Атмосфера - это то, что обеспечивает возможность жизни на Земле. Самые первые сведения и факты об атмосфере мы получаем ещё в начальной школе. В старших классах мы уже подробнее знакомимся с этим понятием на уроках географии.

Понятие земной атмосферы

Атмосфера имеется не только у Земли, но и у других небесных тел. Так называют газовую оболочку, окружающую планеты. Состав этого газового слоя разных планет значительно отличается. Давайте рассмотрим основные сведения и факты об иначе называемой воздухом.

Самой важной её составляющей частью является кислород. Некоторые ошибочно думают, что земная атмосфера состоит полностью из кислорода, но на самом деле воздух - это смесь газов. В его составе 78% азота и 21% кислорода. Остальной один процент включает в себя озон, аргон, углекислый газ, водяные пары. Пусть процентное соотношение этих газов мало, но они выполняют важную функцию - поглощают значительную часть солнечной лучистой энергии, тем самым не дают светилу превратить всё живое на нашей планете в пепел. Свойства атмосферы изменяются в зависимости от высоты. Например, на высоте 65 км азот составляет 86%, а кислород - 19%.

Состав атмосферы Земли

  • Углекислый газ необходим для питания растений. В атмосфере он появляется в результате процесса дыхания живых организмов, гниения, горения. Отсутствие его в составе атмосферы сделало бы невозможным существование любых растений.
  • Кислород - жизненно важный для человека компонент атмосферы. Его наличие является условием для существования всех живых организмов. Он составляет около 20% от общего объёма атмосферных газов.
  • Озон - это естественный поглотитель солнечного ультрафиолетового излучения, которое пагубно влияет на живые организмы. Большая его часть формирует отдельный слой атмосферы - озоновый экран. В последнее время деятельность человека приводит к тому, что начинает постепенно разрушаться, но так как он имеет большую важность, то ведётся активная работа по его сохранению и восстановлению.
  • Водяной пар определяет влажность воздуха. Его содержание может быть разным в зависимости от различных факторов: температуры воздуха, территориального расположения, сезона. При низкой температуре водяного пара в воздухе совсем мало, может быть меньше одного процента, а при высокой его количество достигает 4%.
  • Кроме всего вышеперечисленного, в составе земной атмосферы всегда присутствует определённый процент твёрдых и жидких примесей . Это сажа, пепел, морская соль, пыль, капли воды, микроорганизмы. Попадать в воздух они могут как естественным, так и антропогенным путём.

Слои атмосферы

И температура, и плотность, и качественный состав воздуха неодинаковый на разной высоте. Из-за этого принято выделять разные слои атмосферы. Каждый из них имеет свою характеристику. Давайте узнаем, какие слои атмосферы различают:

  • Тропосфера - этот слой атмосферы находится ближе всего к поверхности Земли. Высота его - 8-10 км над полюсами и 16-18 км - в тропиках. Здесь находится 90% всего водяного пара, который имеется в атмосфере, поэтому происходит активное образование облаков. Также в этом слое наблюдаются такие процессы, как движение воздуха (ветра), турбулентность, конвекция. Температура колеблется от +45 градусов в полдень в тёплое время года в тропиках до -65 градусов на полюсах.
  • Стратосфера - второй по отдалённости от слой атмосферы. Находится на высоте от 11 до 50 км. В нижнем слое стратосферы температура приблизительно -55, в сторону удаления от Земли она повышается до +1˚С. Эта область называется инверсией и является границей стратосферы и мезосферы.
  • Мезосфера располагается на высоте от 50 до 90 км. Температура на её нижней границе - около 0, на верхней достигает -80...-90 ˚С. Метеориты, попадающие в атмосферу Земли, полностью сгорают в мезосфере, из-за этого здесь происходят свечения воздуха.
  • Термосфера имеет толщину приблизительно 700 км. В этом слое атмосферы возникают северные сияния. Появляются они за счёт под действием космического излучения и радиации, исходящей от Солнца.
  • Экзосфера - это зона рассеивания воздуха. Здесь концентрация газов небольшая и происходит их постепенный уход в межпланетное пространство.

Границей между земной атмосферой и космическими просторами принято считать рубеж в 100 км. Эту черту называют линией Кармана.

Давление атмосферы

Слушая прогноз погоды, мы часто слышим показатели атмосферного давления. Но что означает давление атмосферы, и как на нас это может повлиять?

Мы разобрались, что воздух состоит из газов и примесей. Каждая из этих составляющих имеет свой вес, а значит, и атмосфера не невесома, как считали до XVII века. Атмосферное давление - это сила, с которой все слои атмосферы давят на поверхность Земли и на все предметы.

