ПОКАЗАТЕЛЬНАЯ И ЛОГАРИФМИЧЕСКАЯ ФУНКЦИИ VIII

§ 179 Основные свойства показательной функции

В этом параграфе мы изучим основные свойства показательной функции

у = а x (1)

Напомним, что под а в формуле (1) мы подразумеваем любое фиксированное положительное число, отличное от 1.

Свойство 1. Областью определения показательной функции является совокупность всех действительных чисел.

В самом деле, при положительном а выражение а x определено для любого действительного числа х .

Свойство 2 . Показательная функция принимает только положительные значения.

Действительно, если х > 0, то, как было доказано в § 176,

а x > 0.

Если же х <. 0, то

а x =

где - х уже больше нуля. Поэтому а - x > 0. Но тогда и

а x = > 0.

Наконец, при х = 0

а x = 1.

2-е свойство показательной функции имеет простое графическое истолкование. Оно заключается в том, что график этой функции (см. рис. 246 и 247) располагается целиком выше оси абсцисс.

Свойство 3 . Если а >1, то при х > 0 а x > 1, а при х < 0 а x < 1. Если же а < 1, то, наоборот, при х > 0 а x < 1, а при х < 0 а x > 1.

Это свойство показательной функции также допускает простую геометрическую интерпретацию. При а > 1 (рис. 246) кривые у = а x располагаются выше прямой у = 1 при х > 0 и ниже прямой у = 1 при х < 0.

Если же а < 1 (рис. 247), то, наоборот, кривые у = а x располагаются ниже прямой у = 1 при х > 0 и выше этой прямой при х < 0.

Приведем строгое доказательство 3-го свойства. Пусть а > 1 и х - произвольное положительное число. Покажем, что

а x > 1.

Если число х рационально (х = m / n ) , то а x = а m / n = n a m .

Поскольку а > 1, то и а m > 1, Но корень из числа, большего единицы, очевидно, также больше 1.

Если х иррационально, то существуют положительные рациональные числа х" и х" , которые служат десятичными приближениями числа x :

х" < х < х" .

Но тогда по определению степени с иррациональным показателем

а x" < а x < а x"" .

Как показано выше, число а x" больше единицы. Поэтому и число а x , большее, чем а x" , также должно быть больше 1,

Итак, мы показали, что при a >1 и произвольном положительном х

а x > 1.

Если бы число х было отрицательным, то мы имели бы

а x =

где число -х было бы уже положительным. Поэтому а - x > 1. Следовательно,

а x = < 1.

Таким образом, при а > 1 и произвольном отрицательном x

а x < 1.

Случай, когда 0 < а < 1, легко сводится к уже рассмотренному случаю. Учащимся предлагается убедиться в этом самостоятельно.

Свойство 4. Если х = 0, то независимо от а а x =1.

Это вытекает из определения нулевой степени; нулевая степень любого числа, отличного от нуля, равна 1. Графически это свойство выражается в том, что при любом а кривая у = а x (см. рис. 246 и 247) пересекает ось у в точке с ординатой 1.

Свойство 5. При а >1 показательная функция у = а x является монотонно возрастающей, а при а < 1 - монотонно убывающей.

Это свойство также допускает простую геометрическую интерпретацию.

При а > 1 (рис. 246) кривая у = а x с ростом х поднимается все выше и выше, а при а < 1 (рис. 247) - опускается все ниже и ниже.

Приведем строгое доказательство 5-гo свойства.

Пусть а > 1 и х 2 > х 1 . Покажем, что

а x 2 > а x 1

Поскольку х 2 > х 1 ., то х 2 = х 1 + d , где d -некоторое положительное число. Поэтому

а x 2 - а x 1 = а x 1 + d - а x 1 = а x 1 (а d - 1)

По 2-му свойству показательной функции а x 1 > 0. Так как d > 0, то по 3-му свойству показательной функции а d > 1. Оба множителя в произведении а x 1 (а d - 1) положительны, поэтому и само это произведение положительно. Значит, а x 2 - а x 1 > 0, или а x 2 > а x 1 , что и требовалось доказать.

