем изломе имеет металлический блеск, на воздухе быстро тускнеет, так как покрывается тонкой пленкой As 2 O 3 . Кристаллическая решетка серого Мышьяка ромбоэдрическая (а = 4,123Å, угол α = 54°10", х == 0,226), слоистая. Плотность 5,72 г/см 3 (при 20 °C), удельное электрическое сопротивление 35·10 -8 ом·м, или 35·10 -6 ом·см, температурный коэффициент электросопротивления 3,9·10 -3 (0°-100 °C), твердость по Бринеллю 1470 Мн/м 2 , или 147 кгс/мм 2 (3-4 по Moocy); Мышьяк диамагнитен. Под атмосферным давлением Мышьяк возгоняется при 615 °C не плавясь, так как тройная точка α-As лежит при 816 °C и давлении 36 aт. Пар Мышьяка состоит до 800 °C из молекул As 4 , выше 1700 °C - только из As 2 . При конденсации пара Мышьяка на поверхности, охлаждаемой жидким воздухом, образуется желтый Мышьяк - прозрачные, мягкие как воск кристаллы, плотностью 1,97 г/см 3 , похожие по свойствам на белый фосфор. При действии света или при слабом нагревании он переходит в серый Мышьяк. Известны также стекловидно-аморфные модификации: черный Мышьяк и бурый Мышьяк, которые при нагревании выше 270 °C превращаются в серый Мышьяк

Химические свойства Мышьяка. Конфигурация внешних электронов атома Мышьяка 3d 10 4s 2 4p 3 . B соединениях Мышьяк имеет степени окисления +5, +3 и -3. Серый Мышьяк значительно менее активен химически, чем фосфор. При нагревании на воздухе выше 400 °C Мышьяк горит, образуя As 2 O 3 . С галогенами Мышьяк соединяется непосредственно; при обычных условиях AsF 5 - газ; AsF 3 , AsCl 3 , AsBr 3 - бесцветные легко летучие жидкости; AsI 3 и As 2 I 4 - красные кристаллы. При нагревании Мышьяка с серой получены сульфиды: оранжево-красный As 4 S 4 и лимонно-желтый As 2 S 3 . Бледно-желтый сульфид As 2 S 5 осаждается при пропускании H 2 S в охлаждаемый льдом раствор мышьяковой кислоты (или ее солей) в дымящей соляной кислоте: 2H 3 AsO 4 + 5H 2 S = As 2 S 5 + 8H 2 O; около 500 °C он разлагается на As 2 S 3 и серу. Все сульфиды Мышьяка нерастворимы в воде и разбавленных кислотах. Сильные окислители (смеси HNO 3 + HCl, HCl + KClO 3) переводят их в смесь H 3 AsO 4 и H 2 SO 4 . Сульфид As 2 S 3 легко растворяется в сульфидах и полисульфидах аммония и щелочных металлов, образуя соли кислот - тиомышьяковистой H 3 AsS 3 и тиомышьяковой H 3 AsS 4 . С кислородом Мышьяк дает оксиды: оксид Мышьяка (III) As 2 O 3 - мышьяковистый ангидрид и оксид Мышьяка (V) As 2 O 5 - мышьяковый ангидрид. Первый из них образуется при действии кислорода на Мышьяк или его сульфиды, например 2As 2 S 3 + 9O 2 = 2As 2 O 3 + 6SO 2 . Пары As 2 O 3 конденсируются в бесцветную стекловидную массу, которая с течением времени становится непрозрачной вследствие образования мелких кристаллов кубической сингонии, плотность 3,865 г/см 3 . Плотность пара отвечает формуле As 4 O 6 ; выше 1800 °C пар состоит из As 2 O 3 . В 100 г воды растворяется 2,1 г As 2 O 3 (при 25 °C). Оксид Мышьяк (III) - соединение амфотер-ное, с преобладанием кислотных свойств. Известны соли (арсениты), отвечающие кислотам ортомышьяковистой H 3 AsO 3 и метамышьяковистой HAsO 2 ; сами же кислоты не получены. В воде растворимы только арсениты щелочных металлов и аммония. As 2 O 3 и арсениты обычно бывают восстановителями (например, As 2 O 3 + 2I 2 + 5H 2 O = 4HI + 2H 3 AsO 4), но могут быть и окислителями (например, As 2 O 3 + 3C = 2As + ЗСО).