Учёные провели сложные подсчёты и доказали, что на один квадратный метр площади атмосфера давит с силой 10 333 кг. Значит, человеческое тело подвержено давлению воздуха, вес которого равен 12-15 тонн. Почему же мы не ощущаем этого? Спасает нас своё внутреннее давление, которое и уравновешивает внешнее. Можно ощутить давление атмосферы, находясь в самолёте или высоко в горах, так как атмосферное давление на высоте значительно меньше. При этом возможен физический дискомфорт, закладывание ушей, головокружение.

Об атмосфере, окружающей можно сказать много всего. Мы знаем о ней множество интересных фактов, и некоторые из них могут казаться удивительными:

  • Вес земной атмосферы составляет 5 300 000 000 000 000 тонн.
  • Она способствует передаче звука. На высоте больше 100 км это свойство исчезает из-за изменения состава атмосферы.
  • Движение атмосферы спровоцировано неравномерным нагревом поверхности Земли.
  • Для определения температуры воздуха используют термометр, а для того, чтобы узнать силу давления атмосферы, - барометр.
  • Наличие атмосферы спасает нашу планету от 100 тонн метеоритов ежедневно.
  • Состав воздуха был фиксированным несколько сотен миллионов лет, но стал изменяться с началом бурной производственной деятельности.
  • Считается, что атмосфера простирается вверх на высоту 3000 км.

Значение атмосферы для человека

Физиологическая зона атмосферы составляет 5 км. На высоте 5000 м над уровнем моря у человека начинает проявляться кислородное голодание, что выражается в снижении его работоспособности и ухудшении самочувствия. Это показывает то, что человек не сможет выжить в пространстве, где нет этой удивительной смеси газов.

Все сведения и факты об атмосфере только подтверждают её важность для людей. Благодаря её наличию и появилась возможность развития жизни на Земле. Уже сегодня, оценив масштабы вреда, который человечество способно своими действиями наносить дающему жизнь воздуху, нам следует задуматься о дальнейших мерах сохранения и восстановления атмосферы.

Стратосфера - это слой атмосферы, расположенный между тропосферой и мезосферой. Его нижняя граница находится на высоте около 10км вблизи полюсов. К экватору эта граница постепенно поднимается и на широте 0° располагается на высоте около 18км. Верхняя граница расположена примерно на высоте 50км.

Как и тропосфера, стратосфера имеет переходный слой на верхней границе, который начинается при градиенте температуры ~0°С/100м (градиент и особенности тропосферы описаны были ).

Особенности стратосферы следующие:

  • рост температуры воздуха;
  • уменьшение содержания водяного пара;
  • практически полное отсутствие облачности (следует из второго пункта);
  • повышенное содержание озона (озоновый слой).

В отличие от тропосферы, в стратосфере температура воздуха с высотой растёт . На нижней границе этого слоя температура составляет -55…-70°С, а на верхней – около 0°С. Прогрев воздуха здесь происходит исключительно за счёт поглощения ультрафиолета (УФ) озоном (О 3).

По мере удаления от земной поверхности плотность атмосферы уменьшается, содержание частиц также уменьшается. Это касается и водяного пара. Так как его содержание здесь мало, то облачность практически не формируется. Однако тонкие облака стратосферы (перламутровые) всё же существуют и их можно заметить на закате.




Повышенное содержание озона (О 3) в стратосфере обусловлено воздействием ультрафиолета на кислород (О 2). Стратосфера содержит 90% всего озона , находящегося в атмосфере Земли. Именно здесь располагается тот самый знаменитый озоновый слой . Озон в стратосфере несёт исключительно положительную роль, защищая организмы от губительного влияния ультрафиолетового излучения Солнца.

Так как от него зависит существование жизни, комфорт и безопасность всех организмов. Показатели газов в смеси являются определяющими для изучения проблемных участков или экологически благоприятных зон.

Общие сведения

Под термином «атмосфера» понимают газовый слой, который окутывает нашу планету и многие другие небесные тела во Вселенной. Он образует оболочку, которая возвышается над Землей на несколько сотен километров. В составе присутствуют разнообразные газы, основным из которых является кислород.

Атмосфера характеризуется:

  • Неоднородностью с физической точки зрения.
  • Повышенной динамичностью.
  • Зависимостью от биологических факторов (высокая уязвимость в случае неблагоприятных явлений).

Основное влияние оказывают на состав и процессы его изменяющие, живые существа (включая, микроорганизмы). Эти процессы продолжаются с момента возникновения атмосферы – несколько миллиардов лет. Защитная оболочка планеты соприкасается с такими образованиями, как литосфера и гидросфера, верхние же границы определить с высокой точность сложно, ученые могут назвать только примерные значения. Атмосфера переходит в межпланетное пространство в экзосфере – на высоте
500-1000 км от поверхности нашей планеты, некоторые источники называют цифру в 3000 км.