Итак, при a > 1 функция у = а x является монотонно возрастающей. Аналогично доказывается, что при а < 1 функция у = а x является монотонно убывающей.

Следствие. Если две степени одного и того же положительного числа, отличного от 1, равны, то равны и их показатели.

Другими словами, если

а b = а c (а > 0 и а =/= 1),

b = с .

Действительно, если бы числа b и с были не равны, то в силу монотонности функции у = а x большему из них соответствовало бы при а >1 большее, а при а < 1 меньшее значение этой функции. Таким образом, было бы или а b > а c , или а b < а c . И то и другое противоречит условию а b = а c . Остается признать, что b = с .

Свойство 6. Если а > 1, то при неограниченном возрастании аргумента х (х -> ) значения функции у = а x также неограниченно растут (у -> ). При неограниченном убывании аргумента х (х -> -∞ ) значения этой функции стремятся к нулю, оставаясь при этом положительными (у ->0; у > 0).

Принимая во внимание доказанную выше монотонность функции у = а x , можно сказать, что в рассматриваемом случае функция у = а x монотонно возрастает от 0 до .

Если 0 < а < 1, то при неограниченном возрастании аргумента х (х -> ∞) значения функции у = а x стремятся к нулю, оставаясь при этом положительными (у ->0; у > 0). При неограниченном убывании аргумента х (х -> -∞ ) значения этой функции неограниченно растут (у -> ).

В силу монотонности функции у = а x можно сказать, что в этом случае функция у = а x монотонно убывает от до 0.

6-е свойство показательной функции наглядно отражено на рисунках 246 и 247. Строго доказывать его мы не будем.

Нам осталось лишь установить область изменения показательной функции у = а x (а > 0, а =/= 1).

Выше мы доказали, что функция у = а x принимает только положительные значения и либо монотонно возрастает от 0 до (при а > 1), либо монотонно убывает от до 0 (при 0 < а <. 1). Однако остался невыясненным следующий вопрос: не претерпевает ли функция у = а x при своем изменении каких-нибудь скачков? Любые ли положительные значения она принимает? Вопрос этот решается положительно. Ecли а > 0 и а =/= 1, то, каково бы ни было положительное число у 0 обязательно найдется х 0 , такое, что

а x 0 = у 0 .

(В силу монотонности функции у = а x указанное значение х 0 будет, конечно, единственным.)

Доказательство этого факта выходит за пределы нашей программы. Геометрическая интерпретация его состоит в том, что при любом положительном значении у 0 график функции у = а x обязательно пересечется с прямой у = у 0 и притом лишь в одной точке (рис. 248).

Отсюда можно сделать следующий вывод, который мы формулируем в виде свойства 7.

Свойство 7. Областью изменения показательной функции у = а x (а > 0, а =/= 1) служит множество всех положительных чисел.

Упражнения

1368. Найти области определения следующих функций:

1369. Какие из данных чисел больше 1 и какие меньше 1:

1370. На основании какого свойства показательной функции можно утверждать, что

а) (5 / 7) 2,6 > (5 / 7) 2,5 ; б) (4 / 3) 1,3 > (4 / 3) 1,2

1371. Какое число больше:

а) π - √3 или (1 / π ) - √3 ; в) (2 / 3) 1 + √6 или (2 / 3) √2 + √5 ;

б) ( π / 4) 1 + √3 или ( π / 4) 2 ; г) (√3 ) √2 - √5 или (√3 ) √3 - 2 ?

1372. Равносильны ли неравенства:

1373. Что можно сказать о числах х и у , если а x = а y , где а - заданное положительное число?