Оксид Мышьяка (V) получают нагреванием мышьяковой кислоты H 3 AsO 4 (около 200 °C). Он бесцветен, около 500 °C разлагается на As 2 O 3 и O 2 . Мышьяковую кислоту получают действием концентрированной HNO 3 на As или As 2 O 3 . Соли мышьяковой кислоты (арсенаты) нерастворимы в воде, за исключением солей щелочных металлов и аммония. Известны соли, отвечающие кислотам ортомышьяковой H 3 AsO 4 , метамышьяковой HAsO 3 и пиромышьяковой H 4 As 2 O 7 ; последние две кислоты в свободном состоянии не получены. При сплавлении с металлами Мышьяк по большей части образует соединения (арсениды).

Получение Мышьяка. Мышьяк получают в промышленности нагреванием мышьякового колчедана:

FeAsS = FeS + As

или (реже) восстановлением As 2 O 3 углем. Оба процесса ведут в ретортах из огнеупорной глины, соединенных с приемником для конденсации паров Мышьяка. Мышьяковистый ангидрид получают окислительным обжигом мышьяковых руд или как побочный продукт обжига полиметаллических руд, почти всегда содержащих Мышьяк. При окислительном обжиге образуются пары As 2 O 3 , которые конденсируются в уловительных камерах. Сырой As 2 O 3 очищают возгонкой при 500-600 °C. Очищенный As 2 O 3 служит для производства Мышьяка и его препаратов.

Применение Мышьяка. Небольшие добавки Мышьяка (0,2-1,0% по массе) вводят в свинец, служащий для производства ружейной дроби (Мышьяк повышает поверхностное натяжение расплавленного свинца, благодаря чему дробь получает форму, близкую к сферической; Мышьяк несколько увеличивает твердость свинца). Как частичный заменитель сурьмы Мышьяк входит в состав некоторых баббитов и типографских сплавов.

Чистый Мышьяк не ядовит, но все его соединения, растворимые в воде или могущие перейти в раствор под действием желудочного сока, чрезвычайно ядовиты; особенно опасен мышьяковистый водород. Из применяемых на производстве соединений Мышьяка наиболее токсичен мышьяковистый ангидрид. Примесь Мышьяка содержат почти все сульфидные руды цветных металлов, а также железный (серный) колчедан. Поэтому при их окислительном обжиге, наряду с сернистым ангидридом SO 2 , всегда образуется As 2 O 3 ; большая часть его конденсируется в дымовых каналах, но при отсутствии или малой эффективности очистных сооружений отходящие газы рудообжигательных печей увлекают заметные количества As 2 O 3 . Чистый Мышьяк, хотя и не ядовит, но при хранении на воздухе всегда покрывается налетом ядовитого As 2 O 3 . При отсутствии должной вентиляции крайне опасно травление металлов (железа, цинка) техническими серной или соляной кислотами, содержащими примесь Мышьяка, так как при этом образуется мышьяковистый водород.

Мышьяк в организме. В качестве микроэлемента Мышьяк повсеместно распространен в живой природе. Среднее содержание Мышьяка в почвах 4·10 -4 %, в золе растений - 3·10 -5 %. Содержание Мышьяка в морских организмах выше, чем в наземных (в рыбах 0,6-4,7 мг в 1 кг сырого вещества, накапливается в печени). Среднее содержание Мышьяка в теле человека 0,08-0,2 мг/кг. В крови Мышьяк концентрируется в эритроцитах, где он связывается с молекулой гемоглобина (причем в глобиновой фракции содержится его вдвое больше, чем в геме). Наибольшее количество его (на 1 г ткани) обнаруживается в почках и печени. Много Мышьяка содержится в легких и селезенке, коже и волосах; сравнительно мало - в спинномозговой жидкости, головном мозге (главном образом гипофизе), половых железах и других. В тканях Мышьяк находится в основной белковой фракции, значительно меньше - в кислоторастворимой и лишь незначительная часть его обнаруживается в липидной фракции. Мышьяк участвует в окислительно-восстановительных реакциях: окислительном распаде сложных углеводов, брожении, гликолизе и т. п. Соединения Мышьяка применяют в биохимии как специфические ингибиторы ферментов для изучения реакций обмена веществ.