Значение атмосферы для жизни на земле велико, так как она предохраняет планету от столкновения с космическими телами, обеспечивает оптимальные показатели для формирования и развития жизни в различных ее формах.
Состав защитной оболочки:

  • Азот – 78%.
  • Кислород – 20,9%.
  • Смесь газовая – 1,1% (эта часть образована такими веществами, как озон, аргон, неон, гелий, метан, криптон, водород, ксенон, углекислый газ, водяные пары).

Газовая смесь выполняет важную функцию – поглощение излишнего количества солнечной энергии. Состав атмосферы изменяются в зависимости от высоты – на высоте 65 км от поверхности Земли азота в ней будет содержаться
уже 86%, кислорода – всего 19%.

Составные элементы атмосферы

Разнообразный состав атмосферы Земли позволяет ей выполнять различные функции и оберегать жизнь на планете. Основные его элементы:

  • Углекислый газ (CO₂) – является неотъемлемым компонентом, задействованным в процессе питания растений (фотосинтезе). Выделяется он в атмосферу благодаря дыханию всех живых организмов, гниению и горению органических веществ. Если углекислый газ исчезнет, то вместе с ним перестанут существовать и растения.
  • Кислород (O₂) – обеспечивает оптимальную среду для жизни всех организмов на планете, обязателен для дыхания. С его исчезновением прекратиться жизнь для 99% организмов на планете.
  • Озон (O 3) – газ, который выступает естественным поглотителем ультрафиолета, выделяемого солнечным излучением. Его излишки негативно влияют на живые организмы. Газ формирует особый слой в атмосфере -озоновый экран. Под влияние внешних условий и деятельности человека он начинает постепенно разрушаться, поэтому важно проводить мероприятия для восстановления озонового слоя нашей планеты, чтобы сохранить на ней жизнь.

Также в составе атмосферы присутствуют водяные пары – они определяют влажность воздуха. Процентное содержание этого компонента зависит от разных факторов. Влияние оказывают:

  • Показатели температуры воздуха.
  • Расположение местности (территория).
  • Сезонность.

Оказывает влияние на количество водяного пара и температура – если она низкая, то концентрация не превышает 1%, при повышенной – достигает показателей в 3-4%.
Дополнительно в составе земной атмосферы присутствуют твердые и жидкие примеси – сажа, пепел, морская соль, разнообразные микроорганизмы, пыль, капли воды.

Атмосфера: ее слои

Необходимо знать строение атмосферы земли по слоям, чтобы иметь полное представление о том, чем ценна для нас эта газовая оболочка. Они выделяются потому, что состав и плотность газовой смеси на разных высотах неодинаковы. Каждый из слоев отличается по химическому составу и выполняемым функциям. Расположить атмосферные слои земли по порядку следует так:

Тропосфера – располагается ближе остальных к земной поверхности. Высоты этого слоя достигают 16-18 км в тропических зонах и 9 км в среднем над полюсами. В этом слое концентрируется до 90% всего водяного пара. Именно в тропосфере происходит процесс образования облаков. Также здесь наблюдаются движение воздуха, турбулентность и конвекция. Температурные показатели различны и составляют от +45 до -65 градусов - в тропиках и на полюсах, соответственно. С повышением на 100 метров наблюдается понижение температуры на 0,6 градуса. Именно тропосфера по причине скопления водяного пара и воздуха отвечает за циклонические процессы. Соответственно, правильным ответом на вопрос, как называется слой атмосферы земли в котором развиваются циклоны и антициклоны будет название этого атмосферного слоя.

Стратосфера – этот слой располагается на высоте 11-50 км от поверхности планеты. В нижней его зоне температурные показатели стремятся к значениям в -55. В стратосфере имеется зона инверсии – граница между этим слоем и следующим, называемым мезосферой. Температурные показатели достигают значений в +1 градус. Самолеты летают в нижней зоне стратосферы.

Озоновый слой – небольшой по высоте участок на границе между стратосферой и мезосферой, но именно озоновый слой атмосферы предохраняет все живое на земле от действия ультрафиолета. Также он отделяет комфортные и благоприятные условия для существования живых организмов и суровые космические, где невозможно выжить без специальных условий даже бактериям. Образовался он в результате взаимодействия органических компонентов и кислорода, который контактирует с ультрафиолетовым излучением и вступает в фотохимическую реакцию, что позволяет получить газ под названием озон. Так как озон поглощает ультрафиолет, он способствует нагреву атмосферу, поддерживая оптимальные для жизни в ее привычном виде, условия. Соответственно, отвечать на вопрос: слой какого газа защищает землю от космической радиации и чрезмерного солнечного излучения, следует озон.