1374. 1) Можно ли среди всех значений функции у = 2 x выделить:

2) Можно ли среди всех значений функции у = 2 | x| выделить:

а) наибольшее значение; б) наименьшее значение?

Урок № 2

Тема: Показательная функция, её свойства и график.

Цель: Проверить качество усвоения понятия «показательная функция»; сформировать умения и навыки по распознаванию показательной функции, по использованию её свойств и графиков, научить учащихся пользоваться аналитической и графической формами записи показательной функции; обеспечить рабочую обстановку на уроке.

Оборудование: доска, плакаты

Форма урока : классно-урочная

Вид урока : практическое занятие

Тип урока : урок обучения умениям и навыкам

План урока

1. Организационный момент

2. Самостоятельная работа и проверка домашнего задания

3. Решение задач

4. Подведение итогов

5. Задание на дом

Ход урока .

1. Организационный момент :

Здравствуйте. Откройте тетради, запишите сегодняшнее число и тему урока «Показательная функция». Сегодня будем продолжать изучать показательную функцию, её свойства и график.

2. Самостоятельная работа и проверка домашнего задания .

Цель: проверить качество усвоения понятия «показательная функция» и проверить выполнение теоретической части домашнего задания

Метод: тестовое задание, фронтальный опрос

В качестве домашнего задания вам были заданы номера из задачника и параграф из учебника. Выполнение номеров из учебника проверять сейчас не будем, но вы сдадите тетради в конце урока. Сейчас же будет проведена проверка теории в виде маленького теста. Задание у всех одинаковое: вам дан перечень функций, вы должны узнать какие из них являются показательными (подчеркнуть их). И рядом с показательной функцией необходимо написать является она возрастающей, либо убывающей.

Вариант 1

Ответ

Б)

Д) - показательная, убывающая

Вариант 2

Ответ

Г) - показательная, убывающая

Д) - показательная, возрастающая

Вариант 3

Ответ

А) - показательная, возрастающая

Б) - показательная, убывающая

Вариант 4

Ответ

А) - показательная, убывающая

В) - показательная, возрастающая

Теперь вместе вспомним, какая функция называется показательной?

Функция вида , где и , называется показательной функцией.

Какая область определения у этой функции?

Все действительные числа.

Какая область значений показательной функции?

Все положительные действительные числа.

Убывает если основание степени больше нуля, но меньше единицы.

В каком случае показательная функция убывает на своей области определения?

Возрастает, если основание степени больше единицы.

3. Решение задач

Цель : сформировать умения и навыки по распознаванию показательной функции, по использованию её свойств и графиков, научить учащихся пользоваться аналитической и графической формами записи показательной функции

Метод : демонстрация учителем решения типичных задач, устная работа, работа у доски, работа в тетради, беседа учителя с учащимися.

Свойства показательной функции можно использовать при сравнении 2-х и более чисел. Например: № 000. Сравните значения и , если а) ..gif" width="37" height="20 src=">, то это довольно сложная работа: нам бы пришлось извлекать кубический корень из 3 и из 9, и сравнивать их. Но мы знаем, что возрастает, это в свою очередь значит, что при увеличении аргумента, увеличивается значение функции, то есть нам достаточно сравнить между собой значения аргумента и , очевидно, что (можно продемонстрировать на плакате с изображенной возрастающей показательной функцией). И всегда при решении таких примеров вначале определяете основание показательной функции, сравниваете с 1, определяете монотонность и переходите к сравнению аргументов. В случает убывания функции: при возрастания аргумента уменьшается значение функции, следовательно, знак неравенства меняем при переходе от неравенства аргументов к неравенству функций. Далее решаем устно: б)

-

В)

-

Г)

-

- № 000. Сравните числа: а) и

Следовательно, функция возрастает, тогда

Почему ?

Возрастающая функция и

Следовательно, функция убывает, тогда

Обе функции возрастают на всей своей области определения, т. к. они являются показательными с основанием степени большим единицы.

Какой смысл в ней заложен?