Рассматривая слои атмосферы по порядку от поверхности земли следует отметить, что следующей идет мезосфера. Она располагается на высоте 50-90 км от поверхности планеты. Температурные показатели – от 0 до -143 градусов (нижняя и верхняя границы). Она защищает Землю от метеоритов, которые сгорают, проходя через
нее – явление свечения воздуха. Давление газов в этой части атмосферы крайне маленькое, что не позволяет изучить мезосферу полностью, так как специальное оборудование, включая спутники или зонды, не могут там работать.

Термосфера – слой атмосферы, который располагается на высоте 100 км над уровнем моря. Это нижняя граница, которая носит название линия Кармана. Ученые условно определили, что здесь начинается космос. Непосредственная толщина термосферы достигает 800 км. Температурные показатели достигают 1800 градусов, но сохранить обшивку космических аппаратов и ракет в целости позволяет незначительная концентрация воздуха. В этом слое земной атмосферы возникает особое
явление - северное сияние – особый вид свечения, который можно наблюдать в некоторых регионах планеты. Появляются они вследствие взаимодействия нескольких факторов - ионизации воздуха и действия на него космического излучения и радиации.

Какой слой атмосферы находится дальше всего от земли – Экзосфера. Здесь находится зона рассеивания воздуха, так как концентрация газов небольшая, в результате чего происходит их постепенный выход за пределы атмосферы. Этот слой располагается на высоте 700 км над поверхностью Земли. Основной элемент, составляющий
этого слоя – водород. В атомарном состоянии можно встретить такие вещества, как кислород или азот, которые будут сильно ионизированы солнечным излучением.
Размеры экзосферы Земли достигают 100 тысяч км от планеты.

Изучая слои атмосферы по порядку от поверхности земли, люди получили много ценной информации, которая помогает в развитии и совершенствовании технологических возможностей. Некоторые факты являются удивительными, но именно их наличие позволило живым организмам успешно развиваться.

Известно, что вес атмосферы составляет более 5 квадриллионов тонн. Слои способны передавать звуки до достижения 100 км от поверхности планеты, выше это свойство исчезает, так как изменяется состав газов.
Атмосферные движения существуют, потому что нагрев Земли различается. Поверхность на полюсах холодная, а ближе к тропикам прогрев увеличивается, на температурные показатели оказывают влияние циклонические вихри, сезоны, время суток. Силу давления атмосферы можно узнать – для этой цели используется барометр. Ученые в результате наблюдений установили, что наличие защитных слоев позволяет не допустить контакта с поверхностью планеты метеоритов общей массой 100 тонн ежедневно.

Интересным фактом является то, что состав воздуха (смесь газов в слоях) оставалась неизменной на протяжении длительного временного промежутка – известно о нескольких сотнях миллионов лет. Значительные изменения происходят в последние столетия – с того момента, как человечество переживает значительный подъем производства.

Давление, оказываемое атмосферой, отражается на самочувствии людей. Нормальными для 90% считаются показатели в 760 мм ртутного столба, такое значение должно возникать при 0 градусов. Нужно учитывать, что это значение справедливо для тех участков земной суши, где уровень моря проходит с ней в одной полосе (без перепадов). Чем больше высота, тем ниже будет давление. Также оно изменяется во время прохождения циклонов, так как изменения происходят не только по вертикали, но и по горизонтали.

Физиологическая зона земной атмосферы составляет 5 км, после прохождения этой отметки у человека начинает проявляться особое состояние - кислородное голодание. При этом процессе у 95% людей наблюдается выраженное снижение работоспособности, также значительно ухудшается самочувствие даже у подготовленного и тренированного человека.

Именно поэтому значение атмосферы для жизни на земле велико – люди и большинство живых организмов не смогут существовать без этой газовой смеси. Благодаря их наличию появилась возможность развития привычной для современного общества жизни на Земле. Необходимо оценивать ущерб, который наносится производственной деятельностью, проводить мероприятия по очистке воздуха, чтобы снизить концентрацию определенных видов газов и привнести те, которых недостаточно для нормального состава. Важно задуматься уже сейчас о дальнейших мерах сохранения и восстановления слоев атмосферы, чтобы сохранить оптимальные условия для будущих поколений.

Выше мы познакомились с особенностями распределения средней температуры воздуха у поверхности земли зимой и летом. Поле температуры во всей тропосфере принципиально мало отличается от поля температуры у земной поверхности. Однако в стратосфере режим температуры иной, поскольку условия прогревания воздуха здесь отличны от тропосферных.

Для удобства представления распределения средней температуры воздуха во всей толще тропосферы, а также в крупных слоях стратосферы на всем земном шаре пользуются картами относительной барической топографии. Этими картами изображаются высоты между поверхностями одинакового атмосферного давления (изобарическими поверхностями). Высоты эти, выраженные в геопотенциальных метрах V , пропорциональны средней температуре слоя между взятыми изобарическими поверхностями. Поэтому изолинии на картах относительной барической тополь графии (ОТ) по существу являются изотермами средней температуры воздуха во взятом слое. Малым значением геопотенциала соответствуют области холода, большим значениям- области тепла.

Тропосфера. На рисунках 22 и 23 представлены средние карты относительной топографии между поверхностями 300 и 1000 мб (ОТ 300/1000) для января и июля. Так как поверхность 300 мб расположена вблизи уровня 9 км, а 1000 мб - у поверхности земли, то приведенные здесь карты характеризуют среднюю температуру слоя воздуха толщиной около 9 /еж, т. е. значительную часть тропосферы.

Рассмотрим некоторые особенности распределения средней температуры в тропосфере в январе и июле по приведенным картам относительной топографии. Независимо от времени года в соответствии с условиями притока солнечной энергии в Арктике и Антарктике воздух значительно холоднее, чем в низких широтах. Поэтому горизонтальные градиенты температуры во всей тропосфере направлены от низких широт к высоким, а широкая область тепла занимает экваториальную зону. Северной зимой (рис. 22) она несколько сдвинута в сторону южного полушария, а северным летом (рис. 23) - в сторону северного полушария. Вместе с тем густота изогипс указывает, что зимой как в северном, так и в южном полушариях величина горизонтального градиента температуры больше, чем летом.

Распределение средней январской и июльской температуры в нижнем 9-километровом слое атмосферы несколько отличается от распределения средней температуры в те же месяцы у поверхности земли. На картах относительной топографии никак не отражена весьма сложная форма изотерм, вызванная влиянием подстилающей поверхности, которую мы видели на картах температуры у поверхности земли (см. рис. 16 и 18). Однако влияние материков и океанов распространяется на всю тропосферу, что четко проявляется в конфигурации изогипс относительного геопотенциала, которые в январе располагаются не вдоль широт, а значительно изогнуты. При этом над охлажденными материками северного полушария располагаются ложбины холода, а над тепловыми океанами - гребни тепла. Средняя температура 9-километрового слоя в январе в экваториальной зоне - около 0°, а в Арктике и Антарктике она равна -39° и -30° соответственно.

В июле температура вдоль параллелей над материками и океанами в северном полушарии почти выравнивается. Это находит отражение на форме изогипс ОТ 300/1000, которые принимают почти широтное положение (рис. 23). Небольшие ложбины холода можно обнаружить лишь над северными, относительно холодными частями Атлантики и Тихого океана. В низких широтах над Северной Америкой и югом Азии вследствие интенсивного прогревания воздушных масс обособляются замкнутые области тепла.

Средняя температура слоя летом в тропиках превышает 0°, а в Арктике и Антарктике достигает -20° и -43° соответственно.

Те же особенности структуры поля температуры можно обнаружить на материках южного полушария, с той только разницей, что там они выражены слабее ввиду малых размеров материков.

Стратосфера. За последние годы существенно изменилось представление о стратосфере как о спокойной среде с малой


турбулентностью и изотермией. Уже в начале 50-х годов ряд авторов отмечал, что на режим температуры в стратосфере, помимо лучистого теплообмена, оказывает влияние горизонтальный перенос воздуха (адвекция) и адиабатические процессы сжатия и расширения воздуха, обусловленные вертикальными движениями.

Радиозондовые и ракетные наблюдения в период Международного Геофизического Года (МГГ) и позднее показали, что температура и ветер в стратосфере претерпевают резкие изменения не только в зависимости от сезонов года, но и внутри каждого из них, особенно в холодное время года. Исследования показали, что сезонное поле температуры определяется главным образом лучистым теплообменом, а его внутрисезонные изменения - адвекцией и динамикой атмосферных процессов.

Карты относительной топографии выше тропопаузы дают общую картину распределения температуры. Здесь мы ограничимся приведением лишь двух карт относительной топографии, представляющих поле температуры в слое между изобарическими поверхностями 10 и 100 мб, т. е. между высотами 30 и 16 км, для января и июля (рис. 24 и 25).