Строим графики:

Какая функция быстрее возрастает, при стремлении https://pandia.ru/text/80/379/images/image062_0.gif" width="20 height=25" height="25">

Какая функция быстрее убывает, при стремлении https://pandia.ru/text/80/379/images/image062_0.gif" width="20 height=25" height="25">

На промежутке какая из функций имеет большее значение в конкретно заданной точке?

Г) , https://pandia.ru/text/80/379/images/image068_0.gif" width="69" height="57 src=">. Вначале выясним область определения этих функций. Совпадают ли они?

Да, область определения этих функций все действительные числа.

Назовите область значения каждой из этих функций.

Области значений этих функций совпадают: все положительные действительные числа.

Определите тип монотонности каждой из функций.

Все три функции убывают на всей своей области определения, т. к. они являются показательными с основанием степени меньшими единицы и большими нуля.

Какая особая точка существует у графика показательной функции?

Какой смысл в ней заложен?

Какое бы не было основание степени показательной функции, если в показателе стоит 0,то значение этой функции 1.

Строим графики:

Давайте проанализируем графики. Сколько точек пересечения у графиков функций?

Какая функция быстрее убывает, при стремлении https://pandia.ru/text/80/379/images/image070.gif" width="41 height=57" height="57">

Какая функция быстрее возрастает, при стремлении https://pandia.ru/text/80/379/images/image070.gif" width="41 height=57" height="57">

На промежутке какая из функций имеет большее значение в конкретно заданной точке?

На промежутке какая из функций имеет большее значение в конкретно заданной точке?

Почему показательные функции с разными основаниями имеют только одну точку пересечения?

Показательные функции являются строго монотонными на всей своей области определения, поэтому они могут пересекаться только в одной точке.

Следующее задание будет направлено на использование этого свойства. № 000. Найдите наибольшее и наименьшее значение заданной функции на заданном промежутке а) . Вспомним, что строго монотонная функция принимает свои наименьшее и наибольшее значения на концах заданного отрезка. И если функция возрастающая, то её наибольшее значение будет на правом конце отрезка, а наименьшее на левом конце отрезка (демонстрация на плакате, на примере показательной функции). Если функция убывающая, то её наибольшее значение будет на левом конце отрезка, а наименьшее на правом конце отрезка (демонстрация на плакате, на примере показательной функции). Функция возрастающая, т. к. , следовательно, наименьшее значение функции будет в точке https://pandia.ru/text/80/379/images/image075_0.gif" width="145" height="29">. Пункты б) , в) г) решите самостоятельно тетради, проверку проведем устно.

Учащиеся решают задание в тетради

Убывающая функция

Убывающая функция

наибольшее значение функции на отрезке

наименьшее значение функции на отрезке

Возрастающая функция

наименьшее значение функции на отрезке

наибольшее значение функции на отрезке

- № 000. Найдите наибольшее и наименьшее значение заданной функции на заданном промежутке а) . Это задание практически такое же, как и предыдущее. Но здесь дан не отрезок, а луч. Мы знаем, что функция - возрастающая, при чем она не имеет ни наибольшего, ни наименьшего своего значения на всей числовой прямой https://pandia.ru/text/80/379/images/image063_0.gif" width="68" height="20">, и стремится к при , т. е. на луче функция при стремится к 0, но не имеет своего наименьшего значения, но у неё существует наибольшее значение в точке . Пункты б) , в) , г) решите самостоятельно тетради, проверку проведем устно.

Показательная функция - это обобщение произведения n чисел, равных a :
y(n) = a n = a·a·a···a ,
на множество действительных чисел x :
y(x) = a x .
Здесь a - фиксированное действительное число, которое называют основанием показательной функции .
Показательную функцию с основанием a также называют экспонентой по основанию a .