Различия между этими и предшествующими картами (рис. 22 и 23), представляющими поле температуры за те же месяцы в тропосфере, выражаются в, неодинаковой густоте изолиний и несовпадении очагов холода и тепла. На картах января (рис. 24 и 22) в стратосфере, как и в тропосфере, на севере расположен очаг холода, что, как уже указывалось, объясняется охлаждением воздуха в слое озона в условиях полярной ночи. Однако конфигурация изогипс (изотерм) различна, так как в тропосфере температура воздуха определяется притоком тепла от подстилающей поверхности (холодные материки и теплые океаны), а в стратосфере - непосредственным поглощением солнечной энергии. Поэтому здесь в январе очаг холода обнаруживается в центре Арктики, где стоит полярная ночь. Вторая широкая область холода охватывает почти все низкие широты - там, где тропосфера распространяется до высот 16-18 км, температура воздуха понижается до -70°, -80°. Сравнительно теплее в стратосфере средних широт северного полушария, поскольку выше тропопаузы, на уровне 10-11 км, температура не подвергается существенным изменениям с высотой, оставаясь в среднем в пределах -50°, -60°.

Интересно, что северной зимой (декабрь - февраль) в стратосфере над Антарктикой образуется обширная область тепла, обусловленная нагреванием воздуха в слое озона в течение полярного дня южным летом.

К июню - августу поле температуры в слое 16-30 км (ОТ 10 100) резко меняется (рис. 25). Как и в тропосфере, в нижней стратосфере над высокими широтами южного полушария формируется область холода, вызванная охлаждением воздуха в слое озона в условиях полярной ночи. В Арктике в это время года, наоборот, температура воздуха достигает наибольших величин, а экваториальная зона, как и в декабре - феврале, является очагом холода.

Заметим, что зона тепла обнаруживается в южном полушарий между широтами 20 и 40°, возникновение которой аналогично образованию такой же области в северном полушарии в декабре - феврале. Еще небольшой очаг тепла возникает над Центральной Азией благодаря интенсивному нагреву воздуха над пустынями и горными хребтами.

Таким образом, полоса сравнительно высоких температур в обоих полушариях зимой характерна для нижней половины стратосферы. Она выделяется на фоне низких значений температур полярной области и экваториальной зоны. В высоких широтах область холода формируется во время полярной ночи вследствие охлаждения воздуха в слое 20-30 км до -65°, -75° в Арктике и до -75°, -80°- в Антарктике. Низкие температуры в экваториальной зоне связаны с высоким положением тропопаузы.

Вместе с тем данные ракетного зондирования атмосферы показывают, что упомянутые зоны тепла в стратосфере обнаруживаемые зимой в обоих полушариях между широтами 30 и 50°, с высотой смещаются в сторону низких широт. Это нашло отражение на вертикальном разрезе атмосферы (рис. 5). Например, на высоте 30 км эта зона тепла уже находится над тропиками, а на высоте 40 км над экватором теплее, чем над остальными частями зимнего полушария. Наиболее высокие температуры (около 5°) наблюдаются на уровне 50 км над низкими широтами. На этом уровне над средними широтами они составляют в среднем -10°, -20°, а в районе полюса ниже -20°.

Как показывает карта ОТ 10 / 100 (рис. 24), упомянутая выше зимняя зона тепла в северном полушарии над Тихим океаном смещена к северу, к широтам 40-60° и обособлена. Внутри этой области температура воздуха заметно выше, чем над всеми другими районами полушария.

В южном полушарии нет даже признаков подобной аномалии температуры в стратосфере. Здесь зона тепла зимой ограничена широтами 20-40° ю. ш., а градиент температуры направлен из высоких широт в сторону экваториальной зоны. Характер поля температуры в северном полушарии определяется, главным образом, условиями атмосферной циркуляции.

Летом распределение температуры в нижней стратосфере резко отличается от зимнего (см. рис. 25). В соответствии с условиями теплообмена летом и радиационных условий полярного дня воздух в северном полушарии нагревается настолько, что горизонтальный градиент средней температуры в стратосфере



бывает направлен от полюса к экватору. Как видим, это характерно для обоих полушарий.

В средней стратосфере, т. е. в слое между поверхностями 10 и 100 мб, картина по существу не меняется, поскольку условия лучистого теплообмена в формировании поля температуры приблизительно одинаковы в нижней и средней стратосфере.

Стратосфера

Выше тропопаузы до высоты 50 – 60 км расположен слой атмосферы, называемый стратосферой , главной особенностью которой является рост температуры с высотой. В нижней части стратосферы до высоты порядка 25 км температура постоянна или медленно растет с высотой. Стоит отметить, что в зимние месяцы в высоких широтах она даже может слабо падать. Но с высоты 34 – 36 км температура начинает расти быстрее. Это возрастание продолжается до верхней границы стратосферы, именуемой стратопаузой . Здесь стратосфера почти такая же теплая, как и воздух у поверхности Земли.

Возрастание температуры с высотой приводит к большой устойчивости стратосферы: здесь нет упорядоченных (конвективных) вертикальных движений воздуха и его активного перемешивания, что свойственно для тропосферы. Однако очень небольшие по величине вертикальные движения типа медленного оседания или подъема иногда охватывают слои стратосферы, занимающие огромные пространства.

Водяного пара в стратосфере ничтожно мало. Однако на высотах 22 – 24 км в высоких широтах иногда наблюдаются . Днем они не видны, а ночью кажутся светящимися, так как освещаются Солнцем, находящимся под горизонтом. Считается, что эти облака состоят из переохлажденных капель.

Состав воздуха в стратосфере практически такой же, как и в тропосфере, но есть отличие. В стратосфере наблюдается повышенное содержание озона – неустойчивого газа, молекула которого состоит из трех атомов кислорода. Озоновый слой сформировался и поддерживается взаимодействием ультрафиолетового излучения Солнца с молекулами обычного кислорода и служит надежным экраном на пути этого губительного для всего живого излучения. Из-за наличия слоя озона в стратосфере она может быть также названа озоносферой .

…Когда-то обнаруженное в тропосфере падение температуры с высотой ошибочно считалось свойством всей атмосферы, что объяснялось удалением от нагреваемой Солнцем земной поверхности. Но первые же подъемы шаров-зондов с инструментами на борту дали неожиданные данные. Оказалось, что температура понижается примерно до высоты 10 км, после чего она практически не меняется, а затем начинает даже несколько повышаться. Эти данные шли вразрез с установившимися представлениями о вертикальном изменении температуры в атмосфере. Приборы перед запусками шаров-зондов стали проверять более тщательно, практиковались также ночные запуски, исключающие нагрев приборов Солнцем. Однако все новые и новые пуски приносили одни и те же данные о том, что падение температуры с высотой прекращается. В результате пришлось согласиться с тем фактом, что законы, действующие в нижней части атмосферы, перестают работать выше определенной высоты. Таким образом, атмосферу впервые поделили на слои. Тот слой, в котором температура с высотой понижается, назвали тропосферой, а слой атмосферы, в котором температура переставала понижаться с высотой – стратосферой. Учитывая то, что шары-зонды имели значительные ограничения по высоте подъема, они не могли достичь следующего слоя атмосферы – мезосферы , в которой температура снова начинает понижаться по мере подъема. В результате стратосферой стали считать всю верхнюю атмосферу.

Стоит отметить, что переход от тропосферы к стратосфере не происходит резко. Между ними лежит промежуточный слой, толщиной до нескольких километров, в котором прекращается падение температуры с высотой и начинается слой изотермии. Этот слой называется тропопаузой .

Причину роста температуры в стратосфере обнаружили не сразу. Им оказался обнаруженный еще в 1785 году газ, получивший в 1840 году название – озон . В результате поглощения солнечной энергии, происходящей уже в верхней части слоя озона, температура атмосферы на этих высотах повышается, и слой озона является своего рода резервуаром тепла в атмосфере. Содержание озона в нижних слоях атмосферы (до высоты 10 км) ничтожно. А его набольшее содержание приходится на высоты 20 – 25 км. Молекулы озона не встречаются на высотах более 60 км. Данные о содержании озона на высотах получали весьма интересным способом: на шаре-зонде или метеорологической ракете устанавливался спектрограф, регистрирующий спектр Солнца. Известно, что при наблюдениях с поверхности Земли спектр Солнца обрывается в ультрафиолетовой части. Когда стало ясно, что это связано с поглощением озоном солнечного ультрафиолета, логичным методом оценки содержания озона на высотах стали запуски зондов и ракет со спектрографами на борту.

Повышение температуры в стратосфере начинается примерно от 30 км и продолжается до 40 – 50 км, где находится верхняя часть озонного слоя. Несмотря на то, что озона здесь меньше, чем на более низких уровнях, именно эта часть слоя обращена к Солнцу и нагревается сильнее поглощаемыми ею ультрафиолетовыми лучами.

Установленное по результатам зондирования повышение температуры на высоте около 40 – 50 км было подтверждено в 1920 году, когда 9 мая в Москве произошел сильный взрыв артиллерийских складов. Звук от взрыва был хорошо слышен вблизи Москвы – на расстоянии до 60 км, а затем снова на большом расстоянии в пунктах, расположенных кольцом вокруг города. Между этими двумя зонами слышимости имелась «зона молчания» шириной в 100 км, где взрыв совсем не был слышен. Профессор В.И. Виткевич исследовал это явление и пришел к выводу, что такое распределение слышимости звука может наблюдаться при условии его отражения от слоев атмосферы, распложенных на высоте 40 – 50 км. Но при этом температура отражающих слоев должна быть около плюс 40 – 50 градусов.