Обобщение выполняется следующим образом.
При натуральном x = 1, 2, 3,... , показательная функция является произведением x множителей:
.
При этом она обладает свойствами (1.5-8) (), которые следуют из правил умножения чисел. При нулевом и отрицательных значениях целых чисел , показательную функцию определяют по формулам (1.9-10). При дробных значениях x = m/n рациональных чисел, , ее определяют по формуле(1.11). Для действительных , показательную функцию определяют как предел последовательности:
,
где - произвольная последовательность рациональных чисел, сходящаяся к x : .
При таком определении, показательная функция определена для всех , и удовлетворяет свойствам (1.5-8), как и для натуральных x .

Строгая математическая формулировка определения показательной функции и доказательство ее свойств приводится на странице «Определение и доказательство свойств показательной функции ».

Свойства показательной функции

Показательная функция y = a x , имеет следующие свойства на множестве действительных чисел () :
(1.1) определена и непрерывна, при , для всех ;
(1.2) при a ≠ 1 имеет множество значений ;
(1.3) строго возрастает при , строго убывает при ,
является постоянной при ;
(1.4) при ;
при ;
(1.5) ;
(1.6) ;
(1.7) ;
(1.8) ;
(1.9) ;
(1.10) ;
(1.11) , .

Другие полезные формулы.
.
Формула преобразования к показательной функции с другим основанием степени:

При b = e , получаем выражение показательной функции через экспоненту:

Частные значения

, , , , .

На рисунке представлены графики показательной функции
y(x) = a x
для четырех значений основания степени : a = 2 , a = 8 , a = 1/2 и a = 1/8 . Видно, что при a > 1 показательная функция монотонно возрастает. Чем больше основание степени a , тем более сильный рост. При 0 < a < 1 показательная функция монотонно убывает. Чем меньше показатель степени a , тем более сильное убывание.

Возрастание, убывание

Показательная функция, при является строго монотонной, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.

y = a x , a > 1 y = a x , 0 < a < 1
Область определения - ∞ < x < + ∞ - ∞ < x < + ∞
Область значений 0 < y < + ∞ 0 < y < + ∞
Монотонность монотонно возрастает монотонно убывает
Нули, y = 0 нет нет
Точки пересечения с осью ординат, x = 0 y = 1 y = 1
+ ∞ 0
0 + ∞

Обратная функция

Обратной для показательной функции с основанием степени a является логарифм по основанию a .

Если , то
.
Если , то
.

Дифференцирование показательной функции

Для дифференцирования показательной функции, ее основание нужно привести к числу e , применить таблицу производных и правило дифференцирования сложной функции.

Для этого нужно использовать свойство логарифмов
и формулу из таблицы производных :
.

Пусть задана показательная функция:
.
Приводим ее к основанию e :

Применим правило дифференцирования сложной функции . Для этого вводим переменную

Тогда

Из таблице производных имеем (заменим переменную x на z ):
.
Поскольку - это постоянная, то производная z по x равна
.
По правилу дифференцирования сложной функции:
.

Производная показательной функции

.
Производная n-го порядка:
.
Вывод формул > > >

Пример дифференцирования показательной функции

Найти производную функции
y = 3 5 x

Решение

Выразим основание показательной функции через число e .
3 = e ln 3
Тогда
.
Вводим переменную
.
Тогда

Из таблицы производных находим:
.
Поскольку 5ln 3 - это постоянная, то производная z по x равна:
.
По правилу дифференцирования сложной функции имеем:
.

Ответ

Интеграл

Выражения через комплексные числа

Рассмотрим функцию комплексного числа z :
f(z) = a z
где z = x + iy ; i 2 = - 1 .
Выразим комплексную постоянную a через модуль r и аргумент φ :
a = r e i φ
Тогда


.
Аргумент φ определен не однозначно. В общем виде
φ = φ 0 + 2 πn ,
где n - целое. Поэтому функция f(z) также не однозначна. Часто рассматривают ее главное значение
.

Разложение в ряд


.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.