Мы уже упоминали о важной роли озонового слоя в сохранении жизни на Земле. Но в 1985 году ученые обнародовали сенсационное известие: над Антарктидой обнаружена озоновая дыра диаметром свыше 1000 км! Ежегодно она появлялась здесь в августе, а к декабрю – январю прекращался свое существование. Меньших размеров озоновая дыра была обнаружена и над Арктикой. Стоит отметить, что изменения озонового слоя, его уменьшение, вызвано не только влиянием антропогенных факторов. Существующие естественные изменения волновой активности и динамики стратосферы значительно влияют на вариации озона во времени. Межгодовые вариации общего содержания озона (ОСО) в глобальном масштабе являются индикаторами изменений климата. Например, заметное уменьшение содержания озона в период между 1979 – 1994 гг. над Западной Европой, Восточной Сибирью и востоком США связаны с потеплением климата в этих районах, в увеличение содержания озона в области Лабрадора – с похолоданием в Гренландии и Западной Атлантике.

Существуют также связи между вариациями ОСО в одних географических районах и приземными температурными аномалиями – в других. Например, анализ межгодовых вариаций ОСО в январе и приземной температуры в феврале 1979 – 1994 гг. показал, что для того, чтобы предсказать какая погода (холодная или теплая) будет в феврале в Западной Сибири, нужно смотреть на содержание озона в точке к западу от Англии (50° с.ш., 10° з.д.).

Первые подъемы шаров-зондов до достигавшейся ими предельной высоты опказали, что общий ход температуры выше тропопаузы был достаточно постоянным. Отсюда был сделан вывод о том, что на этих высотах отсутствует (или почти отсутствует) вертикальное перемешивание воздуха. Более поздние высокие радиозондовые подъемы позволили обнаружить значительные сезонные (муссонные) изменения градиента температуры экватор – полюс и связанные с ними изменения режима давления и ветра. Другое важное открытие связано с обнаруженным в стратосфере, прежде всего в зимней стратосфере, значительные внутрисезонные изменения температуры, ветра и содержания озона. Особенно ярко эти внутрисезонные изменения проявляются в так называемых взрывных потеплениях в стратосфере высоких широт.

Первые важные данные о ветрах в нижней стратосфере в ее экваториальной части дало извержение вулкана Кракатао 27 августа 1883г., в результате которого в атмосферу было выброшено огромное количество вулканической пыли. Это обстоятельство позволило получить начальные сведения о некоторых особенностях стратосферы низких широт.

Движение вулканической пыли показало, что в экваториальной зоне не только на уровне моря, но и в нижней стратосфере зональная составляющая ветра направлена с востока на запад, причем скорость этих восточных потоков в нижней стратосфере достигает значительных величин (25 – 50 м/сек). Эти стратосферные восточные ветры получили название ветров Кракатао . Ветры Кракатао огибают весь земной шар в экваториальных (15° с.ш. – 15° ю.ш.) широтах на высотах 25 – 40 км.

В 1909 году экспедицией Ван-Берсона в Центральной Африке впервые были обнаружены западные ветры в тропической стратосфере. Последующие наблюдения показали как наличие восточных ветров Кракатао в тропической стратосфере, так и появление под ними западных ветров Берсона . Западные ветры Берсона также были обнаружены при серии атомных испытаний на Маршалловых островах. Последующие исследования показали, что ветры в нижней тропической стратосфере меняют направление между восточным и западным с периодом около 26 – 27 месяцев. Так была установлена квазидвухлетняя цикличность , когда в слое тропической стратосферы от 18 – 20 км до 35 км в течение примерно одного года господствуют ветры восточных направлений, а в течение следующего года – западных. Квазидвухлетняя цикличность особенно отчетливо выражена в зоне 8 – 10° по обе стороны от экватора и имеет наибольшую амплитуду на уровне около 23 км, где средняя продолжительность цикла составляет около 26 месяцев. Каждый из зональных переносов появляется раньше всего в верхних слоях, на уровне около 35 км, и постепенно со скоростью 1 – 1,5 км в месяц распространяется вниз.

В верхней тропической стратосфере позднее была обнаружена шестимесячная цикличность, которая находится в определенной связи с двухлетней.

Новейшие исследования стратосферы, как было отмечено выше, обнаруживают значительную взаимосвязь между ней и тропосферой. Например, некоторые работы показали, что распространение климатического сигнала из тропосферы в стратосферу происходит довольно быстро – в течение 3 – 10 суток. После этого в стратосфере аномальный сигнал существует намного дольше (15 – 40 суток), что дает основания для долгосрочного прогноза погоды по параметрам стратосферы.

Литература:
П.Н. Тверской. Курс метеорологии. Гидрометеоиздат, 1962.
Атмосфера Земли. Сборник. Москва, 1953.
А.Л. Кац. Циркуляция в стратосфере и мезосфере. Гидрометеоиздат, 1968.
Использованы также материалы журналов «Метеорология и гидрология» и «Наука и жизнь».